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In this work the theoreti
al investigation of temperature dependen
e of the threshold 
urrent in

quantum well stru
ture of mid-IR range with strain layers based on InGaAsSb/AlGaAsSb stru
-

ture has been made. As an example of pro
esses whi
h have an in
uen
e on the threshold 
urrent

temperature dependen
e the Auger re
ombination have been 
hosen. This pro
ess exerts the largest

in
uen
e on the temperature dependen
e. The obtained Auger re
ombination versus As mole fra
-

tion dependen
e illustrates the way of this lost me
hanism redu
tion by �tting stru
ture material

and its mole fra
tions in su
h lasers. The presen
e of su
h a result allows to redu
e nonradiative

losses and the threshold 
urrent temperature dependen
e.
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High performan
e long wavel ength mid-IR lasers

emitting at the wave length greater than or equal to

2 �mare of great interest be
ause their wavelengths 
oin-


ide with the atmospheri
 transparen
e window. These

lasers 
an be used in the following appli
ations: envi-

ronmental monitoring (in this spe
tral region the water

vapour absorption is very weak while absorption lines of

some pollutants are very strong). Other �elds in whi
h

mid-IR lasers 
an work are remote sensing, mole
ular

spe
tros
opy, solid-state lasers and mid-IR semi
ondu
-

tor lasers pumping, infrared 
ountermeasurements, laser

radar and 
ommuni
ations. The main requirements for

semi
ondu
tor lasers are performan
e above room tem-

perature and high emitting eÆ
ien
y.

The stru
tures with strain layers allow to get low

threshold 
urrent that is related semi
ondu
tor band

stru
ture modi�
ation. The strain presen
e permits to


hange su
h important material parameters as the lat-

ti
e 
onstant, the band gap energy as well as and the

e�e
tive mass value.

Semi
ondu
tor lasers based on InGaAsSb/GaSb have

low threshold 
urrent density, but their internal quantum

eÆ
ien
y is not greater than 47% and output 
ontinuous

wave opti
al power at room temperature is only 2 mW.

However, these quantum stru
tures with barrier layers

AlGaAsSb and a
tive layers InGaAsSb have high val-

ues of their internal quantum eÆ
ien
y and the output


ontinuous wave opti
al power at room temperature of

1.9 W [1℄. It makes lasers diode based on su
h materi-

als fet
hing as radiation sour
es for spe
tros
opi
 atmo-

sphere investigation.

One of the main working 
hara
teristi
s of semi
on-

du
tor lasers is the dependen
e of the threshold 
urrent

versus temperature. The formula for the threshold 
ur-

rent temperature dependen
e is de�ned as [2℄:
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where I

0

is the 
onstant; T

0

is the 
hara
teristi
 tem-

perature whi
h is used for des
ription threshold 
urrent

temperature sensitivity; e is the ele
tron 
harge; N

w

is

number of quantum wells; L

z

is the quantum well thi
k-

ness; N is the quantum well length; W is the quantum

well width; �

i

is the internal quantum eÆ
ien
y; A is the

mole
ular re
ombination 
oeÆ
ient (defe
t and surfa
e

re
ombination); n is the 
arrier density; B is the bimole
-

ular re
ombination 
oeÆ
ient; C is the 
oeÆ
ient of non-

radiative or Auger re
ombination; I

leakage

is the leakage


urrent. Ea
h 
omponent of the formula des
ribes 
orre-

sponding 
urrent terms:

I
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+ I
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+ I
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Strong temperature dependen
e of the threshold 
ur-

rent limits the laser appli
ation range. The pro
esses

of non-radiative Auger re
ombination, intersubband ab-

sorption and leakage 
urrent exert negative in
uen
e on

this 
hara
teristi
. It has been found out that the Auger

re
ombination plays a prin
ipal part [3℄ and leads to the

in
rease of the threshold 
urrent and its temperature sen-

sitivity (in this 
ase the 
hara
teristi
 temperature T

0

de
reases).

Pro
esses of non-radiative re
ombination predominate

at room temperature and lead to a sharp threshold 
ur-

rent in
rease under the temperature rise. Thus, these

pro
esses are the main lost me
hanism of long wavel en-

gth lasers.

The goal of our work is the theoreti
al in-

vestigation of temperature dependen
e of thresh-

old 
urrent I

th

in quantum well stru
ture

of mid-IR range with strain layers based on
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.

One of the methods of the non-radiative Auger re-


ombination weakening is to use stru
tures with strain

layers. In our 
ase the quantum-well layer 
onsists of

three In

(1�x)

Ga

x

As

y

Sb

(1�y)

quantum wells with the lat-
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ti
e 
onstant a

x

= 0:6165 nm and with a

0

= 0:6096 nm

for the barrier layer Al

(1�x)

Ga

x

As

y

Sb

(1�y)

. As a

x

> a

0

we have 
ompressive strain 
ase [4℄. The data for math-

emati
al model are in Table 1.

Parameters Numeri
al values

A
tive layer mole fra
tion x = 0:65 y = 0:15

Barrier layer mole fra
tion x = 0:65 y = 0:03

Number of quantum wells 3

Quantum well thi
kness 10 nm

Barrier layer thi
kness 30 nm

Cavity length 820 �m

Internal quantum eÆ
ien
y 75

Table 1. The data for mathemati
al model.

To investigate the non-radiative re
ombination we

made the 
al
ulation in a

ordan
e with [3℄ where the

following Auger re
ombination pro
esses are taken into

a

ount: intera
tion of three ele
trons and a heavy hole

(CCCH); an ele
tron, two heavy holes and a light hole

(CHHL); an ele
tron, two heavy holes and a hole of spin-

orbit splitting band (CHHS).

Thus, in ea
h pro
ess three parti
les parti
ipate Auger

re
ombination 
oeÆ
ient is inversely proportional to n

3

,

where n is the 
arrier density. In this 
ase the Auger

re
ombination 
oeÆ
ient 
an be de�ned as follows:

C = R

a

=n

3

; (3)

where R

a

is the Auger re
ombination rate. The in
u-

en
e of Auger re
ombination pro
esses on the quantum

well semi
ondu
tor lasers performan
e depends on the

distan
e between 
orresponding band energy quantizing

levels whi
h take part in the Auger transitions or for ele
-

tron | split-o� hole pro
ess on the di�eren
e between

this value and the split-o� band energy.

In 
ommon (bulk) 
ase the dependen
e of the Auger

re
ombination 
oeÆ
ient versus the temperature is ex-

pressed by formula [5℄:
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where C

0

is the Auger re
ombination 
oeÆ
ient whi
h

does not depend on the temperature; E

a

is the Auger

pro
ess a
tivation energy; k

B

is the Boltzmann 
onstant;

T is the temperature.

For every three pro
esses whi
h we 
onsider the a
ti-

vation energy equals to:

| for CCCH pro
ess:

E
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| for CHHS pro
ess:

E

a

(CHHS) = �m

CHHS

(E

C1H1

(T ) ��

s

; ) (7)

�m

CHHS

=

m

s

2m

hh

+m




�m

s

; (8)

| for CHHL pro
ess:
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where E

C1H1

is the distan
e between the �rst quantizing

levels in the 
ondu
tion band and the heavy hole sub-

band; m




is the ele
tron e�e
tive mass; m

hh

is the heavy

hole e�e
tive mass; �

s

is the split-o� band energy; m

s

is the split-o� hole e�e
tive mass; E

C1L1

is the distan
e

between �rst quantizing levels in the 
ondu
tion band

and the light hole subband; m

lh

is the light hole e�e
-

tive mass. The total Auger re
ombination 
oeÆ
ient is

de�ned by the pro
esses sum:

C

total

= C

CCCH

+ C

CHHS

+C

CHHL

: (11)

Fig. 1. Auger re
ombination 
oeÆ
ients versus tempera-

ture.

In Fig. 1 the total Auger re
ombination 
oeÆ
ient ver-

sus As mole fra
tion dependen
e is shown where one 
an

see the presen
e of minimum on the total Auger re
om-

bination 
oeÆ
ient 
urve. To explain this o

uran
e the

behavior of ea
h Auger re
ombination 
oeÆ
ients should

be 
onsidered. The reason for su
h a behaviour is the a
-

tivation energy 
hange as the redu
tion of the energy

between the �rst quantizing levels for all pro
esses o
-


urs; e�e
tive mass ratios in (5), (7) and (9) have small
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values at the same time. The CHHS pro
ess falling is


on
erned with the de
reasing value of �

s

, i. e., an in-


rease of the split-o� band splitting and a de
rease of

the CHHS pro
ess take pla
e.

Fig. 2 shows the 
al
ulated threshold 
urrent tem-

perature dependen
e whi
h illustrates perfe
t agreement

with the experiment held by Y. Rouillard [6℄. The redu
-

tion nonradiative 
urrent (I

C

) 
ontribution to the total

threshold 
urrent is observed at near and above room

temperature while the role of radiative 
urrent (I

B

) is

rising.

The obtained Auger re
ombination 
oeÆ
ient min-

imum whi
h leads to the threshold 
urrent redu
tion

points to the As optimal mole fra
tion availability in the

stru
ture whi
h we investigate that allows to produ
e

semi
ondu
tor mid-IR dete
tors ensuring steady genera-

tion at room temperature.

Fig. 2. Threshold 
urrent versus temperature.

[1℄ D. A. Yarekha et al., Semi
ond. S
i. Te
hnol. 15, 1 (2000).

[2℄ G. P. Agrawal, N. K. Dutta, Long-wavelength semi
ondu
-

tor lasers (Van Nostrand Renhold Co., New York, 1993).

[3℄ A. Haug, J. Phys. Chem. Solids 49, 6 (1988).

[4℄ S. L. Chuang, Physi
s of optoele
troni
 devi
es (John Wi-

ley, New York, 1995).

[5℄ A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs,

J. Sele
t. Topi
s Quantum Ele
tron. 5, 3 (1999).

[6℄ Y. Rouillard, F. Genty, A. Perona et al., Philos. Trans. R.

So
. London A 359, 581 (2001).

POROGOVA REDUKC�� STRUMU U XARUVAT�� STRUKTUR� GaAsSb

O. Maxox�na, V. Lisak, �. Suho�vanov

Hark�vs~ki� na
�onal~ni� un�versitet rad�oelektron�ki,

prosp. Len�na, 14, Hark�v, 61166, UkraÝna

Provedeno teoretiqne dosl�d�enn� temperaturnoÝ zale�nosti porogovogo strumu u kvantovoroz-

m�rnih strukturah seredn~ogo �Q-d��pazonu z napru�enimi xarami na osnov� InGaAsSb/GaS ta

InGaAsSb/AlGaAsSb. Sered bagat~oh pro
es�v, wo vpliva�t~ na temperaturnu zale�n�st~ porogovogo

strumu, vibrano ta rozgl�nuto O�e-rekomb�na
��, �ka ma
 na�b�l~xi� vpliv na temperaturnu harakteris-

tiku. Otrimana zale�n�st~ koef�
�
nt�v O�e-rekomb�na
�Ý v�d mol�rnih frak
�� strukturi, wo rozgl�da-


t~s�, �l�stru
 na�vn�st~ m�n�mumu na 
�� zale�nost�, a tako� xl�h do zni�enn� 
~ogo mehan�zmu vtrat

| 
e p�db�r mater��lu strukturi ta �ogo mol�rnih frak
��. Oder�an� rezul~tati da�t~ zmogu zmenxiti

bezviprom�n�val~n� vtrati ta temperaturnu zale�n�st~ porogovogo strumu.
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