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A systemati
 treatment of the magneti
 
u
tuations e�e
t on the properties of the normal-to-

super
ondu
ting phase transition in a zero external magneti
 �eld is given within the self-
onsistent

approximation and the quasi-ma
ros
opi
 Ginzburg{Landau model. New results for thin super
on-

du
ting �lms are presented. Thermodynami
 quantities having a dire
t experimental interest as

the order parameter jump, latent heat, and spe
i�
 heat are 
onsidered and numeri
ally evaluated

for bulk Al and thin Al �lms. The possibility for an experimental veri�
ation of the theoreti
al

predi
tions is dis
ussed.
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I. INTRODUCTION

In 1974 Halperin, Lubensky and Ma (HLM) [1℄ showed

that the magneti
 
u
tuations 
hange the order of the su-

per
ondu
ting phase transition in a zero external mag-

neti
 �eld (H

0

= jH

0

j = 0)), i. e., the order of the phase

transition from normal-to-uniform (Meissner) super
on-

du
ting state at T


0

= T




(H

0

= 0). In the mean-�eld

approximation, when both magneti
 and super
ondu
t-

ing 
u
tuations are negle
ted, this phase transition is of

se
ond order; see, e. g., Refs. [2,3℄. Moreover, the 
u
-

tuations Æ (x) = [ (x) � h (x)i℄ of the super
ondu
t-

ing order parameter  (x) towards the statisti
al aver-

age h (x)i are extremely small and 
an be safely ig-

nored in usual low-temperature (T


0

< 20 K) super-


ondu
tors. For a long time these super
ondu
tors have

been 
onsidered as an ex
ellent example of a standard

phase transition of se
ond order des
ribed by the mean-

�eld approximation.When the magneti
 
u
tuations are

taken into a

ount in the Ginzburg{Landau (GL) free

energy F ( ;A) of super
ondu
tor [2℄, the same normal-

to-super
ondu
ting phase transition in a zero (mean) ex-

ternal magneti
 �eld (H

0

= 0) is found to be a weakly-

�rst order phase transition with a very small latent heat

whi
h 
annot be observed by available experimental te
h-

niques [1℄. The e�e
t of a magneti
 
u
tuation 
hange of

the super
ondu
ting phase transition order, 
alled HLM

e�e
t, is very weak in bulk (three dimensional, or 3D)

super
ondu
tors even in Al where the GL number � is

very small (� � 1) | a 
ir
umstan
e whi
h is in favor

of the e�e
t [1,4℄.

In this paper we shall investigate this 
u
tuation-

indu
ed �rst order phase transition in thin (quasi-2D)

super
ondu
ting �lms. Bulk super
ondu
tors will be also

dis
ussed in order to 
ompare them with the behaviour

of thin �lms. We shall use a self-
onsistent approxima-

tion [1℄, in whi
h the 
u
tuations Æ of  are negle
ted

but the magneti
 
u
tuations are 
ompletely taken into

a

ount. Note, that the so-
alled \tree approximation"

[3℄ does not yield the HLM e�e
t and the self-
onsistent,

or mean-�eld-like, approximation, mentioned above, is

the simplest analyti
al method for an investigation of

this phenomenon.

The present study is intended to provide enough the-

oreti
al results about the behaviour of measurable phys-

i
al quantities dire
tly related to the phase transition

properties and in this way to ensure a theoreti
al ba-

sis for future experiments on the existen
e of the HLM

e�e
t. The need of an experimental observation of the

HLM e�e
t is very important be
ause the e�e
t remains

a theoreti
al paradigm without a reliable experimen-

tal veri�
ation although its me
hanism | the intera
-

tion of gauge �elds in a quite universal Abelian{Higgs

model | is of fundamental interest for di�erent �elds

of physi
s as pure [5,9{13℄, and disordered [14{21℄ su-

per
ondu
tors, quantum phase transitions [22,23℄, s
alar

ele
trodynami
s [24℄, liquid 
rystals [25{29℄, and 
osmol-

ogy [30,31℄. On the other hand, there are some theo-

reti
al studies, based on Monte Carlo simulations [32℄,

the so-
alled dual model [33,34℄, and 
ertain variants of

the renormalization-group (RG) [35,36℄, in whi
h no ev-

iden
e of HLM e�e
t was reported; for a dis
ussion of

this point, see the review arti
le [37℄. Therefore, in the

modern theory of phase transitions the problem for the

existen
e of HLM e�e
t is 
ontroversial and 
annot be

easily solved without a hint from the experiment. The

experimental resear
h of the e�e
t in liquid 
rystals 
an-

not be 
onsidered reliable although the reported results

are in favor of its existen
e.

Re
ently, it has been shown [9℄ that the HLM e�e
t

is stronger in quasi-2D super
ondu
ting �lms than in

bulk super
ondu
tors and the preliminary evaluation of

the relevant physi
al quantities like the order parame-

ter jump and the latent heat at the equilibrium point

of the 
u
tuation-indu
ed �rst order transition in su-

per
ondu
ting �lms gives for them several orders bigger
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values than for those in bulk materials [10{13℄. This re-

sult reopens the problem for an experimental sear
h of

HLM e�e
t in type I super
ondu
tors, in parti
ular, in

thin �lms of type I super
ondu
tors with relatively small

GL parameter �. Here we shall investigate this problem

in a 
omprehensive way.

We shall negle
t the 
u
tuations of the super
ondu
t-

ing order parameter be
ause their e�e
t on the thermo-

dynami
s of the super
ondu
tor is very weak; see, e. g.,

Refs. [2,3℄. Within this approximation, the problems in

the s
ope of the work 
an be 
onsidered without the use

of RG, as well as of numerous and quite interesting RG

results available in the literature; for a review, see, e. g.,

Ref. [37℄.

The approximation used by us does not allow for total

solution of the long standing problem for the order of

the phase transition in super
ondu
tors in a zero mag-

neti
 �eld. But we present a reliable investigation of the

HLM e�e
t outside the asymptoti
 vi
inity of the phase

transition point. Let us 
larify this point in more details.

We 
annot address our investigation to 
ertain 
lasses of

high-temperature super
ondu
tors where the (Ginzburg)


riti
al region is quite large and the e�e
t of the super-


ondu
ting 
u
tuations should be taken into a

ount.

Besides, our studi is not intended to an investigation of

the phase transition properties in the very narrow 
rit-

i
al region (jT � T


0

j � 10

�12

� 10

�16

K) in the usual

low temperature super
ondu
tors with 
riti
al temper-

atures T


0

< 20 K. We 
on
entrate our attention to

phase transition properties whi
h 
an be observed by the

available experimental te
hniques, and for this reason we

ignore phenomena whi
h may o

ur in extremely small

and, hen
e, experimentally una

essible temperature in-

tervals su
h as the Ginzburg 
riti
al region in usual su-

per
ondu
tors. To ignore the 
riti
al region is equivalent

to ignore the super
ondu
ting 
u
tuations by the sup-

position that their e�e
t is negligibly small. Ex
ept for


ertain high-temperature super
ondu
tors, this approx-

imation is 
omprehensive to all known super
ondu
ting

systems and we shall use it in our 
onsideration.

It seems at �rst sight that an obvious disadvantage of

our investigation is that it 
annot be in
luded in the se-

ries of interesting re
ent works performed mainly by RG

methods and intended to solve the problem for the e�e
t

of the super
ondu
ting 
u
tuations on the order of the

super
ondu
ting phase transition in the asymptoti
 s
al-

ing region in the very vi
inity of the 
riti
al point T


0

,

i. e., to the 
he
k of the HLM e�e
t in a regime of strong


u
tuation intera
tions of the super
ondu
ting order pa-

rameter. However, the present work is not addressed to

su
h aims. Rather, our e�orts are 
on
entrated on the

investigation of the HLM e�e
t in experimentally a

es-

sible temperature intervals (�T > 10

�5

K) outside the

negligibly small 
riti
al region, where the super
ondu
t-

ing 
u
tuations in low-temperature super
ondu
tors 
an

be ignored and the HLM e�e
t due to the magneti
 
u
-

tuations 
an be experimentally tested. Therefore, we 
an

reliably work within the mean-�eld-like approximation

des
ribed in Ref. [1℄ and dis
ussed in re
ent Refs. [9{13℄.

Besides, here we shall 
onsider the same method in de-

tails together with the limits of its validity. Thus we shall

demonstrate that our 
onsideration of the HLM e�e
t is

valid outside the 
riti
al region. More detailed e�e
ts, as

those predi
ted by RG and 
hara
terized by temperature

s
ales of order 10

�6

K and lower are beyond the s
ope

of this arti
le.

In Se
. II we present a derivation of the e�e
tive free

energy of a D-dimensional super
ondu
tor. Subse
tions

II.B and II.E are devoted to a detailed dis
ussion of the

validity of our approa
h. In Se
. III we give the �rst thor-

ough investigation of the e�e
tive free energy for bulk

super
ondu
tors. In Se
. IV the quasi-2D super
ondu
t-

ing �lms and the validity of the Landau expansion are

dis
ussed. In Se
. V we summarize our main 
on
lusions.

II. EFFECTIVE FREE ENERGY

A. Model 
onsiderations

The GL free energy [2℄ of a D-dimensional super
on-

du
tor of volume V

D

= (L

1

:::L

D

) is given in the form

F ( ;A) =

Z

d

D

x

�

aj j

2

+

b

2

j j

4

(1)

+

~

2

4m

�

�

�

�

�

r�

2ie

~


A

�

 

�

�

�

�

2

+

B

2

8�

#

:

In Eq. (1) the �rst Landau parameter a = �

0

(T �T


0

) is

expressed by the 
riti
al temperature T


0

= T




(H = 0)

in a zero external magneti
 �eld (H = jHj), b > 0

is the se
ond Landau parameter and e � jej is the

ele
tron 
harge. The square B

2

of the magneti
 indu
-

tion B = (H + 4�M), is given by the ve
tor potential

A(x) = fA

j

(x); j = 1; :::; Dg in the form

B

2

=

1

2

D

X

i; j = 1

�

�A

j

�x

i

�

�A

i

�x

j

�

2

; (2)

here the ve
tor potentialA(x) obeys the Coulomb gauge

r � A(x) = 0. For a 3D super
ondu
tor the relation

B = [r � A(x)℄ 
an be used and when B = B

0

is

uniform along the z-axis, the Landau gauge A

0

(x) =

B

0

(�y=2;�x=2; 0) 
an be applied. This representation


an be generalized for (D > 2)-dimensional systems,

where the magneti
 indu
tion B

0

is a se
ond rank tensor:

B

0ij

= B

0

(Æ

i1

Æ

j2

� Æ

j2

Æ

i1

): (3)

If we use the notation x = (x

1

; x

2

; r), where r is a

(D � 2)-dimensional ve
tor perpendi
ular to the plane

(x

1

; x

2

), in the 3D 
ase we shall have r = (0; 0; z), and

B

j

=

1

2

�

jkl

B

0kl

= B

0

Æ

j3

; (4)
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where �

jkl

is the antisymmetri
 Levi-Civita symbol. The

Landau gauge and Eqs. (3)-(4) 
an be used for uniform

B = B

0

when ÆB 
u
tuations are negle
ted; see, e. g.

Ref. [6℄. In the prevailing part of our study we shall ap-

ply the general Coulomb gauge of the �eld A(x) whi
h

does not ex
lude spatial dependent magneti
 
u
tuations

ÆB(x).

In nonmagneti
 super
ondu
tors where the mean value

hMi = (M � ÆM) of the magnetization M is equal to

zero in the normal state in zero external magneti
 �eld,

the magneti
 indu
tion in presen
e of external magneti


�eld takes the form:

B = H

0

+ ÆH(x) + 4�ÆM(x) ; (5)

where H

0

is the (uniform) regular part of the external

magneti
 �eld and ÆH is an irregular part of H 
reated

by un
ontrollable e�e
ts. We negle
t the irregular part

ÆH and set H

0

= 0, then B 
ontains only a 
u
tua-

tion part B � ÆB(x) = 4�ÆM(x) that des
ribes the

diamagneti
 variations of M(x) around the zero value

hMi = 0 due to 
u
tuations Æ (x) of the ordering �eld

 (x) above (T > T


0

) and below (T < T


0

) the normal-

to-super
ondu
ting transition at T


0

. Note, that the non-


u
tuation part A

0

= [A(x)�ÆA(x)℄ 
orresponds to the

regular part B

0

= (H

0

+ hMi) = 0 of B in nonmagneti


super
ondu
tors (hMi = 0) in a zero external magneti


�eld (H

0

= 0). Then we 
an set A

0

(x) = 0 and, hen
e,

ÆA(x) = A(x), so we have an entirely 
u
tuation ve
tor

potential A(x) whi
h intera
ts with the order parameter

 (x). This intera
tion 
an be of type  

2

A and  

2

A

2

and

generates all e�e
ts dis
ussed in the paper.

We a

ept periodi
 boundary 
onditions for the su-

per
ondu
tor surfa
e. This means to ignore the sur-

fa
e energy in
luding the additional energy due to

the penetration of the magneti
 �eld in a surfa
e

layer of thi
kness equal to the London penetration

depth �(T ) = �

0

jt

0

j

�1=2

; t

0

= jT � T


0

j=T


0

; �

0

=

(m


2

b=8�e

2

�

0

T


0

)

1=2

is the zero-temperature value of �.

This approximation is adequate for super
ondu
tors of

thi
kness L

0

� �(T ) � a

0

, where a

0

is the latti
e 
on-

stant and L

0

= minfL

i

; i = 1; :::; Dg. As we suppose the

external magneti
 �eld to be zero (H

0

= 0) or very small

in real experiments, the requirement L

0

� �(T ) 
annot

be satis�ed and we take into a

ount only the 
ondition

L

0

� a

0

.

In mi
ros
opi
 models of periodi
 stru
tures the peri-

odi
 boundary 
onditions 
on�ne the wave ve
tors k

i

=

fk

i

= (2�n

i

=L

i

); i = 1; :::; Dg in the �rst Brillouin zone

[�(�=a

0

) � k

i

< (�=a

0

)℄ and the expansion of their val-

ues beyond this zone 
an be made either by negle
ting

the periodi
ity of the 
rystal stru
ture or on the basis of

the assumption that big wave numbers k = jkj have a

negligible 
ontribution to the 
al
ulated quantities. The

last argument is widely a

epted in the phase transitions

theory where the long-wavelength (ka

0

� 1) limit 
an be

used. In parti
ular, this argument is valid in the 
ontin-

uum limit (V

D

=a

D

0

!1). Therefore, for both 
rystal and

nonperiodi
 stru
tures we 
an use a 
uto� � � (�=a

0

)

and afterwards to extend this 
uto� to in�nity provided

the main 
ontributions in the summations over k 
ome

from the relatively small wavenumbers (k � �). Note,

that here we make a quasima
ros
opi
 des
ription based

on the GL fun
tional (1) whi
h means that the mi
ro-

s
opi
 phenomena are ex
luded from our 
onsideration.

The GL free energy fun
tional takes into a

ount phe-

nomena with 
hara
teristi
 lengths �

0

and �

0

or larger

(� and �) where �(T ) is the London penetration length

mentioned above and �(T ) = �

0

jtj

�1=2

is the 
oher-

en
e length [2℄; here �

0

= (~

2

=4m�

0

T


0

)

1=2

is the zero-

temperature 
oheren
e length. In low-temperature su-

per
ondu
tors �

0

and �

0

are mu
h bigger than the latti
e


onstant a

0

. Having in mind this argument we shall as-

sume that in our investigation � � (�=a

0

). Whether

the upper 
uto� � is 
hosen to be either � � 1=�

0

or

� � 1=�

0

is a problem that has to be solved by addi-

tional arguments (see Se
. III.C).

We shall use the Fourier expansion

A

j

(x) =

1

V

1

2

D

X

k

A

j

(k)e

ik�x

(6)

and

 (x) =

1

V

1

2

D

X

k

 (k)e

ik�x

; (7)

where the Fourier amplitudes A

j

(k) obey the relation

A

�

j

(k) = A

j

(�k) and k � A(k) = 0. The Fourier am-

plitude  (k) is not equal to  

�

(�k) be
ause  (x) is a


omplex fun
tion. For the same reason  (0) �  (k = 0)

is a 
omplex number.

B. Approximations

The total ignoring of both super
ondu
ting and mag-

neti
 
u
tuations in Eq. (1) leads to the familiar tree ap-

proximationwhere the GL equations [2℄ should be solved.

Note, that the tree, or mean-�eld, approximation is the

lowest order theory within the framework of the loop ex-

pansion, e. g., see [3,38℄. The systemati
 treatment of the


u
tuation e�e
ts in the asymptoti
 vi
inity of the phase

transition point 
an be given by RG.

The e�e
t of the super
ondu
ting 
u
tuations Æ (x)

on the phase transition properties is restri
ted in a neg-

ligibly small vi
inity (jt

0

j � 10

�12

� 10

�16

) of the tem-

perature T


0

and we shall assume that Æ (x) = 0, i. e.,

 � h (x)i; from now on we shall denote h (x)i by  .

So we apply a mean-�eld approximation with respe
t

to the order parameter  (x). Within this approxima-

tion we shall take into a

ount the ÆA(x)-
u
tuations

for B

0

= 0, i. e., A(x) = ÆA(x). Furthermore, the A(x)-


u
tuations 
an be integrated out from the partition

fun
tion, de�ned by:

Z( ) =

Z

DAe

�F ( ;A)=k

B

T

; (8)
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where the fun
tional integral

R

DA is de�ned by

Z

1

�1

D

Y

j=1

Y

x2V

D

dA

j

(x)Æ[divA(x)℄ : (9)

The integration is over all possible 
on�gurations of

the �eld A(x); the Æ-fun
tion takes into a

ount the

Coulomb gauge.

The partition fun
tion Z( ) 
orresponds to an e�e
-

tive free energy F

F

D

= �k

B

T lnZ( ) ; (10)

The magneti
 
u
tuations will be 
ompletely taken into

a

ount, if only we are able to solve exa
tly the inte-

gral (8). The exa
t solution 
an be done for a uniform

order parameter  . The uniform value of  is di�erent

from the mean-�eld value of  be
ause the uniform 
u
-

tuations of  (x) always exist, so we should 
hoose one of

these two possibilities. The problem for this 
hoi
e arises

after the 
al
ulation the integral (8) at a next stage of


onsideration when the e�e
tive free energy F

D

is ana-

lyzed and the properties of the super
ondu
ting phase

( > 0) are investigated. The e�e
tive free energy is a

parti
ular 
ase of the e�e
tive thermodynami
 potential

in the phase transition theory [3,38℄ and we must treat

the uniform  in the way pres
ribed in the �eld theory of

phase transitions. It will be
ome obvious from the next

dis
ussion that we shall use a loop-like expansion whi
h


an be exa
tly summed up to give a logarithmi
 depen-

den
e on j j

2

.

Be
ause of the spontaneous symmetry breaking of the


ontinuous symmetry in the ground state, the ordered

phase  > 0, i. e., the e�e
tive free energies dis
ussed

in this paper depend on the modulus j j of the 
om-

plex number  = j je

i�

but not on the phase angle �

whi
h remains arbitrary. That is why we shall 
onsider

the modulus j j as an \e�e
tive order parameter" be-


ause the angle � does not play any role in the phenom-

ena investigated in the paper. The quantity j j remains

undetermined up to the stage when we de�ne the equi-

librium order parameter j 

0

j by the equation of state

[�F

D

( )=� ℄ = 0. This equation gives the equilibrium

value  

0

of  and the di�eren
e Æ 

0

= ( 

0

�  ) 
an

be treated as the uniform (zero dimensional) 
u
tuation

of the �eld  (x). The x-dependent 
u
tuations Æ (x)

have been negle
ted be
ause of the uniformity of  . The

solution  

0

will be stable towards the uniform 
u
tua-

tion Æ provided the same solution  

0

= j 

0

je

i�

0


orre-

sponds to a stable (normal or super
ondu
ting) phase;

the phase angle �

0

remains unspe
i�ed. Therefore, we

begin our investigation setting  uniform but at some

stage of 
onsideration we shall also ignore the uniform


u
tuation Æ and deal only with the equilibrium value

 

0

of  . The equilibrium value will be 
al
ulated after

taking into a

ount magneti
 
u
tuations, so it will be

di�erent from the usual result j 

0

j = (jaj=b)

1=2

[2℄ when

both magneti
 and super
ondu
ting 
u
tuations are ig-

nored. This simplest approximation for the equilibrium

value of  is obtained from the GL free energy (1) pro-

vided e = 0 and the gradient term is negle
ted. Hereafter

we shall keep the symbol j 

0

j for the equilibrium order

parameter in the more general 
ase when the magneti



u
tuations are not negle
ted and shall denote the same

quantity for e = 0 by � � j 

0

(e = 0)j = (jaj=b)

1=2

.

The above des
ribed approximation negle
ts the sad-

dle point solutions of GL equations, where h (x)i is x-

dependent. Therefore, the vortex state that is stable in

type II super
ondu
tors 
annot be a
hieved. This is 
on-

sistent with the 
hoi
e of a zero external magneti
 �eld,

where the vortex state 
annot o

ur in any type super-


ondu
tor. These arguments 
an be easily veri�ed with

the help of GL equations [2℄ for a zero external mag-

neti
 �eld; the only nonzero solution for  in this 
ase

is given by � = (jaj=b)

1=2

although the magneti
 
u
tu-

ations A(x) = ÆA(x) are properly 
onsidered.

In 
on
lusion we 
an argue that the des
ribed method

will be 
onvenient for both type I and type II super
on-

du
tors in a zero external magneti
 �eld, provided the

 -
u
tuations have a negligibly small e�e
t on phase

transition properties T


0

= T




(H

0

= 0), where T




de-

notes the phase transition line for any H

0

� 0. For type

II super
ondu
tors in H

0

> 0, two lines T


1

(H

0

) and

T


2

(H

0

) should be de�ned, usually given by H


1

(T ) and

H


2

(T ) [2℄.

C. Derivation of e�e
tive free energy

When the order parameter  is uniform the fun
-

tional (1) is redu
ed to

F ( ;A) = F

0

( ) + F

A

( ) ; (11)

with

F

0

( ) = V

D

�

aj j

2

+

b

2

j j

4

�

(12)

and

F

A

( ) =

1

8�

Z

d

D

x

�

�( )A

2

(x) (13)

+

1

2

D

X

i;j=1

�

�A

j

�x

i

�

�A

i

�x

j

�

2

9

=

;

:

Here � = �

0

j j

2

and �

0

= (8�e

2

=m


2

). It is 
onvenient

to 
al
ulate the partition fun
tion Z( ) and the e�e
-

tive free energy F

D

( ) in the k-spa
e, where Eqs. (9)

and (13) take the form

Z

1

�1

D

Y

j=1

k��

Y

k>0

dReA

j

(k)dImA

j

(k)Æ [k �A(k)℄ (14)
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and

F

A

( ) = F

A

(0) + �F

A

( ) : (15)

Here

F

A

(0) =

1

8�

X

j;k

k

2

jA

j

(k)j

2

; (16)

and

�F

A

( ) = �

X

j;k

jA

j

(k)j

2

; (17)

note, that we have used the Coulomb gauge k �A(k) = 0.

Then the partition fun
tion (8) will be

Z( ) = e

�F

0

( )=k

B

T

Z

A

( ) ; (18)

where

Z

A

( ) =

Z

DAe

�F

A

( )=k

B

T

(19)

with F

A

( ) given by (15) and the fun
tional integration

is de�ned by the rule (14). With the help of Eqs. (10){

(19) the e�e
tive free energy F

D

( ) be
omes

F

D

( ) = F

0

( ) +F

f

( ) ; (20)

where F

0

( ) is given by Eq. (12) and

F

f

( ) = �k

B

T ln

�

Z( )

Z(0)

�

(21)

is the  -dependent 
u
tuation part of F( ). In Eq. (20)

the  -independent 
u
tuation energy f�k

B

T ln [Z

A

(0)℄g

has been omitted. This energy should be as
ribed to the

normal state of the super
ondu
tor whi
h, by 
onvention,

is set equal to zero.

De�ning the statisti
al averages

h(:::)i =

R

DA e

�F

A

(0)=k

B

T

(:::)

Z

A

(0)

; (22)

we 
an write Eq. (21) in the form

F

f

( ) = �k

B

T ln he

��F

A

( )=k

B

T

i: (23)

Eq. (23) is a good starting point for the perturbation 
al-


ulation of F

f

( ). We expand the exponent in Eq. (23)

and also take into a

ount the e�e
t of the logarithm on

the in�nite series [3℄ and obtain in result

F

f

( ) =

1

X

l=1

(�1)

l

l!(k

B

T )

l�1

h�F

l

A

( )i




; (24)

where h:::i




denotes 
onne
ted averages [3℄. Now we have

to 
al
ulate averages of the type

hA

�

(k

1

); A

�

(k

2

) : : :A




(k

n

)i




: (25)

Here we shall use the Wi
k theorem and the 
orrelation

fun
tion of form

G

(A)

ij

(k;k

0

) = hA

i

(k)A

j

(�k

0

)i = Æ

k;k

0

G

A

ij

(k) ; (26)

where

G

A

ij

(k) = hA

i

(k)A

j

(�k)i =

4�k

B

T

k

2

�

Æ

ij

�

^

k

i

^

k

j

�

(27)

and

^

k

i

= (k

i

=k).

The 
al
ulation of lowest order terms (l = 1; 2; 3) in

Eq. (24) with the help of (25){(27) is straightforward.

The in�nite series (24) 
an be exa
tly summed up and

the result is the following logarithmi
 fun
tion

F

f

( ) =

(D � 1)

2

k

B

T

X

k

ln

�

1 +

�( )

k

2

�

: (28)

The same result for F

f

( ) 
an be obtained by a dire
t


al
ulation of the Gaussian fun
tional integral (9). This

is done using the integral representation of Æ-fun
tion

in (9) or (14) but it introdu
es an additional fun
tional

integration that should be 
arried out after the integra-

tion over A

j

(x).

Eqs. (10), (20) and (28) give the e�e
tive free energy

density

f

D

( ) = F

D

( )=V

D

(29)

in the form

f

D

( ) = f

0

( ) + �f

D

( ) ; (30)

where

f

0

( ) = aj j

2

+

b

2

j j

4

(31)

and

�f

D

( ) =

(D � 1)k

B

T

2V

D

X

k

ln

�

1 +

�

k

2

�

: (32)

Eqs. (20) and (29){(32) are the basis of our further


onsiderations. We should mention that the 
u
tuation


ontribution �f

D

( ) to f( ) transforms to a 
onvergent

integral in the 
ontinuum limit

1

V

D

X

k

!

Z

d

D

k

(2�)

D

= K

D

Z

�

0

dk k

D�1

; (33)
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where K

D

= 2

1�D

�

�D=2

=�(D=2) for all spatial dimen-

sionalities D � 2. But the terms in the expansion of

the logarithm in (32) are power-type divergent with the

ex
eption of several low-order terms in 
ertain dimen-

sionalities D. Therefore, we shall work with a �nite sum

of an in�nite series of in�nite terms. In our further 
al-


ulations we shall keep the 
uto� � �nite for all relevant

terms in �f

D

( ). This is the 
ondition to obtain 
orre
t

results.

D. Parti
ular dimensions

For purely 2D super
ondu
tor 
onsisting of a single

atomi
 layer, we 
an use Eqs. (29){(32) setting D = 2

and 
al
ulate �f

2

( ) with the help of the rule (33):

�f

2

( ) =

�

k

B

T

8�

��

(�

2

+ �

0

j j

2

) ln

�

1 +

�

0

j j

2

�

2

�

� �

0

j j

2

ln

�

�

0

j j

2

�

2

��

: (34)

The �rst term of this free energy 
an be expanded in

powers of j j

2

:

�f

2

( ) =

�

k

B

T

8�

�

�

�

0

j j

2

(35)

+ �

0

j j

2

ln

�

�

2

�

0

j j

2

�

+

�

2

0

j j

4

2�

2

�

:

Thus we obtain the result from Ref. [39℄. This 
ase

is of spe
ial interest be
ause of the logarithmi
 term in

the Landau expansion for f( ) but it has no pra
ti
al

appli
ation for the la
k of ordering in purely 2D super-


ondu
tors.

For quasi-2D super
ondu
tors we assume that

(2�=�) > L

0

� a

0

, where L

0

is the thi
kness of the su-

per
ondu
ting �lmand a more pre
ise 
hoi
e of the upper


uto� �� (1=a

0

) for the wave numbers k

i

is a matter of

an additional investigation [9℄ (see Se
. II.A and II.E).

In order to justify this de�nition of a quasi-2D system we


onsider the more general 
ase of a 3D system of volume

V = (L

1

L

2

L

0

), where we 
an take the 
ontinuum limit

along the large dimensions (L

1

and L

2

) of the �lm be-


ause of the assumption L

�

� (2�=�), (� = 1; 2). The

summation over the wave number k

0

= (2�n

0

=L

0

) 
an-

not be substituted with an integration be
ause L

0

� L

�

and the dimension L

0

does not obey the 
onditions, valid

for L

�

[40{42℄. Therefore, for su
h 3D system we must

sum over k

0

and integrate over two other 
omponents (k

1

and k

2

) of the wave ve
tor k. This gives an opportunity

for a systemati
 des
ription of the 2D{3D 
rossover in su-

per
ondu
tors [13,41{44℄ whi
h fully justi�es the appli-


ation of more simple treatment for a

0

� L

0

< (2�=�).

We 
onsider the 
onditions (2�=�) > L

0

� a

0

as a

de�nition of a quasi-2D �lms of thi
kness L

0

. The 
on-

dition (2�=�) > L

0

means that the sum in Eq. (32)


ontains only terms with (k

0

= 0). The summation over

k = (k

1

; k

2

; 0) gives a 
orre
t des
ription of quasi-2D

�lms of thi
kness L

0

and this 
an be shown as a limiting


ase of the more general 2D{3D 
rossover des
ribed in

Refs. [13,41{44℄. Therefore, for a quasi-2D �lm we have

the expression;

�f( ) =

2

L

0

�f

2

( ) ; (36)

where �f

2

( ) is given by Eq. (34).

For the bulk (3D) super
ondu
tor we obtain:

�f

3

( ) =

k

B

T

2�

"

�

3

3

ln

�

1 +

�

0

j j

2

�

2

�

+

2

3

�

0

j j

2

��

2

3

�

3=2

0

j j

3

ar
tan

 

�

p

�

0

j j

2

!#

: (37)

For the Landau expansion in powers of j j this form of f

3

( ) 
on�rms the respe
tive results in Refs. [1,4℄ and

moreover 
orre
tly gives a term of type �

2

0

j j

4

whi
h was supposed small and negle
ted in these pre
eding papers.

This problem will be dis
ussed in Se
. III.

For 4D-systems �f

D

( ) be
omes

�f

4

( ) =

3k

B

T

64�

2

�

�

2

�

0

j j

2

+�

4

ln

�

1 +

�

0

j j

2

�

2

�

� �

2

0

j j

4

ln

�

1 +

�

2

�

0

j j

2

��

: (38)

The above expression for �f

4

( ) 
an be also expanded in

powers of j j to show that it 
ontains a term of the type

j j

4

ln (

p

�

0

j j=�) whi
h produ
es a �rst order phase

transition; this 
ase is 
onsidered in the s
alar ele
tro-

dynami
s [24℄. In our further investigation we shall fo
us

our attention on 3D and quasi-2D super
ondu
tors.

The free energy density �f

D

( ) 
an be expanded in

powers of j j but the Landau expansion 
an be done

only in an in
omplete way for even spatial dimensions.

Thus f

2

( ), f

4

( ), and f( ) being the free energy den-

sity 
orresponding to the quasi-2D �lms, 
ontain log-

arithmi
 terms whi
h should be kept in their original
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form in the further treatment of the fun
tion �f

D

( ) in

the Landau expansion. We shall do our analysis in two

ways: with and without Landau expansion of �f

D

( ).

These variants of the theory will be 
alled \exa
t" the-

ory (ET) and \Landau" theory (LT), respe
tively. We

shall show that these two ways of investigation give the

same results in all 
ases ex
ept for quasi-2D �lms with

relatively small thi
knesses (L

0

� �

0

). It seems impor-

tant to establish the di�eren
es between two variants of

the theory be
ause the HLM e�e
t is very small and any

in
orre
tness in the theoreti
al analysis may be a 
ause

for an in
orre
t result. By same arguments we shall in-

vestigate the e�e
t of the fa
tor T in �f

D

( ) on the

thermodynami
s of quasi-2D �lms. This fa
tor 
an be

represented as T = T


0

(1 + t

0

) and one may expe
t that

the usual approximation T � T


0

, whi
h is well justi�ed

in the Landau theory of phase transitions [2,3℄, may be

applied. We shall show for both 3D and quasi-2D su-

per
ondu
tors, that this way of approximation 
an be

made by negle
ting terms in the thermodynami
 quan-

tities smaller than the leading ones. On the other hand,

pra
ti
al 
al
ulations lead to the 
on
lusion that this ap-

proximation 
annot be made without a preliminary ex-

amination be
ause for some quasi-2D �lms it produ
es a

substantial error of about 10%. LT, in whi
h the fa
tor T

is substituted by T


0

, will be 
alled a \simpli�ed Landau

expansion" (SLT).

E. Validity

The general result (29){(32) for the e�e
tive free en-

ergy f( ) has the same domain of validity [2℄ as the

GL free energy fun
tional in a zero external magneti


�eld. When we negle
t a sub-nano interval of tempera-

tures near the phase transition point we 
an use Eq. (1)

provided jt

0

j = jT � T


0

j=T


0

< 1, or in the parti
ular


ase of type I super
ondu
tors, jt

0

j < �

2

[2℄. Note, that

the latter inequality does not appear in the general GL

approa
h. It 
omes as a 
ondition for the 
onsisten
y of

this approa
h with the mi
ros
opi
 BCS theory for type

I super
ondu
tors [2℄.

Taking the 
ontinuum limit we have to assume that

all dimensions of the body, in
luding the thi
kness L

0

,

are mu
h larger than the 
hara
teristi
 lengths � and

�. The ex
eption of this rule is when we 
onsider thin

�lms. Espe
ially for thin �lms of type I super
ondu
tors,

where ((2�=�) > L

0

� a

0

), we should have in mind

that �(T ) > �(T ), so the inequalities � > � > �

0

> �

0

hold true in the domain of validity of the GL theory

jt

0

j < �

2

< 1. In Ref. [9℄ a 
omprehensive 
hoi
e of the


uto� � has been made (� = �

0

) and we shall dis
uss

this point in Se
. 3 and 4. Note, that the respe
tive 
on-

ditions for quasi-2D �lms of type II super
ondu
tors are

mu
h weaker and are redu
ed to the usual requirements:

� > 1=

p

2, jt

0

j < 1 and (2�=�) > L

0

� a

0

.

If we do a Landau expansion of f

D

( ), in powers of

j j

2

the 
ondition �� �

2

should be satis�ed. In order to

evaluate this 
ondition we substitute j j

2

in � = �

0

j j

2

with �

2

= jaj=b whi
h 
orresponds to e = 0 (Se
. II.B).

As �

2

(T ) = 1=�, the 
ondition for the validity of the Lan-

dau expansion be
omes [��(T )℄

2

� 1, i. e., (��

0

)

2

�

jt

0

j. Choosing the general form of �

�

= (��=�

0

) where �

des
ribes the deviation of �

�

from �

1

� � = (�=�

0

), we

obtain (���)

2

� jt

0

j ; � = (�

0

=�

0

) is the GL parameter.

Thus we 
an 
on
lude that in type II super
ondu
tors,

where � = (�

0

=�

0

) > 1=

p

2, the 
ondition (�=�

2

) � 1 is

satis�ed very well for values of the 
uto� in the in-

terval between � = (�=�

0

) and � = (�=�

0

), i. e., for

1 < � < (1=�). For type I super
ondu
tors, where

� < 1=

p

2 the 
uto� values � � (1=�

0

) leads to the

BCS 
ondition (jt

0

j < �

2

) for the validity of the GL

approa
h. Substantially larger 
uto�s (� � �=�

0

), for

example, � � (1=�

0

) for type I super
ondu
tors with

�� 1 lead to a 
ontradi
tion of this BCS 
ondition with

the requirement � � �

2

. This in
onsisten
y will be dis-


ussed again in Se
. II.C.

In our 
al
ulations we often use another parameter

�

�

= (1=���)

2

and, in parti
ular, � � �

1

= (1=��)

2

and in terms of � the 
ondition for the validity of ex-

pansion of f

D

( ) be
omes �jt

0

j � 1, or, more generally,

�

�

jt

0

j � 1. Choosing � = 1=� we obtain the BCS 
rite-

rion for the validity of the GL free energy of type I super-


ondu
tors [2℄. The 
hoi
e � = (�

0

=��

0

) 
orresponds to

the 
uto� �

�

= 1=�

0

. As we shall see in Se
. III and IV

the thermodynami
s near the phase transition point has

no substantial dependen
e on the value of the 
uto� �

�

but it should be 
hosen in a way that is 
onsistent with

the mean-�eld-like approximation.

Alternatively, the inequality (�=�

2

) � 1 may be in-

vestigated with the help of the redu
ed order parame-

ter ' de�ned by ' = j j=�

0

, where �

0

� �(T = 0) =

(�

0

T


0

=b)

1=2

is the so-
alled zero-temperature value of

the order parameter within the GL free energy f

0

( ),

given by Eq. (31); see also Se
. II.B. The redu
ed order

parameter ' will be equal to jt

0

j for t

0

< 0, if only the

magneti
 
u
tuations are ignored, i. e., when j j = �. Us-

ing the notation ', we obtain the 
ondition (�=�

2

)� 1

in the form �

�

'

2

� 1. This 
ondition seems to be more

pre
ise be
ause it takes into a

ount the e�e
t of mag-

neti
 
u
tuations on the order parameter  .

III. BULK SUPERCONDUCTORS

A. Free energy

The e�e
tive free energy f

3

( ) of bulk (3D-) super
on-

du
tors is given by Eqs. (29){(31) and (37). The analyt-

i
al treatment of this free energy 
an be done by Landau

expansion in small (

p

�

0

j j=�). Up to order j j

6

we ob-

tain

f

3

( ) � a

3

j j

2

+

b

3

2

j j

4

� q

3

j j

3

+




3

2

j j

6

; (39)

where

a

3

= a+

k

B

T��

0

2�

2

; (40)

336



NOVEL RESULTS ABOUT MAGNETIC FLUCTUATION EFFECTS. . .

b

3

= b+

k

B

T�

2

0

2�

2

�

; (41)

q

3

=

k

B

T�

3=2

0

6�

; (42)

and




3

= �

k

B

T�

3

0

6�

2

�

3

: (43)

The 
uto� � in Eqs. (40){(43) is not spe
i�ed and 
an

be written in the form �

�

= (��=�

0

) as suggested in

Se
. 2.5.

We shall just outline the analysis of the above free

energy. It 
an be shown by both analyti
al and numer-

i
al 
al
ulations [10℄ that j j

6

-term has no substantial

e�e
t on the thermodynami
s, des
ribed by the free en-

ergy (39). That is why we ignore this term and do the

analysis in the standard way [3℄. The possible phases j 

0

j

are found as a solution of the equation of state:

[�f( )=�j j ℄

 

0

= 0 : (44)

There always exists a normal phase j 

0

j = 0 whi
h gives

a minimum of f

3

( ) for a

3

> 0. The possible super
on-

du
ting phases are given by

j 

0

j

�

=

3q

3

4b

3

 

1�

s

1�

16a

3

b

3

9q

2

3

!

� 0: (45)

Having in mind the existen
e and stability 
onditions

of j 

0

j

�

-phases [3℄, we obtain that the j 

0

j

+

-phase ex-

ists for (16a

3

b

3

) � 9q

2

3

and this region of existen
e al-

ways 
orresponds to a minimum of f

3

( ). The j 

0

j

�

-

phase exists for 0 < a

3

< (9q

2

3

=16b

3

) and this re-

gion of existen
e always 
orresponds to a maximum of

f

3

( ), i. e., this phase is absolutely unstable. For a

3

=

0; j 

0

j

�

= 0 and hen
e, 
oin
ides with the normal phase.

For 9q

2

3

= (16a

3

b

3

) we have j 

0

j

+

= j 

0

j

�

= (3q

3

=4b

3

)

and f

3

(j 

0

j

+

= f

3

j 

0

j

�

) = (27q

4

3

=512b

3

3

). Furthermore,

f

3

(j 

0

j

�

) > 0 for all allowed values of j 

0

j

�

> 0, whereas

f

3

(j 

0

j

+

) < 0 for a

3

< (q

2

3

=2b

3

) ;

and

f

3

(j 

0

j

+

) > 0 for (q

2

3

=2b

3

) < a

3

<

9q

2

3

16b

3

:

The equilibrium temperature T

eq

of the �rst order phase

transition is de�ned by the equation f(j 

0

j

+

) = 0 whi
h

gives the following result:

2b

3

(T

eq

)a

3

(T

eq

) = q

2

3

(T

eq

) : (46)

These results are 
on�rmed by numeri
al 
al
ulations of

the e�e
tive free energy (39) [10℄; there also the in
uen
e

of the j j

6

-term is evaluated.

B. Entropy and spe
i�
 heat 
apa
ity

The equilibrium entropy jump is �S = V�s and

�s = �(df

3

(j j)=dT ) 
an be 
al
ulated with the help

of Eq. (39) and the equation of state (44):

�s = �j 

0

j

2

�(j 

0

j) ; (47)

where �(j 

0

j) is the following fun
tion:

�(y) =

�

�

0

+

k

B

��

0

2�

2

�

�

�

3=2

0

k

B

6�

y+

�

k

B

�

2

0

4�

2

�

�

y

2

: (48)

The spe
i�
 heat 
apa
ity per unit volume �C =

T (��s=�T ) is obtained from (47)

�C = �

�

T

T


0

�

�j 

0

j

2

�t

0

�(j 

0

j) : (49)

The quantities �s(T ) and �C(T ) 
an be evaluated at

the equilibrium phase transition point T

eq

whi
h is found

from Eq. (46):

T

eq

T


0

� 1�

k

B

�

0

�

2�

2

�

0

+

�

�

3=2

0

k

B

=6�

�

2

b+ (�

2

0

k

B

=2�

2

�)T


0

�

T


0

�

0

�

; (50)

provided j�T




j = jT


0

� T

eq

j � T


0

. Further we shall

see that the 
ondition j�T




j � T


0

is valid in real sub-

stan
es. The se
ond term in r.h.s. of Eq. (50) is a typ-

i
al negative 
u
tuation 
ontribution whereas the posi-

tive third term in r.h.s. of the same equality is typi
al

for �rst-order transitions [3℄.

To obtain the jumps �s and �C at T

eq

we have to put

the solution j 

0

j

+

found from Eq. (45) in Eqs. (47){(49).

The result will be:

�s = �

q

2

3


b

2

3


8

<

:

�

0

+

k

B

�

0

�

2�

2

�

 

k

B

�

3=2

0

6�

!

2

T

eq

b

2

3


9

=

;

; (51)

and

�C =

4�

0

b

3


�

�

0

T


0

�

q

2

3


b

b

2

3


�

; (52)

where b

3


and q

3


are the parameters b

3

and q

3

at

T = T

eq

. As j�T




j = jT


0

� T

eq

j � T


0

we 
an set

T

eq

� T


0

in r.h.s. of Eqs. (51) and (52) and obtain

q

3


� q

3

(T = T

eq

) � q

3

(T


0

) and b

3


� b

3

(T


0

).

The latent heat Q = �V T

eq

�s of the �rst order

phase transition at T

eq


an be 
al
ulated from Eq. (51).

If we negle
t the 
harge (e = 0) whi
h means to set
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�

0

= q

3

= 0 and b


3

= b in Eqs. (51){(52) we shall get

the result from Ref. [1℄ for the ratio

(�T )

eq

=

Q

T

eq

�C

: (53)

Here we should mention that Eq. (52) gives the jump�C

at the equilibriumphase transition point of the �rst order

phase transition, des
ribed by j j

3

term [3℄, while �C


al
ulated in Ref. [1℄ is equal to the spe
i�
 heat jump

at the standard se
ond order transition �C = (�

2

0

T


0

=b)

and is four times smaller. Therefore, we obtain (�T )

eq

four times smaller than the respe
tive value in Ref. [1℄.

C. Numeri
al values for Al

In order to do the numeri
al estimates we repre-

sent the Landau parameters �

0

and b with the help

of the zero-temperature 
oheren
e length �

0

and the

zero-temperature 
riti
al magneti
 �eld H


0

. The 
on-

ne
tion between them is given by formulae of the

standard GL theory of super
ondu
tivity [2℄: �

2

0

=

(~

2

=4m�

0

T


0

) and H

2


0

= (4��

2

0

T

2


0

=b). The expres-

sion for the zero-temperature penetration depth �

0

=

(~
=2

p

2eH


0

�

0

) is obtained from the above relation and

�

0

= (b=�

0

T


0

�

0

)

1=2

. We shall use the following experi-

mental values of T


0

, H


0

and �

0

for Al: T


0

= 1:19 K,

H


0

= 99 Oe, �

0

= 1:6�m, � = 0:01 [1,45℄. The exper-

imental values for T


0

, H


0

and �

0

vary about 10{15%

depending on the method of measurement and the ge-

ometry of the samples (bulk material or �lms) but su
h

deviations do not a�e
t the results of our numeri
al in-

vestigations.

The evaluation of the parameters a

3

and b

3

for Al

gives:

a

3

= (�

0

T


0

)

�

t

0

+ 0:972� 10

�4

(1 + t

0

)�

�

; (54)

and

b

3

b

= 1 +

0:117

�

: (55)

Setting � = 1 
orresponds to the 
uto� �

1

= (�=�

0

)

(Se
 2.5). For � = (1=�)

Al

= 10

2

whi
h 
orresponds to

the mu
h higher 
uto� � = (�=�

0

) we have b

3

� b, i. e.,

the �

2

0

-term in b

3

, given by Eq. (41), 
an be negle
ted.

However, as we see from Eq. (55), for � = 1 the same �

2

0

-


orre
tion in the parameter b

3

is of order 0:1b and 
annot

be automati
ally ignored in all 
al
ulations, in 
ontrast

to the supposition in Refs. [1,4℄. However, the more im-

portant 
u
tuation 
ontribution in 3D super
ondu
tors


omes from the � -term in Eq. (54) for the parameter a

3

.

This term is of order 10

�4

for � � 1 and this is 
onsistent

with the 
ondition jt

0

j < �

2

� 10

�4

but for � � 10

2

, i. e.,

for � � (�=�

0

) � 10

6

�m, the same �� term is of order

10

2

whi
h ex
eeds the temperature interval (T


0

� 10

�4

)

for the validity of BCS 
ondition of Al (Se
. II.E).

These results demonstrate that for our theory to be


onsistent, we must 
hoose the 
uto� �

�

= (��=�

0

),

where � is not a large number (� ! 1� 10). To be more


on
rete we set � = �

1

= (�=�

0

) as suggested in Ref. [9℄.

The temperature shift t

eq

= t

0

(T

eq

) for bulk Al 
an

be estimated with the help of Eq. (50). We obtain that

this shift is negative and very small: t

eq

� �10

�4

. Note,

that the se
ond term in the r.h.s. of Eq. (50) is of order

10

�4

provided � � (1=�

0

) whereas the third term in the

r.h.s. of the same equality is of order 10

�5

. On
e again

the 
hange of the 
uto� � to values mu
h higher than

(�=�

0

) will take the system outside the temperature in-

terval where the BCS 
ondition for Al is valid. Let us

note, that in Ref. [10℄ the parameter t 
orresponds to

our present notation t

0

. But the numeri
al 
al
ulation of

the free energy fun
tion f

3

( ) in Ref. [10℄ was made for

the SLT variant of the theory and the shifted parame-

ter (t

0

+ 0:972� 10

�4

) was in
orre
tly identi�ed with t

and this lead to the wrong 
on
lusion for its positiveness

at the equilibrium phase transition point T

eq

. As a mat-

ter of fa
t, the shifted parameter (t

0

+ 0:972� 10

�4

) is

positive at T

eq

but t

eq

� t

0

(T

eq

) is negative.

Having in mind these remarks, when we evaluate �s

and �C for bulk Al we 
an use simpli�ed versions of (51)

and (52) whi
h means to 
onsider only the �rst terms

in the r.h.s and to take q

3


� q

3

and b

3


� b at T


0

. In

this way we obtain

Q = �T


0

�s = 0:8� 10

�2

h

erg

K � 
m

3

i

; (56)

and

�C = 2:62� 10

3

h

erg


m

3

i

: (57)

The results are 
onsistent with an evaluation of �C for

Al as a jump (�

~

C = �

2

0

T


0

=b) at the se
ond order su-

per
ondu
ting transition point [1℄ that, as we mentioned

above, is four times smaller than the jump �C given by

Eq. (57).

A 
omplete numeri
al evaluation of the fun
tion f

3

( )

and the jump of the order parameter at T

eq

for bulk

Al was presented for the �rst time in Ref. [10℄. The re-

sults there 
on�rm that the order parameter jump and Q

for bulk type I super
ondu
tors are very small and 
an

hardly be observed in experiments.

We shall �nish the presentation of bulk Al with a dis-


ussion of the ratio (53). It 
an be also written in the

form

(�T )

eq

=

32�

9

�

T

2


0

b�

0

��

e

2

m


2

�

3

; (58)

and it di�ers by a fa
tor 1=4 from the respe
tive result

in Ref. [1℄. This di�eren
e is due to the fa
t that we take

�C as the jump at the �rst order transition temperature

T

eq

while in the above 
ited paper [1℄ the authors de�ne

�C as a hypotheti
 jump (�

~

C) at the standard se
ond

order phase transition point. From Eq. (56) we obtain

(�T )

eq

= 6:7� 10

�12

(T

3




H

2


0

�

6

0

); (59)
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and multiplying the number 
oeÆ
ient in the above ex-

pression by 4 we 
an obtain Eq. (10) from Ref. [1℄.

IV. QUASI-2D FILMS

Thin quasi-2D �lms (a

0

� L

0

< 2�=�) 
an be investi-

gated with the help of the respe
tive free energy density

f( ) given by Eqs. (30) and (31), �f

D

( ) is taken from

Eqs. (34) and (36). The free energy of quasi-2D super-


ondu
ting �lms was derived and analyzed for the �rst

time in Ref. [9℄ using the Landau expansion of �f

2

( ) in

powers of j j

2

; see Eq. (35). As is shown for the �rst time

by Lovesey [39℄ in the simple 2D 
ase the 
u
tuation 
on-

tribution �f

D

( ), of form given by Eq. (35), leads to a


u
tuation-indu
ed �rst order phase transition. In 
on-

trast to 3D super
ondu
tors where the �rst order of the

phase transition is generated by j j

3

-term in �f

3

( ), in

2D super
ondu
tors the �rst order of the phase transition

is a result of the presen
e of j j

2

lnj j in Eq. (35). But

the Meissner phase 
annot o

ur in 2D (single atomi


layer) super
ondu
tors be
ause of the strong 
u
tuations

and hen
e this 
ase is of no interest. In quasi-2D �lms,

where the Meissner phase does o

ur for properly 
hosen

thi
kness of the �lm (L

0

� 2�=�) [9℄, the 
hange of the

order of normal-to-super
ondu
ting phase transition is

better pronoun
ed than in bulk super
ondu
tors. This is

well illustrated in the above 
ited paper [9℄ by numeri
al

data for Al �lms with thi
kness L

0

= 0:1 �m. Following

Refs. [9,11℄ and the arguments presented in Se
. III.C we

shall 
hoose the 
uto� � = �=�

0

.

The expansion of the respe
tive free energy in powers

of j j leads to somewhat 
lumsy analysis and for this

reason we shall use the approa
h in Ref. [11,12℄ where

the quasi-2D �lms have been investigated with the help

of the general form of �f( ) des
ribed by Eq. (34). In

both variants of the theory (ET and LT; see Se
. II.D)

the thi
kness L

0

of the quasi-2D �lm has an e�e
t on

the thermodynami
 behaviour, that is similar to the in-


uen
e of material parameters �

0

and b. This is very

well seen in the Landau expansion (35) of the free en-

ergy f( ) given by (36), where the parameters a and b

a
quire a 
u
tuation 
ontribution that depends on L

0

.

The in
uen
e of L

0

on the thermodynami
 properties


an be 
onsidered as a 
hara
teristi
 feature of quasi-2D

systems [42,43℄, a feature, absent in purely 2D �lms [39℄.

It is unambiguously demonstrated by several theoreti-


al studies of the 2D{3D 
rossover in systems with slab

geometry [13,42{44℄ that the L

0

-dependen
e as given in

Eq. (36) 
orre
tly des
ribes quasi-2D �lms.

Following Refs. [11,12℄ and having in mind the above

dis
ussion we 
an present the free energy density f( ) =

(F ( )=L

1

L

2

) in the form

f(') =

H

2


0

8�

�

2t

0

'

2

+ '

4

+C(1 + t

0

)�(�'

2

)

�

; (60)

where

�(y) = (1 + y) ln (1 + y) � y lny; (61)

C =

�

2�

2

k

B

T


0

L

0

�

2

0

H

2


0

�

: (62)

In Eqs. (60){(62) we have set � = (�=�

0

) and intro-

du
ed the notation ' = j j=�

0

; the quantity �

0

is de�ned

in Se
. II.E. Some of the properties of free energy (60)

were analyzed in Ref. [11℄ for Al �lms and in Ref. [12℄

for �lms of Tungsten (W), Indium (In), and Aluminium

(Al). Here we shall summarize and justify the pre
eding

results and, moreover, we shall present new results about

the properties of the Landau expansion of e�e
tive free

energy. Note, that the fun
tion �(y) 
annot be fully ex-

panded in powers of y be
ause of the term of type (y ln y)

in Eq. (61).

The extensive investigations [11,12℄ of �lms of W, Al

and In with thi
knesses from 0.05 �m to 2 �m 
on�rm

the intuitive notion that the HLM e�e
t is stronger for

smaller values of L

0

. The numeri
al analysis shows that

type I super
ondu
tors with relatively small GL parame-

ter � and relatively high 
riti
al �eldH


0

may be the best


andidates for the experimental observation of the e�e
t.

The best material from the above enumerated substan
es

seems to be Al; tungsten has an extremely small GL pa-

rameter but also a small 
riti
al �eld that makes it in-


onvenient for experiments. The relatively highH


0

of In

results in relatively large latent heat, Q � 4:0 (erg=
m

3

)

but for �lms with L

0

� 0:05 �m the order parameter

jump j j

eq

= '

eq

�

0

at T

eq

is twi
e smaller than that for

the respe
tive Al �lms [12℄: j j

eq

= 0:05� 10

�11

for In

and j j

eq

= 0:1 � 10

�11

for Al. We have to stress the

role of 
riti
al magneti
 �eld H


0

, a fa
t established for

the �rst time in [12℄ and the present paper. With the

help of data from Refs. [9{12℄ we 
ompared the thermo-

dynami
 quantities near the �rst order phase transition

point in bulk Al and Al �lms of L

0

� 0:1 �m. They

are given in Table 1, where t

eq

= t

0

(T

eq

), '

eq

= '(T

eq

)

is the equilibrium jump of the redu
ed order parameter

and j j

eq

= '

eq

�

0

is the order parameter jump at T

eq

.

quantity t

eq

'

eq

j j

eq

Q (erg/
m

3

)

bulk Al �0:492� 10

�4

0:0032 0:8� 10

9

0:8� 10

�2

L

0

= 0:1 �m �0:00147 0:032 0:8� 10

10

0:8

Table 1. Numeri
al data for bulk Al and Al �lm of thi
kness L

0

= 0:1 �m.
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Fig. 1. The fun
tion f(') for Al �lms of thi
kness L

0

= 0:4 �m: the solid line 
orresponds to ET, the line of 
rosses (+)

represents LT, and the line of 
ir
les (Æ) stands for SLT. All 
urves are 
al
ulated for T

eq


orresponding to ET (see the text).

Fig. 2. The fun
tion f(') for Al �lms of thi
kness L

0

= 0:1 �m: the solid line ({) 
orresponds to ET, the line of 
rosses

(+) represents LT, and the line of 
ir
les (Æ) stands for SLT. All 
urves are 
al
ulated for T

eq


orresponding to the respe
tive

variant of the theory (see the text).

The shift t

eq

of the equilibrium transition temperature

due to magneti
 
u
tuations is very small in both bulk

Al and thin Al �lms so the di�eren
e (T

eq

� T


0

) 
an

be negle
ted in all 
al
ulations of thermodynami
 quan-

tities near T

eq

. The equilibrium jump '

eq

, or, equiva-

lently, j j

eq

, is one order of magnitude higher in the �lm

with L

0

= 0:1 �m than in bulk Al but the latent heat

Q is 10

2

times bigger for �lms. These values are almost

one order of magnitude higher for L

0

� 0:05 �m than

for L

0

= 0:1 �m. The numeri
al data in Table 1 are ob-

tained by SLT for the bulk Al samples and by ET for the

Al �lm of thi
kness L

0

= 0:1 �m; for the abbreviations

SLT, LT and ET, see Se
. II.D. The di�eren
e in the nu-

meri
al results obtained from ET, LT and SLT will be

dis
ussed in the remainder of the paper.

The investigation of bulk super
ondu
tors yields the

same results irrespe
tive of whether we analyze the free

energy f

3

( ) by ET, LT or SLT. The situation in quasi-

2D super
ondu
tors is however di�erent; the three di�er-

ent variants of treatment of the free energy give di�er-

ent results, in parti
ular, for relatively small thi
knesses

(L

0

� �

0

). This feature of free energy, Eq. (60), is il-
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lustrated in Fig. 1, where three 
urves for three di�er-

ent variants of f( ) are shown for Al �lms of thi
kness

L

0

= 0:4 �m. The solid line 
orresponds to ET, the line

of 
rosses represents the LT result, and the line of 
ir-


les stands for SLT. All three 
urves are 
al
ulated for

t

eq

� t

0

(T

eq

) = �0:00057, whi
h is the ET equilibrium

phase transition temperature T

eq

= 0:9994 T


0

. Note,

that '

eq

is the nonzero global minimum of f(') and the

fun
tion f(') depi
ted in Fig. 1 has only one minimum

for ' > 0 be
ause all 
urves are 
al
ulated in the ther-

modynami
 regime 
orresponding to the stable Meissner

phase.

The main 
on
lusion that 
an be made from Fig. 1

is that the two variants of the Landau expansion give

approximately the same quantitative results and there-

fore, the fa
tor (1+ t

0

) in (60) 
an always be substituted

by unity, though the present investigation is intended to

quite small physi
al e�e
ts. This 
on
lusion is 
onsistent

with the argument [11℄ that allows to use the same ap-

proximation (1+t

0

) � 1 for the 
al
ulation of Q and �C

in both variants of the theory: ET and LT. Besides, the

Fig. 1 shows that both variants of LT give slightly higher

equilibrium phase transition temperatures T

eq

and sub-

stantially higher equilibrium jumps '

eq

than ET. Thus,

using LT for �lm thi
knesses a

0

� L

0

< 0:1 �m one

may obtain up to 10 times higher value of '

eq

and up to

10

2

times bigger latent heat Q than the respe
tive values

in Table 1. The problem is whether these higher values

predi
ted by LT are reliable.

Fig. 2 shows the free energy drawn in the three vari-

ants (ET, LT and SLT) of f(') for Al �lms of thi
kness

L

0

= 0:1 �m. In Fig. 2, the 
urves f(') are drawn at

their respe
tive equilibrium phase transition points. The

variation in t

eq

(�0: 00148 for the solid line, �0: 00115

for \+" -line and �0:00046 for Æ-line) are of order of the

typi
al values of t

eq

itself so the di�eren
es in t

eq

due to

the way of 
al
ulation 
annot be negle
ted. Although for

both variants of the Landau expansion (LT and SLT),

the quantity '

eq

is again pra
ti
ally the same, the di�er-

en
e in t

eq

is more pronoun
ed for smaller thi
kness of

Al �lm and moreover, both variants of Landau expansion

are not so good approximation to the result of the exa
t


al
ulation (ET) as for L

0

= 0:4 �m. The 
on
lusions,

we have already drawn from the results shown in Fig. 1,

are 
ompletely 
on�rmed by the form of the 
urves from

Fig. 2 and, moreover, we see that the deviation of the

results of LT from those of ET be
omes bigger with the

de
rease of �lm thi
kness L

0

.

Fig. 3. The fun
tion f(') 
al
ulated from the ET for Al �lms of thi
kness L

0

= 0:1 �m and di�erent 
uto�s �: the solid

line ({) 
orresponds to � = �=�

0

, the dashed line represents the 
ase � = 1=�

0

, and the line of 
ir
les (Æ) stands for � = �=�

0

.

All 
urves are 
al
ulated at the respe
tive T

eq

(see the text).

On the basis of the above observations we may 
on-


lude that in all 
ases when ET and the respe
tive Lan-

dau expansions give di�erent results, the Landau expan-

sion yields a better established �rst order transition, with

a higher jump '

eq

, and hen
e, bigger values of Q and

�C. In order to establish where LT is a good approxi-

mation we have made systemati
 numeri
al 
al
ulations

for Al �lms of di�erent thi
knesses L

0

= 0:05 � 3 �m.

When L

0

is lowered beginning with 3 �m the quanti-

tative di�eren
es between the two variants of theory,

with and without Landau expansion, respe
tively, be-


ome substantial about L

0

� 0:4 �m. Bearing in mind

the 
ondition for the validity of the Landau expansion

(see, Se
. II.E) and the requirement for the equilibrium

jump of the order parameter, �'

2

eq

< 1 we may suppose

that the predi
tions done with the help of the Landau ex-

pansions do not satisfy this inequality for Al �lms with

thi
knesses L

0

� 0:1 �m. For this relatively small L

0

-

size, ET is absolutely reliable. The numeri
al data show

that �lms with L

0

> 0:1 �m are des
ribed well quantita-
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tively by the Landau expansion. The di�eren
es between

the 
urves in Figs. 1 and 2 
an be negle
ted in numeri
al


al
ulations intended to give theoreti
al predi
tions for

experiments.

This general result is supported by the following sim-

ple argument. In the Landau expansion of free energy

(60) for quasi-2D �lms the parameter a a
quires a 
uto�

(�-) independent 
ontribution of the form

�a =

k

B

T�

0

4�L

0

: (63)

When we 
ompare �a with the bare parameter value

jaj = (�

0

T


0

jt

0

j) for Al, it is easily obtained that jt

0

j will

not ex
eed 10

�4

for thi
knesses L

0

whi
h are of order

1 �m or larger. Therefore, for L

0

� 0:1 �m the Landau

expansion gives results whi
h are quantitatively di�erent

from those obtained by ET.

We have studied the dependen
e of the free energy

density f(') of Al �lms with L

0

= 0:1 �m on the 
uto�

�. Fig. 3 shows the free energy density f(') for three

values of the 
uto�: � = �=�

0

, � = 1=�

0

, and � = �=�

0

.

As the 
uto� in
reases from (�=�

0

) to �=�

0

� 10

2

(�=�

0

),

the equilibrium jump '

eq

in
reases, too. We have already

mentioned in Se
. III.C that the in
rease of the 
uto� �

for type I super
ondu
tors up to the value (�=�

0

) is in-


onsistent in the present theory. The numeri
al result

for Al �lms shown in Fig. 3 is, therefore, a demonstra-

tion of the validity of our arguments about the 
hoi
e of

the 
uto� � presented in Se
. III.C. If we take the 
uto�

� � (�=�

0

) we shall go beyond the s
ope of validity of

our theory.

There is a similarity between the breakdown of the

present theory for 
uto�s � � (�=�

0

) and the break-

down of the 
ondition (�=�

2

)� 1 for the validity of LT

at small thi
knesses L

0

. In both 
ases, when there is an

in
onsisten
y of the theory, we obtain enhan
ed values of

the 
hara
teristi
 jumps of thermodynami
 quantities at

the equilibrium point of the �rst-order phase transition.

V. CONCLUSION

We did a detailed analysis of the HLM e�e
t in bulk

(3D-) super
ondu
tors and quasi-2D super
ondu
ting

�lms within the self-
onsistent approximation introdu
ed

in Refs. [1,4,24℄. We have studied for a �rst time the

validity of this approximation and 
al
ulated thermody-

nami
 quantities of dire
t experimental interest like the

equilibrium jumps of the order parameter, entropy and

spe
i�
 heat at the point of the 
u
tuation-indu
ed �rst-

order phase transition to super
ondu
ting state in a zero

external magneti
 �eld. Our investigation is supported

by numeri
al 
al
ulations for bulk Al and Al �lms.

We have presented for a �rst time a 
omprehensive

analysis of the e�e
tive free energy of the super
ondu
-

tor in a zero external magneti
 �eld and on the basis of

this analysis we 
ompared the results from the investiga-

tion of the e�e
tive free energy without a partial Landau

expansion with those from the Landau expansion of the

e�e
tive free energy of quasi-2D �lms. For quasi-2D �lms

of type I super
ondu
tors, the Landau expansion leads to

reliable results, provided the �lm thi
kness is above some

value depending on the 
hara
teristi
 lengths �

0

and �

0

,

i. e., on the material parameters. For Al �lms the results

from the Landau expansion be
ome unreliable below �lm

thi
knesses L

0

� 0:1�m. For quasi-2D �lms of type II su-

per
ondu
tors the Landau expansion of the e�e
tive free

energy 
an be used for any thi
kness above the level of

destru
tion of super
ondu
tivity (L

0

� 10

�3

�m).

Our investigation provides a reliable theoreti
al basis

for a future experimental sear
h of the HLM e�e
t in thin

�lms of type I super
ondu
tors, where the e�e
t is mu
h

stronger than in bulk materials. In a

ord with pre
eding

works [9{13℄ we have justi�ed earlier results whi
h indi-


ate that the HLM e�e
t will be better pronoun
ed in

�lms of materials with relatively high values of the 
rit-

i
al magneti
 �eld H


0

and relatively small thi
knesses

L

0

. We 
annot be 
ertain whi
h super
ondu
ting mate-

rial provides the best experimental 
onditions for trans-

port or 
alori
 measurements of the jumps of the ther-

modynami
 quantities at the point of the 
u
tuation-

indu
ed �rst order transition, but from the data for Al,

W and In available from re
ent studies [11,12℄ and the

present paper, the most suitable substan
e seems to be

Al. But investigations of other super
ondu
tors may put

forward materials whi
h are even better 
andidates for

the experimental test of the HLM e�e
t.

Looking for the most 
onvenient material for the ex-

perimental sear
h of the HLM e�e
t we should have in

mind a number of other experimental requirements whi
h

are not related to the results from the present theoreti
al

investigation. Here we shall brie
y dis
uss the problem

of the external magneti
 �eld and the possible 
hange

of the super
ondu
tivity from type I to type II with the

de
rease of the �lm thi
kness [46℄. This 
hange for �lm

thi
knesses L

0

, whi
h are 
onvenient for the experimental

study of the HLM e�e
t, is not a great problem be
ause

we have shown in our investigation that the e�e
t 
ould

be observed also in �lms of type II super
ondu
tors, pro-

vided the external magneti
 �eld H

0

is very low so the

e�e
t of the vortex phase and the magneti
 energy jump

(H

2

0

=8�) at the phase transition point is negligible. The

magneti
 energy jump (H

2

0

=8�) may obs
ure the HLM

e�e
t on the latent heat also in type I super
ondu
tors

and, therefore the experimental problem for the elimi-

nation of the residual laboratory external magneti
 �eld

H

0

is 
ommon for both type I and type II super
on-

du
ting �lms. If we take as a basis the latent heat of

order 1 [erg/
m

3

℄ in Al �lms with L

0

� 0:1 �m, as re-

ported in Se
. 4, the magneti
 �eld whi
h ensures the

ratio (H

2

0

=8�Q) � 1 will be obviously about 1 Oe. In

thinner �lms of 
onvenient materials this experimental


ondition may be
ome H

0

� 10 Oe but no more.
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NOV� REZUL^TATI VPLIVU MAGNETNIH FL�KTUAC�� NA FAZOVI�

PEREH�D U NADPROV�DNI� STAN PRI V�DSUTNOST� MAGNETNOGO POL�

D. Xopova, T. Todorov

Laborator�� SRSM, �nstitut f�ziki tverdogo t�la �. Nad�akova

Bolgars~ka akadem�� nauk, Sof��, BG{1784, Bolgar��

Podano sistematiqne dosl�d�enn� vplivu magnetnih fl�ktua
�� na fazovi� pereh�d u nadprov�dni�

stan pri v�dsutnost� zovn�xn~ogo magnetnogo pol� za dopomogo� samouzgod�enogo nabli�enn� � kvaz�-

makroskop�qnoÝ model� ��nzburga{Landau. Otrimano nov� rezul~tati dl� tonkih nadprov�dnih pl�vok. Roz-

gl�nuto 
�kav� z eksperimental~nogo pogl�du termodinam�qn� veliqini, tak�, �k stribok parametra po-

r�dku, latentna teplota, teplo
mn�st~; Ýh qisel~no rozrahovano dl� ob'
mnih Al ta tonkih Al pl�vok.

Proanal�zovano mo�liv�st~ eksperimental~noÝ perev�rki teoretiqnih peredbaqen~.
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