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A systemati treatment of the magneti utuations e�et on the properties of the normal-to-

superonduting phase transition in a zero external magneti �eld is given within the self-onsistent

approximation and the quasi-marosopi Ginzburg{Landau model. New results for thin superon-

duting �lms are presented. Thermodynami quantities having a diret experimental interest as

the order parameter jump, latent heat, and spei� heat are onsidered and numerially evaluated

for bulk Al and thin Al �lms. The possibility for an experimental veri�ation of the theoretial

preditions is disussed.
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I. INTRODUCTION

In 1974 Halperin, Lubensky and Ma (HLM) [1℄ showed

that the magneti utuations hange the order of the su-

peronduting phase transition in a zero external mag-

neti �eld (H

0

= jH

0

j = 0)), i. e., the order of the phase

transition from normal-to-uniform (Meissner) superon-

duting state at T

0

= T



(H

0

= 0). In the mean-�eld

approximation, when both magneti and superondut-

ing utuations are negleted, this phase transition is of

seond order; see, e. g., Refs. [2,3℄. Moreover, the u-

tuations Æ (x) = [ (x) � h (x)i℄ of the superondut-

ing order parameter  (x) towards the statistial aver-

age h (x)i are extremely small and an be safely ig-

nored in usual low-temperature (T

0

< 20 K) super-

ondutors. For a long time these superondutors have

been onsidered as an exellent example of a standard

phase transition of seond order desribed by the mean-

�eld approximation.When the magneti utuations are

taken into aount in the Ginzburg{Landau (GL) free

energy F ( ;A) of superondutor [2℄, the same normal-

to-superonduting phase transition in a zero (mean) ex-

ternal magneti �eld (H

0

= 0) is found to be a weakly-

�rst order phase transition with a very small latent heat

whih annot be observed by available experimental teh-

niques [1℄. The e�et of a magneti utuation hange of

the superonduting phase transition order, alled HLM

e�et, is very weak in bulk (three dimensional, or 3D)

superondutors even in Al where the GL number � is

very small (� � 1) | a irumstane whih is in favor

of the e�et [1,4℄.

In this paper we shall investigate this utuation-

indued �rst order phase transition in thin (quasi-2D)

superonduting �lms. Bulk superondutors will be also

disussed in order to ompare them with the behaviour

of thin �lms. We shall use a self-onsistent approxima-

tion [1℄, in whih the utuations Æ of  are negleted

but the magneti utuations are ompletely taken into

aount. Note, that the so-alled \tree approximation"

[3℄ does not yield the HLM e�et and the self-onsistent,

or mean-�eld-like, approximation, mentioned above, is

the simplest analytial method for an investigation of

this phenomenon.

The present study is intended to provide enough the-

oretial results about the behaviour of measurable phys-

ial quantities diretly related to the phase transition

properties and in this way to ensure a theoretial ba-

sis for future experiments on the existene of the HLM

e�et. The need of an experimental observation of the

HLM e�et is very important beause the e�et remains

a theoretial paradigm without a reliable experimen-

tal veri�ation although its mehanism | the intera-

tion of gauge �elds in a quite universal Abelian{Higgs

model | is of fundamental interest for di�erent �elds

of physis as pure [5,9{13℄, and disordered [14{21℄ su-

perondutors, quantum phase transitions [22,23℄, salar

eletrodynamis [24℄, liquid rystals [25{29℄, and osmol-

ogy [30,31℄. On the other hand, there are some theo-

retial studies, based on Monte Carlo simulations [32℄,

the so-alled dual model [33,34℄, and ertain variants of

the renormalization-group (RG) [35,36℄, in whih no ev-

idene of HLM e�et was reported; for a disussion of

this point, see the review artile [37℄. Therefore, in the

modern theory of phase transitions the problem for the

existene of HLM e�et is ontroversial and annot be

easily solved without a hint from the experiment. The

experimental researh of the e�et in liquid rystals an-

not be onsidered reliable although the reported results

are in favor of its existene.

Reently, it has been shown [9℄ that the HLM e�et

is stronger in quasi-2D superonduting �lms than in

bulk superondutors and the preliminary evaluation of

the relevant physial quantities like the order parame-

ter jump and the latent heat at the equilibrium point

of the utuation-indued �rst order transition in su-

peronduting �lms gives for them several orders bigger
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values than for those in bulk materials [10{13℄. This re-

sult reopens the problem for an experimental searh of

HLM e�et in type I superondutors, in partiular, in

thin �lms of type I superondutors with relatively small

GL parameter �. Here we shall investigate this problem

in a omprehensive way.

We shall neglet the utuations of the superondut-

ing order parameter beause their e�et on the thermo-

dynamis of the superondutor is very weak; see, e. g.,

Refs. [2,3℄. Within this approximation, the problems in

the sope of the work an be onsidered without the use

of RG, as well as of numerous and quite interesting RG

results available in the literature; for a review, see, e. g.,

Ref. [37℄.

The approximation used by us does not allow for total

solution of the long standing problem for the order of

the phase transition in superondutors in a zero mag-

neti �eld. But we present a reliable investigation of the

HLM e�et outside the asymptoti viinity of the phase

transition point. Let us larify this point in more details.

We annot address our investigation to ertain lasses of

high-temperature superondutors where the (Ginzburg)

ritial region is quite large and the e�et of the super-

onduting utuations should be taken into aount.

Besides, our studi is not intended to an investigation of

the phase transition properties in the very narrow rit-

ial region (jT � T

0

j � 10

�12

� 10

�16

K) in the usual

low temperature superondutors with ritial temper-

atures T

0

< 20 K. We onentrate our attention to

phase transition properties whih an be observed by the

available experimental tehniques, and for this reason we

ignore phenomena whih may our in extremely small

and, hene, experimentally unaessible temperature in-

tervals suh as the Ginzburg ritial region in usual su-

perondutors. To ignore the ritial region is equivalent

to ignore the superonduting utuations by the sup-

position that their e�et is negligibly small. Exept for

ertain high-temperature superondutors, this approx-

imation is omprehensive to all known superonduting

systems and we shall use it in our onsideration.

It seems at �rst sight that an obvious disadvantage of

our investigation is that it annot be inluded in the se-

ries of interesting reent works performed mainly by RG

methods and intended to solve the problem for the e�et

of the superonduting utuations on the order of the

superonduting phase transition in the asymptoti sal-

ing region in the very viinity of the ritial point T

0

,

i. e., to the hek of the HLM e�et in a regime of strong

utuation interations of the superonduting order pa-

rameter. However, the present work is not addressed to

suh aims. Rather, our e�orts are onentrated on the

investigation of the HLM e�et in experimentally aes-

sible temperature intervals (�T > 10

�5

K) outside the

negligibly small ritial region, where the superondut-

ing utuations in low-temperature superondutors an

be ignored and the HLM e�et due to the magneti u-

tuations an be experimentally tested. Therefore, we an

reliably work within the mean-�eld-like approximation

desribed in Ref. [1℄ and disussed in reent Refs. [9{13℄.

Besides, here we shall onsider the same method in de-

tails together with the limits of its validity. Thus we shall

demonstrate that our onsideration of the HLM e�et is

valid outside the ritial region. More detailed e�ets, as

those predited by RG and haraterized by temperature

sales of order 10

�6

K and lower are beyond the sope

of this artile.

In Se. II we present a derivation of the e�etive free

energy of a D-dimensional superondutor. Subsetions

II.B and II.E are devoted to a detailed disussion of the

validity of our approah. In Se. III we give the �rst thor-

ough investigation of the e�etive free energy for bulk

superondutors. In Se. IV the quasi-2D superondut-

ing �lms and the validity of the Landau expansion are

disussed. In Se. V we summarize our main onlusions.

II. EFFECTIVE FREE ENERGY

A. Model onsiderations

The GL free energy [2℄ of a D-dimensional superon-

dutor of volume V

D

= (L

1

:::L

D

) is given in the form

F ( ;A) =

Z

d

D

x

�

aj j

2

+

b

2

j j

4

(1)

+

~

2

4m

�

�

�

�

�

r�

2ie

~

A

�

 

�

�

�

�

2

+

B

2

8�

#

:

In Eq. (1) the �rst Landau parameter a = �

0

(T �T

0

) is

expressed by the ritial temperature T

0

= T



(H = 0)

in a zero external magneti �eld (H = jHj), b > 0

is the seond Landau parameter and e � jej is the

eletron harge. The square B

2

of the magneti indu-

tion B = (H + 4�M), is given by the vetor potential

A(x) = fA

j

(x); j = 1; :::; Dg in the form

B

2

=

1

2

D

X

i; j = 1

�

�A

j

�x

i

�

�A

i

�x

j

�

2

; (2)

here the vetor potentialA(x) obeys the Coulomb gauge

r � A(x) = 0. For a 3D superondutor the relation

B = [r � A(x)℄ an be used and when B = B

0

is

uniform along the z-axis, the Landau gauge A

0

(x) =

B

0

(�y=2;�x=2; 0) an be applied. This representation

an be generalized for (D > 2)-dimensional systems,

where the magneti indution B

0

is a seond rank tensor:

B

0ij

= B

0

(Æ

i1

Æ

j2

� Æ

j2

Æ

i1

): (3)

If we use the notation x = (x

1

; x

2

; r), where r is a

(D � 2)-dimensional vetor perpendiular to the plane

(x

1

; x

2

), in the 3D ase we shall have r = (0; 0; z), and

B

j

=

1

2

�

jkl

B

0kl

= B

0

Æ

j3

; (4)
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where �

jkl

is the antisymmetri Levi-Civita symbol. The

Landau gauge and Eqs. (3)-(4) an be used for uniform

B = B

0

when ÆB utuations are negleted; see, e. g.

Ref. [6℄. In the prevailing part of our study we shall ap-

ply the general Coulomb gauge of the �eld A(x) whih

does not exlude spatial dependent magneti utuations

ÆB(x).

In nonmagneti superondutors where the mean value

hMi = (M � ÆM) of the magnetization M is equal to

zero in the normal state in zero external magneti �eld,

the magneti indution in presene of external magneti

�eld takes the form:

B = H

0

+ ÆH(x) + 4�ÆM(x) ; (5)

where H

0

is the (uniform) regular part of the external

magneti �eld and ÆH is an irregular part of H reated

by unontrollable e�ets. We neglet the irregular part

ÆH and set H

0

= 0, then B ontains only a utua-

tion part B � ÆB(x) = 4�ÆM(x) that desribes the

diamagneti variations of M(x) around the zero value

hMi = 0 due to utuations Æ (x) of the ordering �eld

 (x) above (T > T

0

) and below (T < T

0

) the normal-

to-superonduting transition at T

0

. Note, that the non-

utuation part A

0

= [A(x)�ÆA(x)℄ orresponds to the

regular part B

0

= (H

0

+ hMi) = 0 of B in nonmagneti

superondutors (hMi = 0) in a zero external magneti

�eld (H

0

= 0). Then we an set A

0

(x) = 0 and, hene,

ÆA(x) = A(x), so we have an entirely utuation vetor

potential A(x) whih interats with the order parameter

 (x). This interation an be of type  

2

A and  

2

A

2

and

generates all e�ets disussed in the paper.

We aept periodi boundary onditions for the su-

perondutor surfae. This means to ignore the sur-

fae energy inluding the additional energy due to

the penetration of the magneti �eld in a surfae

layer of thikness equal to the London penetration

depth �(T ) = �

0

jt

0

j

�1=2

; t

0

= jT � T

0

j=T

0

; �

0

=

(m

2

b=8�e

2

�

0

T

0

)

1=2

is the zero-temperature value of �.

This approximation is adequate for superondutors of

thikness L

0

� �(T ) � a

0

, where a

0

is the lattie on-

stant and L

0

= minfL

i

; i = 1; :::; Dg. As we suppose the

external magneti �eld to be zero (H

0

= 0) or very small

in real experiments, the requirement L

0

� �(T ) annot

be satis�ed and we take into aount only the ondition

L

0

� a

0

.

In mirosopi models of periodi strutures the peri-

odi boundary onditions on�ne the wave vetors k

i

=

fk

i

= (2�n

i

=L

i

); i = 1; :::; Dg in the �rst Brillouin zone

[�(�=a

0

) � k

i

< (�=a

0

)℄ and the expansion of their val-

ues beyond this zone an be made either by negleting

the periodiity of the rystal struture or on the basis of

the assumption that big wave numbers k = jkj have a

negligible ontribution to the alulated quantities. The

last argument is widely aepted in the phase transitions

theory where the long-wavelength (ka

0

� 1) limit an be

used. In partiular, this argument is valid in the ontin-

uum limit (V

D

=a

D

0

!1). Therefore, for both rystal and

nonperiodi strutures we an use a uto� � � (�=a

0

)

and afterwards to extend this uto� to in�nity provided

the main ontributions in the summations over k ome

from the relatively small wavenumbers (k � �). Note,

that here we make a quasimarosopi desription based

on the GL funtional (1) whih means that the miro-

sopi phenomena are exluded from our onsideration.

The GL free energy funtional takes into aount phe-

nomena with harateristi lengths �

0

and �

0

or larger

(� and �) where �(T ) is the London penetration length

mentioned above and �(T ) = �

0

jtj

�1=2

is the oher-

ene length [2℄; here �

0

= (~

2

=4m�

0

T

0

)

1=2

is the zero-

temperature oherene length. In low-temperature su-

perondutors �

0

and �

0

are muh bigger than the lattie

onstant a

0

. Having in mind this argument we shall as-

sume that in our investigation � � (�=a

0

). Whether

the upper uto� � is hosen to be either � � 1=�

0

or

� � 1=�

0

is a problem that has to be solved by addi-

tional arguments (see Se. III.C).

We shall use the Fourier expansion

A

j

(x) =

1

V

1

2

D

X

k

A

j

(k)e

ik�x

(6)

and

 (x) =

1

V

1

2

D

X

k

 (k)e

ik�x

; (7)

where the Fourier amplitudes A

j

(k) obey the relation

A

�

j

(k) = A

j

(�k) and k � A(k) = 0. The Fourier am-

plitude  (k) is not equal to  

�

(�k) beause  (x) is a

omplex funtion. For the same reason  (0) �  (k = 0)

is a omplex number.

B. Approximations

The total ignoring of both superonduting and mag-

neti utuations in Eq. (1) leads to the familiar tree ap-

proximationwhere the GL equations [2℄ should be solved.

Note, that the tree, or mean-�eld, approximation is the

lowest order theory within the framework of the loop ex-

pansion, e. g., see [3,38℄. The systemati treatment of the

utuation e�ets in the asymptoti viinity of the phase

transition point an be given by RG.

The e�et of the superonduting utuations Æ (x)

on the phase transition properties is restrited in a neg-

ligibly small viinity (jt

0

j � 10

�12

� 10

�16

) of the tem-

perature T

0

and we shall assume that Æ (x) = 0, i. e.,

 � h (x)i; from now on we shall denote h (x)i by  .

So we apply a mean-�eld approximation with respet

to the order parameter  (x). Within this approxima-

tion we shall take into aount the ÆA(x)-utuations

for B

0

= 0, i. e., A(x) = ÆA(x). Furthermore, the A(x)-

utuations an be integrated out from the partition

funtion, de�ned by:

Z( ) =

Z

DAe

�F ( ;A)=k

B

T

; (8)
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where the funtional integral

R

DA is de�ned by

Z

1

�1

D

Y

j=1

Y

x2V

D

dA

j

(x)Æ[divA(x)℄ : (9)

The integration is over all possible on�gurations of

the �eld A(x); the Æ-funtion takes into aount the

Coulomb gauge.

The partition funtion Z( ) orresponds to an e�e-

tive free energy F

F

D

= �k

B

T lnZ( ) ; (10)

The magneti utuations will be ompletely taken into

aount, if only we are able to solve exatly the inte-

gral (8). The exat solution an be done for a uniform

order parameter  . The uniform value of  is di�erent

from the mean-�eld value of  beause the uniform u-

tuations of  (x) always exist, so we should hoose one of

these two possibilities. The problem for this hoie arises

after the alulation the integral (8) at a next stage of

onsideration when the e�etive free energy F

D

is ana-

lyzed and the properties of the superonduting phase

( > 0) are investigated. The e�etive free energy is a

partiular ase of the e�etive thermodynami potential

in the phase transition theory [3,38℄ and we must treat

the uniform  in the way presribed in the �eld theory of

phase transitions. It will beome obvious from the next

disussion that we shall use a loop-like expansion whih

an be exatly summed up to give a logarithmi depen-

dene on j j

2

.

Beause of the spontaneous symmetry breaking of the

ontinuous symmetry in the ground state, the ordered

phase  > 0, i. e., the e�etive free energies disussed

in this paper depend on the modulus j j of the om-

plex number  = j je

i�

but not on the phase angle �

whih remains arbitrary. That is why we shall onsider

the modulus j j as an \e�etive order parameter" be-

ause the angle � does not play any role in the phenom-

ena investigated in the paper. The quantity j j remains

undetermined up to the stage when we de�ne the equi-

librium order parameter j 

0

j by the equation of state

[�F

D

( )=� ℄ = 0. This equation gives the equilibrium

value  

0

of  and the di�erene Æ 

0

= ( 

0

�  ) an

be treated as the uniform (zero dimensional) utuation

of the �eld  (x). The x-dependent utuations Æ (x)

have been negleted beause of the uniformity of  . The

solution  

0

will be stable towards the uniform utua-

tion Æ provided the same solution  

0

= j 

0

je

i�

0

orre-

sponds to a stable (normal or superonduting) phase;

the phase angle �

0

remains unspei�ed. Therefore, we

begin our investigation setting  uniform but at some

stage of onsideration we shall also ignore the uniform

utuation Æ and deal only with the equilibrium value

 

0

of  . The equilibrium value will be alulated after

taking into aount magneti utuations, so it will be

di�erent from the usual result j 

0

j = (jaj=b)

1=2

[2℄ when

both magneti and superonduting utuations are ig-

nored. This simplest approximation for the equilibrium

value of  is obtained from the GL free energy (1) pro-

vided e = 0 and the gradient term is negleted. Hereafter

we shall keep the symbol j 

0

j for the equilibrium order

parameter in the more general ase when the magneti

utuations are not negleted and shall denote the same

quantity for e = 0 by � � j 

0

(e = 0)j = (jaj=b)

1=2

.

The above desribed approximation neglets the sad-

dle point solutions of GL equations, where h (x)i is x-

dependent. Therefore, the vortex state that is stable in

type II superondutors annot be ahieved. This is on-

sistent with the hoie of a zero external magneti �eld,

where the vortex state annot our in any type super-

ondutor. These arguments an be easily veri�ed with

the help of GL equations [2℄ for a zero external mag-

neti �eld; the only nonzero solution for  in this ase

is given by � = (jaj=b)

1=2

although the magneti utu-

ations A(x) = ÆA(x) are properly onsidered.

In onlusion we an argue that the desribed method

will be onvenient for both type I and type II superon-

dutors in a zero external magneti �eld, provided the

 -utuations have a negligibly small e�et on phase

transition properties T

0

= T



(H

0

= 0), where T



de-

notes the phase transition line for any H

0

� 0. For type

II superondutors in H

0

> 0, two lines T

1

(H

0

) and

T

2

(H

0

) should be de�ned, usually given by H

1

(T ) and

H

2

(T ) [2℄.

C. Derivation of e�etive free energy

When the order parameter  is uniform the fun-

tional (1) is redued to

F ( ;A) = F

0

( ) + F

A

( ) ; (11)

with

F

0

( ) = V

D

�

aj j

2

+

b

2

j j

4

�

(12)

and

F

A

( ) =

1

8�

Z

d

D

x

�

�( )A

2

(x) (13)

+

1

2

D

X

i;j=1

�

�A

j

�x

i

�

�A

i

�x

j

�

2

9

=

;

:

Here � = �

0

j j

2

and �

0

= (8�e

2

=m

2

). It is onvenient

to alulate the partition funtion Z( ) and the e�e-

tive free energy F

D

( ) in the k-spae, where Eqs. (9)

and (13) take the form

Z

1

�1

D

Y

j=1

k��

Y

k>0

dReA

j

(k)dImA

j

(k)Æ [k �A(k)℄ (14)
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and

F

A

( ) = F

A

(0) + �F

A

( ) : (15)

Here

F

A

(0) =

1

8�

X

j;k

k

2

jA

j

(k)j

2

; (16)

and

�F

A

( ) = �

X

j;k

jA

j

(k)j

2

; (17)

note, that we have used the Coulomb gauge k �A(k) = 0.

Then the partition funtion (8) will be

Z( ) = e

�F

0

( )=k

B

T

Z

A

( ) ; (18)

where

Z

A

( ) =

Z

DAe

�F

A

( )=k

B

T

(19)

with F

A

( ) given by (15) and the funtional integration

is de�ned by the rule (14). With the help of Eqs. (10){

(19) the e�etive free energy F

D

( ) beomes

F

D

( ) = F

0

( ) +F

f

( ) ; (20)

where F

0

( ) is given by Eq. (12) and

F

f

( ) = �k

B

T ln

�

Z( )

Z(0)

�

(21)

is the  -dependent utuation part of F( ). In Eq. (20)

the  -independent utuation energy f�k

B

T ln [Z

A

(0)℄g

has been omitted. This energy should be asribed to the

normal state of the superondutor whih, by onvention,

is set equal to zero.

De�ning the statistial averages

h(:::)i =

R

DA e

�F

A

(0)=k

B

T

(:::)

Z

A

(0)

; (22)

we an write Eq. (21) in the form

F

f

( ) = �k

B

T ln he

��F

A

( )=k

B

T

i: (23)

Eq. (23) is a good starting point for the perturbation al-

ulation of F

f

( ). We expand the exponent in Eq. (23)

and also take into aount the e�et of the logarithm on

the in�nite series [3℄ and obtain in result

F

f

( ) =

1

X

l=1

(�1)

l

l!(k

B

T )

l�1

h�F

l

A

( )i



; (24)

where h:::i



denotes onneted averages [3℄. Now we have

to alulate averages of the type

hA

�

(k

1

); A

�

(k

2

) : : :A



(k

n

)i



: (25)

Here we shall use the Wik theorem and the orrelation

funtion of form

G

(A)

ij

(k;k

0

) = hA

i

(k)A

j

(�k

0

)i = Æ

k;k

0

G

A

ij

(k) ; (26)

where

G

A

ij

(k) = hA

i

(k)A

j

(�k)i =

4�k

B

T

k

2

�

Æ

ij

�

^

k

i

^

k

j

�

(27)

and

^

k

i

= (k

i

=k).

The alulation of lowest order terms (l = 1; 2; 3) in

Eq. (24) with the help of (25){(27) is straightforward.

The in�nite series (24) an be exatly summed up and

the result is the following logarithmi funtion

F

f

( ) =

(D � 1)

2

k

B

T

X

k

ln

�

1 +

�( )

k

2

�

: (28)

The same result for F

f

( ) an be obtained by a diret

alulation of the Gaussian funtional integral (9). This

is done using the integral representation of Æ-funtion

in (9) or (14) but it introdues an additional funtional

integration that should be arried out after the integra-

tion over A

j

(x).

Eqs. (10), (20) and (28) give the e�etive free energy

density

f

D

( ) = F

D

( )=V

D

(29)

in the form

f

D

( ) = f

0

( ) + �f

D

( ) ; (30)

where

f

0

( ) = aj j

2

+

b

2

j j

4

(31)

and

�f

D

( ) =

(D � 1)k

B

T

2V

D

X

k

ln

�

1 +

�

k

2

�

: (32)

Eqs. (20) and (29){(32) are the basis of our further

onsiderations. We should mention that the utuation

ontribution �f

D

( ) to f( ) transforms to a onvergent

integral in the ontinuum limit

1

V

D

X

k

!

Z

d

D

k

(2�)

D

= K

D

Z

�

0

dk k

D�1

; (33)
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where K

D

= 2

1�D

�

�D=2

=�(D=2) for all spatial dimen-

sionalities D � 2. But the terms in the expansion of

the logarithm in (32) are power-type divergent with the

exeption of several low-order terms in ertain dimen-

sionalities D. Therefore, we shall work with a �nite sum

of an in�nite series of in�nite terms. In our further al-

ulations we shall keep the uto� � �nite for all relevant

terms in �f

D

( ). This is the ondition to obtain orret

results.

D. Partiular dimensions

For purely 2D superondutor onsisting of a single

atomi layer, we an use Eqs. (29){(32) setting D = 2

and alulate �f

2

( ) with the help of the rule (33):

�f

2

( ) =

�

k

B

T

8�

��

(�

2

+ �

0

j j

2

) ln

�

1 +

�

0

j j

2

�

2

�

� �

0

j j

2

ln

�

�

0

j j

2

�

2

��

: (34)

The �rst term of this free energy an be expanded in

powers of j j

2

:

�f

2

( ) =

�

k

B

T

8�

�

�

�

0

j j

2

(35)

+ �

0

j j

2

ln

�

�

2

�

0

j j

2

�

+

�

2

0

j j

4

2�

2

�

:

Thus we obtain the result from Ref. [39℄. This ase

is of speial interest beause of the logarithmi term in

the Landau expansion for f( ) but it has no pratial

appliation for the lak of ordering in purely 2D super-

ondutors.

For quasi-2D superondutors we assume that

(2�=�) > L

0

� a

0

, where L

0

is the thikness of the su-

peronduting �lmand a more preise hoie of the upper

uto� �� (1=a

0

) for the wave numbers k

i

is a matter of

an additional investigation [9℄ (see Se. II.A and II.E).

In order to justify this de�nition of a quasi-2D system we

onsider the more general ase of a 3D system of volume

V = (L

1

L

2

L

0

), where we an take the ontinuum limit

along the large dimensions (L

1

and L

2

) of the �lm be-

ause of the assumption L

�

� (2�=�), (� = 1; 2). The

summation over the wave number k

0

= (2�n

0

=L

0

) an-

not be substituted with an integration beause L

0

� L

�

and the dimension L

0

does not obey the onditions, valid

for L

�

[40{42℄. Therefore, for suh 3D system we must

sum over k

0

and integrate over two other omponents (k

1

and k

2

) of the wave vetor k. This gives an opportunity

for a systemati desription of the 2D{3D rossover in su-

perondutors [13,41{44℄ whih fully justi�es the appli-

ation of more simple treatment for a

0

� L

0

< (2�=�).

We onsider the onditions (2�=�) > L

0

� a

0

as a

de�nition of a quasi-2D �lms of thikness L

0

. The on-

dition (2�=�) > L

0

means that the sum in Eq. (32)

ontains only terms with (k

0

= 0). The summation over

k = (k

1

; k

2

; 0) gives a orret desription of quasi-2D

�lms of thikness L

0

and this an be shown as a limiting

ase of the more general 2D{3D rossover desribed in

Refs. [13,41{44℄. Therefore, for a quasi-2D �lm we have

the expression;

�f( ) =

2

L

0

�f

2

( ) ; (36)

where �f

2

( ) is given by Eq. (34).

For the bulk (3D) superondutor we obtain:

�f

3

( ) =

k

B

T

2�

"

�

3

3

ln

�

1 +

�

0

j j

2

�

2

�

+

2

3

�

0

j j

2

��

2

3

�

3=2

0

j j

3

artan

 

�

p

�

0

j j

2

!#

: (37)

For the Landau expansion in powers of j j this form of f

3

( ) on�rms the respetive results in Refs. [1,4℄ and

moreover orretly gives a term of type �

2

0

j j

4

whih was supposed small and negleted in these preeding papers.

This problem will be disussed in Se. III.

For 4D-systems �f

D

( ) beomes

�f

4

( ) =

3k

B

T

64�

2

�

�

2

�

0

j j

2

+�

4

ln

�

1 +

�

0

j j

2

�

2

�

� �

2

0

j j

4

ln

�

1 +

�

2

�

0

j j

2

��

: (38)

The above expression for �f

4

( ) an be also expanded in

powers of j j to show that it ontains a term of the type

j j

4

ln (

p

�

0

j j=�) whih produes a �rst order phase

transition; this ase is onsidered in the salar eletro-

dynamis [24℄. In our further investigation we shall fous

our attention on 3D and quasi-2D superondutors.

The free energy density �f

D

( ) an be expanded in

powers of j j but the Landau expansion an be done

only in an inomplete way for even spatial dimensions.

Thus f

2

( ), f

4

( ), and f( ) being the free energy den-

sity orresponding to the quasi-2D �lms, ontain log-

arithmi terms whih should be kept in their original
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form in the further treatment of the funtion �f

D

( ) in

the Landau expansion. We shall do our analysis in two

ways: with and without Landau expansion of �f

D

( ).

These variants of the theory will be alled \exat" the-

ory (ET) and \Landau" theory (LT), respetively. We

shall show that these two ways of investigation give the

same results in all ases exept for quasi-2D �lms with

relatively small thiknesses (L

0

� �

0

). It seems impor-

tant to establish the di�erenes between two variants of

the theory beause the HLM e�et is very small and any

inorretness in the theoretial analysis may be a ause

for an inorret result. By same arguments we shall in-

vestigate the e�et of the fator T in �f

D

( ) on the

thermodynamis of quasi-2D �lms. This fator an be

represented as T = T

0

(1 + t

0

) and one may expet that

the usual approximation T � T

0

, whih is well justi�ed

in the Landau theory of phase transitions [2,3℄, may be

applied. We shall show for both 3D and quasi-2D su-

perondutors, that this way of approximation an be

made by negleting terms in the thermodynami quan-

tities smaller than the leading ones. On the other hand,

pratial alulations lead to the onlusion that this ap-

proximation annot be made without a preliminary ex-

amination beause for some quasi-2D �lms it produes a

substantial error of about 10%. LT, in whih the fator T

is substituted by T

0

, will be alled a \simpli�ed Landau

expansion" (SLT).

E. Validity

The general result (29){(32) for the e�etive free en-

ergy f( ) has the same domain of validity [2℄ as the

GL free energy funtional in a zero external magneti

�eld. When we neglet a sub-nano interval of tempera-

tures near the phase transition point we an use Eq. (1)

provided jt

0

j = jT � T

0

j=T

0

< 1, or in the partiular

ase of type I superondutors, jt

0

j < �

2

[2℄. Note, that

the latter inequality does not appear in the general GL

approah. It omes as a ondition for the onsisteny of

this approah with the mirosopi BCS theory for type

I superondutors [2℄.

Taking the ontinuum limit we have to assume that

all dimensions of the body, inluding the thikness L

0

,

are muh larger than the harateristi lengths � and

�. The exeption of this rule is when we onsider thin

�lms. Espeially for thin �lms of type I superondutors,

where ((2�=�) > L

0

� a

0

), we should have in mind

that �(T ) > �(T ), so the inequalities � > � > �

0

> �

0

hold true in the domain of validity of the GL theory

jt

0

j < �

2

< 1. In Ref. [9℄ a omprehensive hoie of the

uto� � has been made (� = �

0

) and we shall disuss

this point in Se. 3 and 4. Note, that the respetive on-

ditions for quasi-2D �lms of type II superondutors are

muh weaker and are redued to the usual requirements:

� > 1=

p

2, jt

0

j < 1 and (2�=�) > L

0

� a

0

.

If we do a Landau expansion of f

D

( ), in powers of

j j

2

the ondition �� �

2

should be satis�ed. In order to

evaluate this ondition we substitute j j

2

in � = �

0

j j

2

with �

2

= jaj=b whih orresponds to e = 0 (Se. II.B).

As �

2

(T ) = 1=�, the ondition for the validity of the Lan-

dau expansion beomes [��(T )℄

2

� 1, i. e., (��

0

)

2

�

jt

0

j. Choosing the general form of �

�

= (��=�

0

) where �

desribes the deviation of �

�

from �

1

� � = (�=�

0

), we

obtain (���)

2

� jt

0

j ; � = (�

0

=�

0

) is the GL parameter.

Thus we an onlude that in type II superondutors,

where � = (�

0

=�

0

) > 1=

p

2, the ondition (�=�

2

) � 1 is

satis�ed very well for values of the uto� in the in-

terval between � = (�=�

0

) and � = (�=�

0

), i. e., for

1 < � < (1=�). For type I superondutors, where

� < 1=

p

2 the uto� values � � (1=�

0

) leads to the

BCS ondition (jt

0

j < �

2

) for the validity of the GL

approah. Substantially larger uto�s (� � �=�

0

), for

example, � � (1=�

0

) for type I superondutors with

�� 1 lead to a ontradition of this BCS ondition with

the requirement � � �

2

. This inonsisteny will be dis-

ussed again in Se. II.C.

In our alulations we often use another parameter

�

�

= (1=���)

2

and, in partiular, � � �

1

= (1=��)

2

and in terms of � the ondition for the validity of ex-

pansion of f

D

( ) beomes �jt

0

j � 1, or, more generally,

�

�

jt

0

j � 1. Choosing � = 1=� we obtain the BCS rite-

rion for the validity of the GL free energy of type I super-

ondutors [2℄. The hoie � = (�

0

=��

0

) orresponds to

the uto� �

�

= 1=�

0

. As we shall see in Se. III and IV

the thermodynamis near the phase transition point has

no substantial dependene on the value of the uto� �

�

but it should be hosen in a way that is onsistent with

the mean-�eld-like approximation.

Alternatively, the inequality (�=�

2

) � 1 may be in-

vestigated with the help of the redued order parame-

ter ' de�ned by ' = j j=�

0

, where �

0

� �(T = 0) =

(�

0

T

0

=b)

1=2

is the so-alled zero-temperature value of

the order parameter within the GL free energy f

0

( ),

given by Eq. (31); see also Se. II.B. The redued order

parameter ' will be equal to jt

0

j for t

0

< 0, if only the

magneti utuations are ignored, i. e., when j j = �. Us-

ing the notation ', we obtain the ondition (�=�

2

)� 1

in the form �

�

'

2

� 1. This ondition seems to be more

preise beause it takes into aount the e�et of mag-

neti utuations on the order parameter  .

III. BULK SUPERCONDUCTORS

A. Free energy

The e�etive free energy f

3

( ) of bulk (3D-) superon-

dutors is given by Eqs. (29){(31) and (37). The analyt-

ial treatment of this free energy an be done by Landau

expansion in small (

p

�

0

j j=�). Up to order j j

6

we ob-

tain

f

3

( ) � a

3

j j

2

+

b

3

2

j j

4

� q

3

j j

3

+



3

2

j j

6

; (39)

where

a

3

= a+

k

B

T��

0

2�

2

; (40)
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b

3

= b+

k

B

T�

2

0

2�

2

�

; (41)

q

3

=

k

B

T�

3=2

0

6�

; (42)

and



3

= �

k

B

T�

3

0

6�

2

�

3

: (43)

The uto� � in Eqs. (40){(43) is not spei�ed and an

be written in the form �

�

= (��=�

0

) as suggested in

Se. 2.5.

We shall just outline the analysis of the above free

energy. It an be shown by both analytial and numer-

ial alulations [10℄ that j j

6

-term has no substantial

e�et on the thermodynamis, desribed by the free en-

ergy (39). That is why we ignore this term and do the

analysis in the standard way [3℄. The possible phases j 

0

j

are found as a solution of the equation of state:

[�f( )=�j j ℄

 

0

= 0 : (44)

There always exists a normal phase j 

0

j = 0 whih gives

a minimum of f

3

( ) for a

3

> 0. The possible superon-

duting phases are given by

j 

0

j

�

=

3q

3

4b

3

 

1�

s

1�

16a

3

b

3

9q

2

3

!

� 0: (45)

Having in mind the existene and stability onditions

of j 

0

j

�

-phases [3℄, we obtain that the j 

0

j

+

-phase ex-

ists for (16a

3

b

3

) � 9q

2

3

and this region of existene al-

ways orresponds to a minimum of f

3

( ). The j 

0

j

�

-

phase exists for 0 < a

3

< (9q

2

3

=16b

3

) and this re-

gion of existene always orresponds to a maximum of

f

3

( ), i. e., this phase is absolutely unstable. For a

3

=

0; j 

0

j

�

= 0 and hene, oinides with the normal phase.

For 9q

2

3

= (16a

3

b

3

) we have j 

0

j

+

= j 

0

j

�

= (3q

3

=4b

3

)

and f

3

(j 

0

j

+

= f

3

j 

0

j

�

) = (27q

4

3

=512b

3

3

). Furthermore,

f

3

(j 

0

j

�

) > 0 for all allowed values of j 

0

j

�

> 0, whereas

f

3

(j 

0

j

+

) < 0 for a

3

< (q

2

3

=2b

3

) ;

and

f

3

(j 

0

j

+

) > 0 for (q

2

3

=2b

3

) < a

3

<

9q

2

3

16b

3

:

The equilibrium temperature T

eq

of the �rst order phase

transition is de�ned by the equation f(j 

0

j

+

) = 0 whih

gives the following result:

2b

3

(T

eq

)a

3

(T

eq

) = q

2

3

(T

eq

) : (46)

These results are on�rmed by numerial alulations of

the e�etive free energy (39) [10℄; there also the inuene

of the j j

6

-term is evaluated.

B. Entropy and spei� heat apaity

The equilibrium entropy jump is �S = V�s and

�s = �(df

3

(j j)=dT ) an be alulated with the help

of Eq. (39) and the equation of state (44):

�s = �j 

0

j

2

�(j 

0

j) ; (47)

where �(j 

0

j) is the following funtion:

�(y) =

�

�

0

+

k

B

��

0

2�

2

�

�

�

3=2

0

k

B

6�

y+

�

k

B

�

2

0

4�

2

�

�

y

2

: (48)

The spei� heat apaity per unit volume �C =

T (��s=�T ) is obtained from (47)

�C = �

�

T

T

0

�

�j 

0

j

2

�t

0

�(j 

0

j) : (49)

The quantities �s(T ) and �C(T ) an be evaluated at

the equilibrium phase transition point T

eq

whih is found

from Eq. (46):

T

eq

T

0

� 1�

k

B

�

0

�

2�

2

�

0

+

�

�

3=2

0

k

B

=6�

�

2

b+ (�

2

0

k

B

=2�

2

�)T

0

�

T

0

�

0

�

; (50)

provided j�T



j = jT

0

� T

eq

j � T

0

. Further we shall

see that the ondition j�T



j � T

0

is valid in real sub-

stanes. The seond term in r.h.s. of Eq. (50) is a typ-

ial negative utuation ontribution whereas the posi-

tive third term in r.h.s. of the same equality is typial

for �rst-order transitions [3℄.

To obtain the jumps �s and �C at T

eq

we have to put

the solution j 

0

j

+

found from Eq. (45) in Eqs. (47){(49).

The result will be:

�s = �

q

2

3

b

2

3

8

<

:

�

0

+

k

B

�

0

�

2�

2

�

 

k

B

�

3=2

0

6�

!

2

T

eq

b

2

3

9

=

;

; (51)

and

�C =

4�

0

b

3

�

�

0

T

0

�

q

2

3

b

b

2

3

�

; (52)

where b

3

and q

3

are the parameters b

3

and q

3

at

T = T

eq

. As j�T



j = jT

0

� T

eq

j � T

0

we an set

T

eq

� T

0

in r.h.s. of Eqs. (51) and (52) and obtain

q

3

� q

3

(T = T

eq

) � q

3

(T

0

) and b

3

� b

3

(T

0

).

The latent heat Q = �V T

eq

�s of the �rst order

phase transition at T

eq

an be alulated from Eq. (51).

If we neglet the harge (e = 0) whih means to set
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�

0

= q

3

= 0 and b

3

= b in Eqs. (51){(52) we shall get

the result from Ref. [1℄ for the ratio

(�T )

eq

=

Q

T

eq

�C

: (53)

Here we should mention that Eq. (52) gives the jump�C

at the equilibriumphase transition point of the �rst order

phase transition, desribed by j j

3

term [3℄, while �C

alulated in Ref. [1℄ is equal to the spei� heat jump

at the standard seond order transition �C = (�

2

0

T

0

=b)

and is four times smaller. Therefore, we obtain (�T )

eq

four times smaller than the respetive value in Ref. [1℄.

C. Numerial values for Al

In order to do the numerial estimates we repre-

sent the Landau parameters �

0

and b with the help

of the zero-temperature oherene length �

0

and the

zero-temperature ritial magneti �eld H

0

. The on-

netion between them is given by formulae of the

standard GL theory of superondutivity [2℄: �

2

0

=

(~

2

=4m�

0

T

0

) and H

2

0

= (4��

2

0

T

2

0

=b). The expres-

sion for the zero-temperature penetration depth �

0

=

(~=2

p

2eH

0

�

0

) is obtained from the above relation and

�

0

= (b=�

0

T

0

�

0

)

1=2

. We shall use the following experi-

mental values of T

0

, H

0

and �

0

for Al: T

0

= 1:19 K,

H

0

= 99 Oe, �

0

= 1:6�m, � = 0:01 [1,45℄. The exper-

imental values for T

0

, H

0

and �

0

vary about 10{15%

depending on the method of measurement and the ge-

ometry of the samples (bulk material or �lms) but suh

deviations do not a�et the results of our numerial in-

vestigations.

The evaluation of the parameters a

3

and b

3

for Al

gives:

a

3

= (�

0

T

0

)

�

t

0

+ 0:972� 10

�4

(1 + t

0

)�

�

; (54)

and

b

3

b

= 1 +

0:117

�

: (55)

Setting � = 1 orresponds to the uto� �

1

= (�=�

0

)

(Se 2.5). For � = (1=�)

Al

= 10

2

whih orresponds to

the muh higher uto� � = (�=�

0

) we have b

3

� b, i. e.,

the �

2

0

-term in b

3

, given by Eq. (41), an be negleted.

However, as we see from Eq. (55), for � = 1 the same �

2

0

-

orretion in the parameter b

3

is of order 0:1b and annot

be automatially ignored in all alulations, in ontrast

to the supposition in Refs. [1,4℄. However, the more im-

portant utuation ontribution in 3D superondutors

omes from the � -term in Eq. (54) for the parameter a

3

.

This term is of order 10

�4

for � � 1 and this is onsistent

with the ondition jt

0

j < �

2

� 10

�4

but for � � 10

2

, i. e.,

for � � (�=�

0

) � 10

6

�m, the same �� term is of order

10

2

whih exeeds the temperature interval (T

0

� 10

�4

)

for the validity of BCS ondition of Al (Se. II.E).

These results demonstrate that for our theory to be

onsistent, we must hoose the uto� �

�

= (��=�

0

),

where � is not a large number (� ! 1� 10). To be more

onrete we set � = �

1

= (�=�

0

) as suggested in Ref. [9℄.

The temperature shift t

eq

= t

0

(T

eq

) for bulk Al an

be estimated with the help of Eq. (50). We obtain that

this shift is negative and very small: t

eq

� �10

�4

. Note,

that the seond term in the r.h.s. of Eq. (50) is of order

10

�4

provided � � (1=�

0

) whereas the third term in the

r.h.s. of the same equality is of order 10

�5

. One again

the hange of the uto� � to values muh higher than

(�=�

0

) will take the system outside the temperature in-

terval where the BCS ondition for Al is valid. Let us

note, that in Ref. [10℄ the parameter t orresponds to

our present notation t

0

. But the numerial alulation of

the free energy funtion f

3

( ) in Ref. [10℄ was made for

the SLT variant of the theory and the shifted parame-

ter (t

0

+ 0:972� 10

�4

) was inorretly identi�ed with t

and this lead to the wrong onlusion for its positiveness

at the equilibrium phase transition point T

eq

. As a mat-

ter of fat, the shifted parameter (t

0

+ 0:972� 10

�4

) is

positive at T

eq

but t

eq

� t

0

(T

eq

) is negative.

Having in mind these remarks, when we evaluate �s

and �C for bulk Al we an use simpli�ed versions of (51)

and (52) whih means to onsider only the �rst terms

in the r.h.s and to take q

3

� q

3

and b

3

� b at T

0

. In

this way we obtain

Q = �T

0

�s = 0:8� 10

�2

h

erg

K � m

3

i

; (56)

and

�C = 2:62� 10

3

h

erg

m

3

i

: (57)

The results are onsistent with an evaluation of �C for

Al as a jump (�

~

C = �

2

0

T

0

=b) at the seond order su-

peronduting transition point [1℄ that, as we mentioned

above, is four times smaller than the jump �C given by

Eq. (57).

A omplete numerial evaluation of the funtion f

3

( )

and the jump of the order parameter at T

eq

for bulk

Al was presented for the �rst time in Ref. [10℄. The re-

sults there on�rm that the order parameter jump and Q

for bulk type I superondutors are very small and an

hardly be observed in experiments.

We shall �nish the presentation of bulk Al with a dis-

ussion of the ratio (53). It an be also written in the

form

(�T )

eq

=

32�

9

�

T

2

0

b�

0

��

e

2

m

2

�

3

; (58)

and it di�ers by a fator 1=4 from the respetive result

in Ref. [1℄. This di�erene is due to the fat that we take

�C as the jump at the �rst order transition temperature

T

eq

while in the above ited paper [1℄ the authors de�ne

�C as a hypotheti jump (�

~

C) at the standard seond

order phase transition point. From Eq. (56) we obtain

(�T )

eq

= 6:7� 10

�12

(T

3



H

2

0

�

6

0

); (59)
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and multiplying the number oeÆient in the above ex-

pression by 4 we an obtain Eq. (10) from Ref. [1℄.

IV. QUASI-2D FILMS

Thin quasi-2D �lms (a

0

� L

0

< 2�=�) an be investi-

gated with the help of the respetive free energy density

f( ) given by Eqs. (30) and (31), �f

D

( ) is taken from

Eqs. (34) and (36). The free energy of quasi-2D super-

onduting �lms was derived and analyzed for the �rst

time in Ref. [9℄ using the Landau expansion of �f

2

( ) in

powers of j j

2

; see Eq. (35). As is shown for the �rst time

by Lovesey [39℄ in the simple 2D ase the utuation on-

tribution �f

D

( ), of form given by Eq. (35), leads to a

utuation-indued �rst order phase transition. In on-

trast to 3D superondutors where the �rst order of the

phase transition is generated by j j

3

-term in �f

3

( ), in

2D superondutors the �rst order of the phase transition

is a result of the presene of j j

2

lnj j in Eq. (35). But

the Meissner phase annot our in 2D (single atomi

layer) superondutors beause of the strong utuations

and hene this ase is of no interest. In quasi-2D �lms,

where the Meissner phase does our for properly hosen

thikness of the �lm (L

0

� 2�=�) [9℄, the hange of the

order of normal-to-superonduting phase transition is

better pronouned than in bulk superondutors. This is

well illustrated in the above ited paper [9℄ by numerial

data for Al �lms with thikness L

0

= 0:1 �m. Following

Refs. [9,11℄ and the arguments presented in Se. III.C we

shall hoose the uto� � = �=�

0

.

The expansion of the respetive free energy in powers

of j j leads to somewhat lumsy analysis and for this

reason we shall use the approah in Ref. [11,12℄ where

the quasi-2D �lms have been investigated with the help

of the general form of �f( ) desribed by Eq. (34). In

both variants of the theory (ET and LT; see Se. II.D)

the thikness L

0

of the quasi-2D �lm has an e�et on

the thermodynami behaviour, that is similar to the in-

uene of material parameters �

0

and b. This is very

well seen in the Landau expansion (35) of the free en-

ergy f( ) given by (36), where the parameters a and b

aquire a utuation ontribution that depends on L

0

.

The inuene of L

0

on the thermodynami properties

an be onsidered as a harateristi feature of quasi-2D

systems [42,43℄, a feature, absent in purely 2D �lms [39℄.

It is unambiguously demonstrated by several theoreti-

al studies of the 2D{3D rossover in systems with slab

geometry [13,42{44℄ that the L

0

-dependene as given in

Eq. (36) orretly desribes quasi-2D �lms.

Following Refs. [11,12℄ and having in mind the above

disussion we an present the free energy density f( ) =

(F ( )=L

1

L

2

) in the form

f(') =

H

2

0

8�

�

2t

0

'

2

+ '

4

+C(1 + t

0

)�(�'

2

)

�

; (60)

where

�(y) = (1 + y) ln (1 + y) � y lny; (61)

C =

�

2�

2

k

B

T

0

L

0

�

2

0

H

2

0

�

: (62)

In Eqs. (60){(62) we have set � = (�=�

0

) and intro-

dued the notation ' = j j=�

0

; the quantity �

0

is de�ned

in Se. II.E. Some of the properties of free energy (60)

were analyzed in Ref. [11℄ for Al �lms and in Ref. [12℄

for �lms of Tungsten (W), Indium (In), and Aluminium

(Al). Here we shall summarize and justify the preeding

results and, moreover, we shall present new results about

the properties of the Landau expansion of e�etive free

energy. Note, that the funtion �(y) annot be fully ex-

panded in powers of y beause of the term of type (y ln y)

in Eq. (61).

The extensive investigations [11,12℄ of �lms of W, Al

and In with thiknesses from 0.05 �m to 2 �m on�rm

the intuitive notion that the HLM e�et is stronger for

smaller values of L

0

. The numerial analysis shows that

type I superondutors with relatively small GL parame-

ter � and relatively high ritial �eldH

0

may be the best

andidates for the experimental observation of the e�et.

The best material from the above enumerated substanes

seems to be Al; tungsten has an extremely small GL pa-

rameter but also a small ritial �eld that makes it in-

onvenient for experiments. The relatively highH

0

of In

results in relatively large latent heat, Q � 4:0 (erg=m

3

)

but for �lms with L

0

� 0:05 �m the order parameter

jump j j

eq

= '

eq

�

0

at T

eq

is twie smaller than that for

the respetive Al �lms [12℄: j j

eq

= 0:05� 10

�11

for In

and j j

eq

= 0:1 � 10

�11

for Al. We have to stress the

role of ritial magneti �eld H

0

, a fat established for

the �rst time in [12℄ and the present paper. With the

help of data from Refs. [9{12℄ we ompared the thermo-

dynami quantities near the �rst order phase transition

point in bulk Al and Al �lms of L

0

� 0:1 �m. They

are given in Table 1, where t

eq

= t

0

(T

eq

), '

eq

= '(T

eq

)

is the equilibrium jump of the redued order parameter

and j j

eq

= '

eq

�

0

is the order parameter jump at T

eq

.

quantity t

eq

'

eq

j j

eq

Q (erg/m

3

)

bulk Al �0:492� 10

�4

0:0032 0:8� 10

9

0:8� 10

�2

L

0

= 0:1 �m �0:00147 0:032 0:8� 10

10

0:8

Table 1. Numerial data for bulk Al and Al �lm of thikness L

0

= 0:1 �m.
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Fig. 1. The funtion f(') for Al �lms of thikness L

0

= 0:4 �m: the solid line orresponds to ET, the line of rosses (+)

represents LT, and the line of irles (Æ) stands for SLT. All urves are alulated for T

eq

orresponding to ET (see the text).

Fig. 2. The funtion f(') for Al �lms of thikness L

0

= 0:1 �m: the solid line ({) orresponds to ET, the line of rosses

(+) represents LT, and the line of irles (Æ) stands for SLT. All urves are alulated for T

eq

orresponding to the respetive

variant of the theory (see the text).

The shift t

eq

of the equilibrium transition temperature

due to magneti utuations is very small in both bulk

Al and thin Al �lms so the di�erene (T

eq

� T

0

) an

be negleted in all alulations of thermodynami quan-

tities near T

eq

. The equilibrium jump '

eq

, or, equiva-

lently, j j

eq

, is one order of magnitude higher in the �lm

with L

0

= 0:1 �m than in bulk Al but the latent heat

Q is 10

2

times bigger for �lms. These values are almost

one order of magnitude higher for L

0

� 0:05 �m than

for L

0

= 0:1 �m. The numerial data in Table 1 are ob-

tained by SLT for the bulk Al samples and by ET for the

Al �lm of thikness L

0

= 0:1 �m; for the abbreviations

SLT, LT and ET, see Se. II.D. The di�erene in the nu-

merial results obtained from ET, LT and SLT will be

disussed in the remainder of the paper.

The investigation of bulk superondutors yields the

same results irrespetive of whether we analyze the free

energy f

3

( ) by ET, LT or SLT. The situation in quasi-

2D superondutors is however di�erent; the three di�er-

ent variants of treatment of the free energy give di�er-

ent results, in partiular, for relatively small thiknesses

(L

0

� �

0

). This feature of free energy, Eq. (60), is il-
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lustrated in Fig. 1, where three urves for three di�er-

ent variants of f( ) are shown for Al �lms of thikness

L

0

= 0:4 �m. The solid line orresponds to ET, the line

of rosses represents the LT result, and the line of ir-

les stands for SLT. All three urves are alulated for

t

eq

� t

0

(T

eq

) = �0:00057, whih is the ET equilibrium

phase transition temperature T

eq

= 0:9994 T

0

. Note,

that '

eq

is the nonzero global minimum of f(') and the

funtion f(') depited in Fig. 1 has only one minimum

for ' > 0 beause all urves are alulated in the ther-

modynami regime orresponding to the stable Meissner

phase.

The main onlusion that an be made from Fig. 1

is that the two variants of the Landau expansion give

approximately the same quantitative results and there-

fore, the fator (1+ t

0

) in (60) an always be substituted

by unity, though the present investigation is intended to

quite small physial e�ets. This onlusion is onsistent

with the argument [11℄ that allows to use the same ap-

proximation (1+t

0

) � 1 for the alulation of Q and �C

in both variants of the theory: ET and LT. Besides, the

Fig. 1 shows that both variants of LT give slightly higher

equilibrium phase transition temperatures T

eq

and sub-

stantially higher equilibrium jumps '

eq

than ET. Thus,

using LT for �lm thiknesses a

0

� L

0

< 0:1 �m one

may obtain up to 10 times higher value of '

eq

and up to

10

2

times bigger latent heat Q than the respetive values

in Table 1. The problem is whether these higher values

predited by LT are reliable.

Fig. 2 shows the free energy drawn in the three vari-

ants (ET, LT and SLT) of f(') for Al �lms of thikness

L

0

= 0:1 �m. In Fig. 2, the urves f(') are drawn at

their respetive equilibrium phase transition points. The

variation in t

eq

(�0: 00148 for the solid line, �0: 00115

for \+" -line and �0:00046 for Æ-line) are of order of the

typial values of t

eq

itself so the di�erenes in t

eq

due to

the way of alulation annot be negleted. Although for

both variants of the Landau expansion (LT and SLT),

the quantity '

eq

is again pratially the same, the di�er-

ene in t

eq

is more pronouned for smaller thikness of

Al �lm and moreover, both variants of Landau expansion

are not so good approximation to the result of the exat

alulation (ET) as for L

0

= 0:4 �m. The onlusions,

we have already drawn from the results shown in Fig. 1,

are ompletely on�rmed by the form of the urves from

Fig. 2 and, moreover, we see that the deviation of the

results of LT from those of ET beomes bigger with the

derease of �lm thikness L

0

.

Fig. 3. The funtion f(') alulated from the ET for Al �lms of thikness L

0

= 0:1 �m and di�erent uto�s �: the solid

line ({) orresponds to � = �=�

0

, the dashed line represents the ase � = 1=�

0

, and the line of irles (Æ) stands for � = �=�

0

.

All urves are alulated at the respetive T

eq

(see the text).

On the basis of the above observations we may on-

lude that in all ases when ET and the respetive Lan-

dau expansions give di�erent results, the Landau expan-

sion yields a better established �rst order transition, with

a higher jump '

eq

, and hene, bigger values of Q and

�C. In order to establish where LT is a good approxi-

mation we have made systemati numerial alulations

for Al �lms of di�erent thiknesses L

0

= 0:05 � 3 �m.

When L

0

is lowered beginning with 3 �m the quanti-

tative di�erenes between the two variants of theory,

with and without Landau expansion, respetively, be-

ome substantial about L

0

� 0:4 �m. Bearing in mind

the ondition for the validity of the Landau expansion

(see, Se. II.E) and the requirement for the equilibrium

jump of the order parameter, �'

2

eq

< 1 we may suppose

that the preditions done with the help of the Landau ex-

pansions do not satisfy this inequality for Al �lms with

thiknesses L

0

� 0:1 �m. For this relatively small L

0

-

size, ET is absolutely reliable. The numerial data show

that �lms with L

0

> 0:1 �m are desribed well quantita-
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tively by the Landau expansion. The di�erenes between

the urves in Figs. 1 and 2 an be negleted in numerial

alulations intended to give theoretial preditions for

experiments.

This general result is supported by the following sim-

ple argument. In the Landau expansion of free energy

(60) for quasi-2D �lms the parameter a aquires a uto�

(�-) independent ontribution of the form

�a =

k

B

T�

0

4�L

0

: (63)

When we ompare �a with the bare parameter value

jaj = (�

0

T

0

jt

0

j) for Al, it is easily obtained that jt

0

j will

not exeed 10

�4

for thiknesses L

0

whih are of order

1 �m or larger. Therefore, for L

0

� 0:1 �m the Landau

expansion gives results whih are quantitatively di�erent

from those obtained by ET.

We have studied the dependene of the free energy

density f(') of Al �lms with L

0

= 0:1 �m on the uto�

�. Fig. 3 shows the free energy density f(') for three

values of the uto�: � = �=�

0

, � = 1=�

0

, and � = �=�

0

.

As the uto� inreases from (�=�

0

) to �=�

0

� 10

2

(�=�

0

),

the equilibrium jump '

eq

inreases, too. We have already

mentioned in Se. III.C that the inrease of the uto� �

for type I superondutors up to the value (�=�

0

) is in-

onsistent in the present theory. The numerial result

for Al �lms shown in Fig. 3 is, therefore, a demonstra-

tion of the validity of our arguments about the hoie of

the uto� � presented in Se. III.C. If we take the uto�

� � (�=�

0

) we shall go beyond the sope of validity of

our theory.

There is a similarity between the breakdown of the

present theory for uto�s � � (�=�

0

) and the break-

down of the ondition (�=�

2

)� 1 for the validity of LT

at small thiknesses L

0

. In both ases, when there is an

inonsisteny of the theory, we obtain enhaned values of

the harateristi jumps of thermodynami quantities at

the equilibrium point of the �rst-order phase transition.

V. CONCLUSION

We did a detailed analysis of the HLM e�et in bulk

(3D-) superondutors and quasi-2D superonduting

�lms within the self-onsistent approximation introdued

in Refs. [1,4,24℄. We have studied for a �rst time the

validity of this approximation and alulated thermody-

nami quantities of diret experimental interest like the

equilibrium jumps of the order parameter, entropy and

spei� heat at the point of the utuation-indued �rst-

order phase transition to superonduting state in a zero

external magneti �eld. Our investigation is supported

by numerial alulations for bulk Al and Al �lms.

We have presented for a �rst time a omprehensive

analysis of the e�etive free energy of the superondu-

tor in a zero external magneti �eld and on the basis of

this analysis we ompared the results from the investiga-

tion of the e�etive free energy without a partial Landau

expansion with those from the Landau expansion of the

e�etive free energy of quasi-2D �lms. For quasi-2D �lms

of type I superondutors, the Landau expansion leads to

reliable results, provided the �lm thikness is above some

value depending on the harateristi lengths �

0

and �

0

,

i. e., on the material parameters. For Al �lms the results

from the Landau expansion beome unreliable below �lm

thiknesses L

0

� 0:1�m. For quasi-2D �lms of type II su-

perondutors the Landau expansion of the e�etive free

energy an be used for any thikness above the level of

destrution of superondutivity (L

0

� 10

�3

�m).

Our investigation provides a reliable theoretial basis

for a future experimental searh of the HLM e�et in thin

�lms of type I superondutors, where the e�et is muh

stronger than in bulk materials. In aord with preeding

works [9{13℄ we have justi�ed earlier results whih indi-

ate that the HLM e�et will be better pronouned in

�lms of materials with relatively high values of the rit-

ial magneti �eld H

0

and relatively small thiknesses

L

0

. We annot be ertain whih superonduting mate-

rial provides the best experimental onditions for trans-

port or alori measurements of the jumps of the ther-

modynami quantities at the point of the utuation-

indued �rst order transition, but from the data for Al,

W and In available from reent studies [11,12℄ and the

present paper, the most suitable substane seems to be

Al. But investigations of other superondutors may put

forward materials whih are even better andidates for

the experimental test of the HLM e�et.

Looking for the most onvenient material for the ex-

perimental searh of the HLM e�et we should have in

mind a number of other experimental requirements whih

are not related to the results from the present theoretial

investigation. Here we shall briey disuss the problem

of the external magneti �eld and the possible hange

of the superondutivity from type I to type II with the

derease of the �lm thikness [46℄. This hange for �lm

thiknesses L

0

, whih are onvenient for the experimental

study of the HLM e�et, is not a great problem beause

we have shown in our investigation that the e�et ould

be observed also in �lms of type II superondutors, pro-

vided the external magneti �eld H

0

is very low so the

e�et of the vortex phase and the magneti energy jump

(H

2

0

=8�) at the phase transition point is negligible. The

magneti energy jump (H

2

0

=8�) may obsure the HLM

e�et on the latent heat also in type I superondutors

and, therefore the experimental problem for the elimi-

nation of the residual laboratory external magneti �eld

H

0

is ommon for both type I and type II superon-

duting �lms. If we take as a basis the latent heat of

order 1 [erg/m

3

℄ in Al �lms with L

0

� 0:1 �m, as re-

ported in Se. 4, the magneti �eld whih ensures the

ratio (H

2

0

=8�Q) � 1 will be obviously about 1 Oe. In

thinner �lms of onvenient materials this experimental

ondition may beome H

0

� 10 Oe but no more.
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NOV� REZUL^TATI VPLIVU MAGNETNIH FL�KTUAC�� NA FAZOVI�

PEREH�D U NADPROV�DNI� STAN PRI V�DSUTNOST� MAGNETNOGO POL�

D. Xopova, T. Todorov

Laborator�� SRSM, �nstitut f�ziki tverdogo t�la �. Nad�akova

Bolgars~ka akadem�� nauk, Sof��, BG{1784, Bolgar��

Podano sistematiqne dosl�d�enn� vplivu magnetnih fl�ktua�� na fazovi� pereh�d u nadprov�dni�

stan pri v�dsutnost� zovn�xn~ogo magnetnogo pol� za dopomogo� samouzgod�enogo nabli�enn� � kvaz�-

makroskop�qnoÝ model� ��nzburga{Landau. Otrimano nov� rezul~tati dl� tonkih nadprov�dnih pl�vok. Roz-

gl�nuto �kav� z eksperimental~nogo pogl�du termodinam�qn� veliqini, tak�, �k stribok parametra po-

r�dku, latentna teplota, teplomn�st~; Ýh qisel~no rozrahovano dl� ob'mnih Al ta tonkih Al pl�vok.

Proanal�zovano mo�liv�st~ eksperimental~noÝ perev�rki teoretiqnih peredbaqen~.
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