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A systematic treatment of the magnetic fluctuations effect on the properties of the normal-to-

superconducting phase transition in a zero external magnetic field is given within the self-consistent

approximation and the quasi-macroscopic Ginzburg-Landau model. New results for thin supercon-
ducting films are presented. Thermodynamic quantities having a direct experimental interest as
the order parameter jump, latent heat, and specific heat are considered and numerically evaluated
for bulk Al and thin Al films. The possibility for an experimental verification of the theoretical

predictions is discussed.
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I. INTRODUCTION

In 1974 Halperin, Lubensky and Ma (HLM) [1] showed
that the magnetic fluctuations change the order of the su-
perconducting phase transition in a zero external mag-
netic field (Hy = |[Hg| = 0)), i.e., the order of the phase
transition from normal-to-uniform (Meissner) supercon-
ducting state at Teo = To(Hp = 0). In the mean-field
approximation, when both magnetic and superconduct-
ing fluctuations are neglected, this phase transition is of
second order; see, e.g., Refs. [2,3]. Moreover, the fluc-
tuations d¢(x) = [¢(x) — (¥ (x))] of the superconduct-
ing order parameter ¢(x) towards the statistical aver-
age (¥(x)) are extremely small and can be safely ig-
nored in usual low-temperature (T.p < 20 K) super-
conductors. For a long time these superconductors have
been considered as an excellent example of a standard
phase transition of second order described by the mean-
field approximation. When the magnetic fluctuations are
taken into account in the Ginzburg-Landau (GL) free
energy F(¢, A) of superconductor [2], the same normal-
to-superconducting phase transition in a zero (mean) ex-
ternal magnetic field (Hg = 0) is found to be a weakly-
first order phase transition with a very small latent heat
which cannot be observed by available experimental tech-
niques [1]. The effect of a magnetic fluctuation change of
the superconducting phase transition order, called HLM
effect, is very weak in bulk (three dimensional, or 3D)
superconductors even in Al where the GL number « is
very small (k < 1) — a circumstance which is in favor
of the effect [1,4].

In this paper we shall investigate this fluctuation-
induced first order phase transition in thin (quasi-2D)
superconducting films. Bulk superconductors will be also
discussed in order to compare them with the behaviour
of thin films. We shall use a self-consistent approxima-
tion [1], in which the fluctuations §1 of ¢ are neglected
but the magnetic fluctuations are completely taken into
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account. Note, that the so-called “tree approximation”
[3] does not yield the HLM effect and the self-consistent,
or mean-field-like, approximation, mentioned above, is
the simplest analytical method for an investigation of
this phenomenon.

The present study is intended to provide enough the-
oretical results about the behaviour of measurable phys-
ical quantities directly related to the phase transition
properties and in this way to ensure a theoretical ba-
sis for future experiments on the existence of the HLM
effect. The need of an experimental observation of the
HLM effect is very important because the effect remains
a theoretical paradigm without a reliable experimen-
tal verification although its mechanism — the interac-
tion of gauge fields in a quite universal Abelian-Higgs
model — is of fundamental interest for different fields
of physics as pure [5,9-13], and disordered [14-21] su-
perconductors; quantum phase transitions [22,23], scalar
electrodynamics [24], liquid crystals [25-29], and cosmol-
ogy [30,31]. On the other hand, there are some theo-
retical studies, based on Monte Carlo simulations [32],
the so-called dual model [33,34], and certain variants of
the renormalization-group (RG) [35,36], in which no ev-
idence of HLM effect was reported; for a discussion of
this point, see the review article [37]. Therefore, in the
modern theory of phase transitions the problem for the
existence of HLM effect is controversial and cannot be
easily solved without a hint from the experiment. The
experimental research of the effect in liquid crystals can-
not be considered reliable although the reported results
are in favor of its existence.

Recently, it has been shown [9] that the HLM effect
i1s stronger in quasi-2D superconducting films than in
bulk superconductors and the preliminary evaluation of
the relevant physical quantities like the order parame-
ter jump and the latent heat at the equilibrium point
of the fluctuation-induced first order transition in su-
perconducting films gives for them several orders bigger



NOVEL RESULTS ABOUT MAGNETIC FLUCTUATION EFFECTS. ..

values than for those in bulk materials [10-13]. This re-
sult reopens the problem for an experimental search of
HLM effect in type I superconductors, in particular, in
thin films of type I superconductors with relatively small
GL parameter k. Here we shall investigate this problem
in a comprehensive way.

We shall neglect the fluctuations of the superconduct-
ing order parameter because their effect on the thermo-
dynamics of the superconductor is very weak; see, e.g.,
Refs. [2,3]. Within this approximation, the problems in
the scope of the work can be considered without the use
of RG, as well as of numerous and quite interesting RG
results available in the literature; for a review, see, e. g.,

Ref. [37].

The approximation used by us does not allow for total
solution of the long standing problem for the order of
the phase transition in superconductors in a zero mag-
netic field. But we present a reliable investigation of the
HLM effect outside the asymptotic vicinity of the phase
transition point. Let us clarify this point in more details.
We cannot address our investigation to certain classes of
high-temperature superconductors where the (Ginzburg)
critical region is quite large and the effect of the super-
conducting fluctuations should be taken into account.
Besides, our studi is not intended to an investigation of
the phase transition properties in the very narrow crit-
ical region (|T — Teo| ~ 10712 — 10719 K) in the usual
low temperature superconductors with critical temper-
atures T.o < 20 K. We concentrate our attention to
phase transition properties which can be observed by the
available experimental techniques, and for this reason we
ignore phenomena which may occur in extremely small
and, hence, experimentally unaccessible temperature in-
tervals such as the Ginzburg critical region in usual su-
perconductors. To ignore the critical region is equivalent
to ignore the superconducting fluctuations by the sup-
position that their effect 1s negligibly small. Except for
certain high-temperature superconductors, this approx-
imation is comprehensive to all known superconducting
systems and we shall use it in our consideration.

It seems at first sight that an obvious disadvantage of
our investigation is that it cannot be included in the se-
ries of interesting recent works performed mainly by RG
methods and intended to solve the problem for the effect
of the superconducting fluctuations on the order of the
superconducting phase transition in the asymptotic scal-
ing region in the very vicinity of the critical point T¢g,
1.e., to the check of the HLM effect in a regime of strong
fluctuation interactions of the superconducting order pa-
rameter. However, the present work is not addressed to
such aims. Rather, our efforts are concentrated on the
investigation of the HLM effect in experimentally acces-
sible temperature intervals (AT > 107 K) outside the
negligibly small critical region, where the superconduct-
ing fluctuations in low-temperature superconductors can
be ignored and the HLM effect due to the magnetic fluc-
tuations can be experimentally tested. Therefore, we can
reliably work within the mean-field-like approximation
described in Ref. [1] and discussed in recent Refs. [9-13].

Besides, here we shall consider the same method in de-

tails together with the limits of its validity. Thus we shall
demonstrate that our consideration of the HLM effect is
valid outside the critical region. More detailed effects, as
those predicted by RG and characterized by temperature
scales of order 1076 K and lower are beyond the scope
of this article.

In Sec. IT we present a derivation of the effective free
energy of a D-dimensional superconductor. Subsections
I1.B and IL.E are devoted to a detailed discussion of the
validity of our approach. In Sec. III we give the first thor-
ough investigation of the effective free energy for bulk
superconductors. In Sec. I'V the quasi-2D superconduct-
ing films and the validity of the Landau expansion are
discussed. In Sec. V we summarize our main conclusions.

II. EFFECTIVE FREE ENERGY
A. Model considerations

The GL free energy [2] of a D-dimensional supercon-
ductor of volume Vp = (Ly...Lp) is given in the form

b
PoA) = [ [alof? + ol 0
h? 2ie B2
+ TIm (V — gA) Y|+ S

In Eq. (1) the first Landau parameter a = ag(T — Typ) is
expressed by the critical temperature Too = T (H = 0)
in a zero external magnetic field (H = |H|), b > 0
is the second Landau parameter and e = |e| is the
electron charge. The square B? of the magnetic induc-
tion B = (H + 47M), is given by the vector potential
A(x) = {A4;(x), j=1,...,D} in the form

D 2
s L 04; 0
B = 2 ; ]Z::l 3% 3l‘j ’ (2)

here the vector potential A (x) obeys the Coulomb gauge
V - A(x) = 0. For a 3D superconductor the relation
B = [V A(x)] can be used and when B = By is
uniform along the z-axis, the Landau gauge Ag(x) =
Bo(—y/2,—2/2,0) can be applied. This representation
can be generalized for (D > 2)-dimensional systems,
where the magnetic induction By is a second rank tensor:

Buij = Bo(6:1d52 — 6;528i1). (3)

If we use the notation x = (x1,#2,r), where r is a
(D — 2)-dimensional vector perpendicular to the plane
(1, ®2), in the 3D case we shall have r = (0,0, z), and

1
B; = §€jleOkl = Bodjs , (4)
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where ¢, 1s the antisymmetric Levi-Civita symbol. The
Landau gauge and Eqs. (3)-(4) can be used for uniform
B = By when /B fluctuations are neglected; see, e.g.
Ref. [6]. In the prevailing part of our study we shall ap-
ply the general Coulomb gauge of the field A(x) which
does not exclude spatial dependent magnetic fluctuations
IB(x).

In nonmagnetic superconductors where the mean value
(M) = (M — 6M) of the magnetization M is equal to
zero in the normal state in zero external magnetic field,
the magnetic induction in presence of external magnetic
field takes the form:

B =H; + dH(x) + 47dM(x) , (5)

where Hy is the (uniform) regular part of the external
magnetic field and dH is an irregular part of H created
by uncontrollable effects. We neglect the irregular part
dH and set Hy = 0, then B contains only a fluctua-
tion part B = dB(x) = 4nmdM(x) that describes the
diamagnetic variations of M(x) around the zero value
(M) = 0 due to fluctuations d¢(x) of the ordering field
(x) above (T > T,o) and below (T' < To) the normal-
to-superconducting transition at 7T.q. Note, that the non-
fluctuation part Ay = [A(x)—JA(x)] corresponds to the
regular part By = (Hg + (M)) = 0 of B in nonmagnetic
superconductors ((M) = 0) in a zero external magnetic
field (Hp = 0). Then we can set Ag(x) = 0 and, hence,
JA(x) = A(x), so we have an entirely fluctuation vector
potential A(x) which interacts with the order parameter
¥(x). This interaction can be of type 1? A and ¢? A and
generates all effects discussed in the paper.

We accept periodic boundary conditions for the su-
perconductor surface. This means to ignore the sur-
face energy including the additional energy due to
the penetration of the magnetic field in a surface
layer of thickness equal to the London penetration
depth A(T) = A0|t0|_1/2, iy = |T — TCO|/TCO; Ao =
(me? b/87reza0Tco)1/2 is the zero-temperature value of A.
This approximation is adequate for superconductors of
thickness Lo > A(T) > ag, where ag is the lattice con-
stant and Lo = min{L;, 1 = 1,..., D}. As we suppose the
external magnetic field to be zero (Hy = 0) or very small
in real experiments, the requirement Ly >» A(T) cannot
be satisfied and we take into account only the condition
Lo > aq.

In microscopic models of periodic structures the peri-
odic boundary conditions confine the wave vectors k; =
{k; = (2mn;/L;); ¢ = 1,..., D} in the first Brillouin zone
[—(m/ag) < ki < (w/ag)] and the expansion of their val-
ues beyond this zone can be made either by neglecting
the periodicity of the crystal structure or on the basis of
the assumption that big wave numbers k = |k| have a
negligible contribution to the calculated quantities. The
last argument is widely accepted in the phase transitions
theory where the long-wavelength (kag < 1) limit can be
used. In particular, this argument is valid in the contin-
uum limit (Vp /al — c0). Therefore, for both crystal and
nonperiodic structures we can use a cutoff A ~ (7w/ag)
and afterwards to extend this cutoff to infinity provided
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the main contributions in the summations over k come
from the relatively small wavenumbers (k < A). Note,
that here we make a quasimacroscopic description based
on the GL functional (1) which means that the micro-
scopic phenomena are excluded from our consideration.

The GL free energy functional takes into account phe-
nomena with characteristic lengths & and Ay or larger
(& and A) where A(T) is the London penetration length
mentioned above and &(T) = &lt|=1/? is the coher-
ence length [2]; here & = (h2/4moz0Tco)1/2 is the zero-
temperature coherence length. In low-temperature su-
perconductors &y and Ay are much bigger than the lattice
constant ag. Having in mind this argument we shall as-
sume that in our investigation A < (7/ap). Whether
the upper cutoff A is chosen to be either A ~ 1/&; or
A ~ 1/Xg is a problem that has to be solved by addi-
tional arguments (see Sec. ITI.C).

We shall use the Fourier expansion

1 .
Aj(x) = — ) Aj(k)e™ 6
(x) ngk: (k) (6)

and

where the Fourier amplitudes 4;(k) obey the relation
Aj(k) = Aj(=k) and k - A(k) = 0. The Fourier am-
plitude (k) is not equal to ¢*(—k) because #(x) is a
complex function. For the same reason ¢(0) = ¢(k = 0)
1s a complex number.

B. Approximations

The total ignoring of both superconducting and mag-
netic fluctuations in Eq. (1) leads to the familiar tree ap-
proximation where the GL equations [2] should be solved.
Note, that the tree, or mean-field, approximation is the
lowest order theory within the framework of the loop ex-
pansion, e. g., see [3,38]. The systematic treatment of the
fluctuation effects in the asymptotic vicinity of the phase
transition point can be given by RG.

The effect of the superconducting fluctuations §¢(x)
on the phase transition properties is restricted in a neg-
ligibly small vicinity (|to| ~ 10712 = 1071) of the tem-
perature T¢o and we shall assume that d¢(x) = 0, i.e.,
¢ = (Y(x)); from now on we shall denote (1)(x)) by .
So we apply a mean-field approximation with respect
to the order parameter (x). Within this approxima-
tion we shall take into account the JA(x)-fluctuations
for Bg =0, i.e., A(x) = JA(x). Furthermore, the A(x)-
fluctuations can be integrated out from the partition
function, defined by:

Z(4) = / DA FWAI kT (8)



NOVEL RESULTS ABOUT MAGNETIC FLUCTUATION EFFECTS. ..

where the functional integral [ DA is defined by

/ ZH II 44 (x)d[divA(x)] . (9)

- j:ll‘EVD

The integration i1s over all possible configurations of
the field A(x); the d-function takes into account the
Coulomb gauge.

The partition function Z(¢) corresponds to an effec-
tive free energy F

fD = —kBTan(1/)) ; (10)

The magnetic fluctuations will be completely taken into
account, if only we are able to solve exactly the inte-
gral (8). The exact solution can be done for a uniform
order parameter . The uniform value of ¢ is different
from the mean-field value of ¥ because the uniform fluc-
tuations of ¢(x) always exist, so we should choose one of
these two possibilities. The problem for this choice arises
after the calculation the integral (8) at a next stage of
consideration when the effective free energy Fp is ana-
lyzed and the properties of the superconducting phase
(¢ > 0) are investigated. The effective free energy is a
particular case of the effective thermodynamic potential
in the phase transition theory [3,38] and we must treat
the uniform # in the way prescribed in the field theory of
phase transitions. It will become obvious from the next
discussion that we shall use a loop-like expansion which
can be exactly summed up to give a logarithmic depen-
dence on |2

Because of the spontaneous symmetry breaking of the
continuous symmetry in the ground state, the ordered
phase ¢ > 0, 1.e., the effective free energies discussed
in this paper depend on the modulus |¢| of the com-
plex number ¢ = ||’ but not on the phase angle
which remains arbitrary. That is why we shall consider
the modulus |¢| as an “effective order parameter” be-
cause the angle 8 does not play any role in the phenom-
ena investigated in the paper. The quantity |¢| remains
undetermined up to the stage when we define the equi-
librium order parameter |io| by the equation of state
[0Fp(¢)/0v] = 0. This equation gives the equilibrium
value ¢ of ¢ and the difference d¢oy = (¢pg — ¢) can
be treated as the uniform (zero dimensional) fluctuation
of the field ¢(x). The x-dependent fluctuations d¢(x)
have been neglected because of the uniformity of ¢. The
solution ¢y will be stable towards the uniform fluctua-
tion d¢ provided the same solution ¥y = |tg|e® corre-
sponds to a stable (normal or superconducting) phase;
the phase angle 8y remains unspecified. Therefore, we
begin our investigation setting ¢ uniform but at some
stage of consideration we shall also ignore the uniform
fluctuation ¢ and deal only with the equilibrium value
1y of . The equilibrium value will be calculated after
taking into account magnetic fluctuations, so it will be
different from the usual result || = (|a|/b)*/? [2] when
both magnetic and superconducting fluctuations are ig-

nored. This simplest approximation for the equilibrium
value of i is obtained from the GL free energy (1) pro-
vided e = 0 and the gradient term is neglected. Hereafter
we shall keep the symbol || for the equilibrium order
parameter in the more general case when the magnetic
fluctuations are not neglected and shall denote the same
quantity for e = 0 by 5 = |¢ho(e = 0)| = (Ja|/b)"/>.

The above described approximation neglects the sad-
dle point solutions of GL equations, where ((x)) is x-
dependent. Therefore, the vortex state that is stable in
type Il superconductors cannot be achieved. This is con-
sistent with the choice of a zero external magnetic field,
where the vortex state cannot occur in any type super-
conductor. These arguments can be easily verified with
the help of GL equations [2] for a zero external mag-
netic field; the only nonzero solution for # in this case
is given by n = (|a|/b)'/? although the magnetic fluctu-
ations A(x) = JA(x) are properly considered.

In conclusion we can argue that the described method
will be convenient for both type I and type II supercon-
ductors in a zero external magnetic field, provided the
y-fluctuations have a negligibly small effect on phase
transition properties Tep = Te(Hy = 0), where T¢ de-
notes the phase transition line for any Hy > 0. For type
IT superconductors in Hy > 0, two lines Ty (Hp) and
Te2(Hy) should be defined, usually given by Hei(7T') and
Heo(T) [2].

C. Derivation of effective free energy

When the order parameter ¢ is uniform the func-
tional (1) is reduced to

P, A) = Fo(e) + Falv) (1)
with
Fo(w) = Vo (alef+ S1ul?) (12)
and
Fat) = - [ % o) A% (13)
1y (G-

Here p = po|¢|* and pg = (8we?/mc?). It is convenient
to calculate the partition function Z(¢) and the effec-
tive free energy Fp(¢) in the k-space, where Eqgs. (9)
and (13) take the form

- 12[ [ dRed; (k)dimA; (k)5 [k - A(k)]  (14)

- 7=1k>0
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and
Fa() = Fa(0) + AFa(¥) . (15)

Here
Fa0) = o= ST E 1409 (19)

and
AF4 () = pZ |14;(k)* ; (17)

note, that we have used the Coulomb gauge k- A (k) = 0.
Then the partition function (8) will be

Z(p) = e~ oWkl 7 (4 | (18)
where

Za() = /DAe—FAW)/kBT (19)

with F4(¢) given by (15) and the functional integration
is defined by the rule (14). With the help of Eqgs. (10)-
(19) the effective free energy Fp(¢) becomes

Fo(¥) = Fo(¢) + Fr(¥) (20)

where Fy(v) is given by Eq. (12) and

ff (1/)) = —kBTln [%] (21)

is the ¢-dependent fluctuation part of F(¢). In Eq. (20)
the ¢-independent fluctuation energy {—kpT In[Z4(0)]}
has been omitted. This energy should be ascribed to the
normal state of the superconductor which, by convention,
is set equal to zero.

Defining the statistical averages

DA 0T ()

() @)
we can write Eq. (21) in the form
Fr(¥) = —kpTIn (e~ AFaW)/ksTy, (23)

Eq. (23) is a good starting point for the perturbation cal-
culation of Fy(1)). We expand the exponent in Eq. (23)
and also take into account the effect of the logarithm on
the infinite series [3] and obtain in result

A1) =3 @, (1)
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where (...}, denotes connected averages [3]. Now we have
to calculate averages of the type

(Aaller), A (ka) .- Ay (kn))e - (25)

Here we shall use the Wick theorem and the correlation
function of form

GV (k,K) = (A (k) A (—K)) = ok G (k) , (26)

and k; = (ki/k).

The calculation of lowest order terms ({ = 1,2,3) in
Eq. (24) with the help of (25)—(27) is straightforward.
The infinite series (24) can be exactly summed up and
the result is the following logarithmic function

Fr() = (DQ_ ) kT In [1+ p(f)

0]y

The same result for F¢ (1) can be obtained by a direct
calculation of the Gaussian functional integral (9). This
is done using the integral representation of J-function
in (9) or (14) but it introduces an additional functional
integration that should be carried out after the integra-
tion over A;(x).

Egs. (10), (20) and (28) give the effective free energy
density

Fol¥) = Fo(¥)/ Vi (29)
in the form
Fol¥) = o) + Afo () (30)
where
fo(w) = aluf? + 3o’ (31)
and

Awa):%Zln(Hk%) . (32)

Egs. (20) and (29)-(32) are the basis of our further
considerations. We should mention that the fluctuation
contribution A fp(¢) to f(¢) transforms to a convergent
integral in the continuum limit

! Z%/—de K /AdkkD—l (33)
JR— = i\
Vb 4 2mDP ~ P ’
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where Kp = 2'=Px=P/2/T(D/2) for all spatial dimen-
sionalities D > 2. But the terms in the expansion of
the logarithm in (32) are power-type divergent with the
exception of several low-order terms in certain dimen-
sionalities D. Therefore, we shall work with a finite sum
of an infinite series of infinite terms. In our further cal-
culations we shall keep the cutoff A finite for all relevant
terms in A fp (¢). This is the condition to obtain correct
results.

D. Particular dimensions

For purely 2D superconductor consisting of a single
atomic layer, we can use Eqs. (29)—(32) setting D = 2
and calculate A f2 () with the help of the rule (33):

s = (21) [+ mivrym (14 2020)

— polefn (2055)] (34)

The first term of this free energy can be expanded in
powers of ||

Afa(d) = (23—:) {polvl? (35)

A? palvl*
2 0
o (1gp) + )

Thus we obtain the result from Ref. [39]. This case
is of special interest because of the logarithmic term in
the Landau expansion for f(¢) but it has no practical

Afs(i) = KB T

2

3 A?

A3 E 2 2

application for the lack of ordering in purely 2D super-
conductors.

For quasi-2D superconductors we assume that
(2m/A) > Lo > ag, where Lg is the thickness of the su-
perconducting film and a more precise choice of the upper
cutoff A & (1/ag) for the wave numbers k; is a matter of
an additional investigation [9] (see Sec. IT.A and IL.E).
In order to justify this definition of a quasi-2D system we
consider the more general case of a 3D system of volume
V = (L1LaLyg), where we can take the continuum limit
along the large dimensions (L; and L3) of the film be-
cause of the assumption L, > (27/A), (o = 1,2). The
summation over the wave number ky = (27ng/Lg) can-
not be substituted with an integration because Ly < Ly,
and the dimension Ly does not obey the conditions, valid
for L, [40-42]. Therefore, for such 3D system we must
sum over ky and integrate over two other components (kg
and k2) of the wave vector k. This gives an opportunity
for a systematic description of the 2D-3D crossover in su-
perconductors [13,41-44] which fully justifies the appli-
cation of more simple treatment for ag < Lo < (27/A).

We consider the conditions (27/A) > Ly > ap as a
definition of a quasi-2D films of thickness L. The con-
dition (2r/A) > Ly means that the sum in Eq. (32)
contains only terms with (kg = 0). The summation over
k = (k1,k2,0) gives a correct description of quasi-2D
films of thickness Ly and this can be shown as a limiting
case of the more general 2D-3D crossover described in
Refs. [13,41-44]. Therefore, for a quasi-2D film we have
the expression;

AF(W) = L%Afz(l/)) , (36)

where Afo(4) is given by Eq. (34).
For the bulk (3D) superconductor we obtain:

(37)

)|

3

For the Landau expansion in powers of |¢| this form of f3(¢) confirms the respective results in Refs. [1,4] and
moreover correctly gives a term of type p2|¥|* which was supposed small and neglected in these preceding papers.

This problem will be discussed in Sec. III.
For 4D-systems A fp(¢) becomes

_ 3kpT

Afa(¥) = [

The above expression for A f4(1) can be also expanded in
powers of || to show that it contains a term of the type
|¥|*In (y/po]w|/A) which produces a first order phase
transition; this case is considered in the scalar electro-
dynamics [24]. In our further investigation we shall focus
our attention on 3D and quasi-2D superconductors.

A2po|¢|* + A In (1 +

2 AZ
) et (5| o

The free energy density Afp(y) can be expanded in
powers of |¢| but the Landau expansion can be done
only in an incomplete way for even spatial dimensions.
Thus f2(v), fa(¢), and f(¢) being the free energy den-
sity corresponding to the quasi-2D films, contain log-
arithmic terms which should be kept in their original
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form in the further treatment of the function Afp(¢) in
the Landau expansion. We shall do our analysis in two
ways: with and without Landau expansion of Afp(v).
These variants of the theory will be called “exact” the-
ory (ET) and “Landau” theory (LT), respectively. We
shall show that these two ways of investigation give the
same results in all cases except for quasi-2D films with
relatively small thicknesses (Ly < &p). It seems impor-
tant to establish the differences between two variants of
the theory because the HLM effect is very small and any
incorrectness in the theoretical analysis may be a cause
for an incorrect result. By same arguments we shall in-
vestigate the effect of the factor T in Afp(¢) on the
thermodynamics of quasi-2D films. This factor can be
represented as T' = Tgo(1 +t¢) and one may expect that
the usual approximation T = T,o, which is well justified
in the Landau theory of phase transitions [2,3], may be
applied. We shall show for both 3D and quasi-2D su-
perconductors, that this way of approximation can be
made by neglecting terms in the thermodynamic quan-
tities smaller than the leading ones. On the other hand,
practical calculations lead to the conclusion that this ap-
proximation cannot be made without a preliminary ex-
amination because for some quasi-2D films it produces a
substantial error of about 10%. LT, in which the factor T
1s substituted by Teq, will be called a “simplified Landau
expansion” (SLT).

E. Validity

The general result (29)—(32) for the effective free en-
ergy f(¢) has the same domain of validity [2] as the
GL free energy functional in a zero external magnetic
field. When we neglect a sub-nano interval of tempera-
tures near the phase transition point we can use Eq. (1)
provided [to| = |T — Teo|/Teo < 1, or in the particular
case of type I superconductors, [to| < 2 [2]. Note, that
the latter inequality does not appear in the general GL
approach. It comes as a condition for the consistency of
this approach with the microscopic BCS theory for type
I superconductors [2].

Taking the continuum limit we have to assume that
all dimensions of the body, including the thickness Ly,
are much larger than the characteristic lengths ¢ and
A. The exception of this rule is when we consider thin
films. Especially for thin films of type I superconductors,
where ((27/A) > Lo > ao), we should have in mind
that £(7) > A(T), so the inequalities £ > A > & > Ag
hold true in the domain of validity of the GL theory
[to] < k? < 1. In Ref. [9] a comprehensive choice of the
cutoff A has been made (A = &) and we shall discuss
this point in Sec. 3 and 4. Note, that the respective con-
ditions for quasi-2D films of type II superconductors are
much weaker and are reduced to the usual requirements:
k> 1/v2, |to] < 1 and (27/A) > Lo > aq.

If we do a Landau expansion of fp(¢), in powers of
|| the condition p < A? should be satisfied. In order to
evaluate this condition we substitute |¢|? in p = pol|v]?
with n? = |a|/b which corresponds to e = 0 (Sec. IL.B).
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As A*(T) = 1/p, the condition for the validity of the Lan-
dau expansion becomes [AN(T)]? > 1, i.e., (AXg)? >
[to|. Choosing the general form of A, = (77/&;) where T
describes the deviation of A; from Ay = A = (7/&), we
obtain (77k)% > |to] ; k = (Ao/&o) is the GL parameter.

Thus we can conclude that in type II superconductors,
where & = (X\o/&o) > 1/3/2, the condition (p/A?) < 1 is
satisfied very well for values of the cutoff in the in-
terval between A = (7/&) and A = (7w/Ag), i.e., for
1 < 7 < (1/k). For type I superconductors, where
k < 1/\/2 the cutoff values A ~ (1/&) leads to the
BCS condition (|tg| < «2) for the validity of the GL
approach. Substantially larger cutoffs (A > /&), for
example, A ~ (1/Ag) for type I superconductors with
K < 1 lead to a contradiction of this BCS condition with
the requirement p < A?. This inconsistency will be dis-
cussed again in Sec. I1.C.

In our calculations we often use another parameter
pr = (1/77)? and, in particular, p = p; = (1/7k)?
and in terms of p the condition for the validity of ex-
pansion of fp (1) becomes pultg| < 1, or, more generally,
trlto] € 1. Choosing 7 = 1/m we obtain the BCS crite-
rion for the validity of the GL free energy of type I super-
conductors [2]. The choice 7 = (&y/mAg) corresponds to
the cutoff A, = 1/Ag. As we shall see in Sec. IIT and TV
the thermodynamics near the phase transition point has
no substantial dependence on the value of the cutoff A,
but it should be chosen in a way that is consistent with
the mean-field-like approximation.

Alternatively, the inequality (p/A?) < 1 may be in-
vestigated with the help of the reduced order parame-
ter ¢ defined by ¢ = [|/no, where ng = (T = 0) =
(oonco/b)l/2 is the so-called zero-temperature value of
the order parameter within the GL free energy fo(¢),
given by Eq. (31); see also Sec. II.B. The reduced order
parameter ¢ will be equal to |tp| for tg < 0, if only the
magnetic fluctuations are ignored, i.e., when || = 5. Us-
ing the notation ¢, we obtain the condition (p/A?) < 1
in the form p,¢? < 1. This condition seems to be more
precise because it takes into account the effect of mag-
netic fluctuations on the order parameter .

III. BULK SUPERCONDUCTORS
A. Free energy

The effective free energy f3(¢) of bulk (3D-) supercon-
ductors is given by Egs. (29)—(31) and (37). The analyt-
ical treatment of this free energy can be done by Landau
expansion in small (/po|¥|/A). Up to order [¢]° we ob-

tain
b
fa(0) = asl? + S = aal P+ S (39)

where

k’BTApQ
+ 2nz

as = a

(40)
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ks Tpj
b3 =1b 41
3 + 2m2A (41)
k’BTpg/z
= — 42
q3 67 ’ ( )
and
ks Tpj
C3 = — 671'2/\3 . (43)
The cutoff A in Egs. (40)—(43) is not specified and can
be written in the form A; = (w7/&) as suggested in
Sec. 2.5.

We shall just outline the analysis of the above free
energy. It can be shown by both analytical and numer-
ical calculations [10] that |¢|°-term has no substantial
effect on the thermodynamics, described by the free en-
ergy (39). That is why we ignore this term and do the
analysis in the standard way [3]. The possible phases ||
are found as a solution of the equation of state:

[0F(¥)/01¢] ]y, =0 (44)

There always exists a normal phase |1g] = 0 which gives
a minimum of f3(¢) for azg > 0. The possible supercon-
ducting phases are given by

16&3[)3
943

3
m——— (u: 1

i ) >0, (45)

Having in mind the existence and stability conditions
of |tg|1-phases [3], we obtain that the |¢g|-phase ex-
ists for (16asbs) < 9¢3 and this region of existence al-
ways corresponds to a minimum of f3(¢). The |¢g]—-
phase exists for 0 < a3z < (9¢3/16b3) and this re-
gion of existence always corresponds to a maximum of
fa(1), i.e., this phase is absolutely unstable. For az =
0, |tvo]- = 0 and hence, coincides with the normal phase.
For 9¢3 = (16asbs) we have |¢g|y = |[¢o|- = (3¢3/4b3)
and f3(|tol+ = fslwo]=) = (27¢3/51203). Furthermore,
F3(Jtbo|=) > 0 for all allowed values of |¢g|— > 0, whereas

f3(|vol4) <0 for as < (g3/2b3) ,

and

9 2
f3(|boly) >0 for (¢3/2b3) < az < 243
1663

The equilibrium temperature 7,4 of the first order phase
transition is defined by the equation f(|¢g]|+) = 0 which
gives the following result:

205 (Toq)as(Tq) = 3(Teq) - (46)

These results are confirmed by numerical calculations of
the effective free energy (39) [10]; there also the influence
of the [¥|°-term is evaluated.

B. Entropy and specific heat capacity

The equilibrium entropy jump is AS = VAs and
As = —(dfs(|¢¥|)/dT) can be calculated with the help
of Eq. (39) and the equation of state (44):

As = —|tho[*®(|¥ol) (47)

where ®(|¢g]) is the following function:

_ kpApo\  py ks kBps\ -
<I>(y)_<a0+ 272 )_ 6w v+t ar2n )Y - (48)

The specific heat capacity per unit volume AC =
T(0As/IT) is obtained from (47)

_ T\ 9ol
AC =— (T_CO) 3—%@(|1/)0|) : (49)

The quantities As(T) and AC(T) can be evaluated at
the equilibrium phase transition point 7cq which is found
from Eq. (46):

Teq ~l— k’BpoA
TcO 271'20[0

2
(pg/sz/&r) Too -
b+ (p2kp/2m2A) Teo (ao ) » (50)

provided |AT,| = |Teo — Teq| <€ Teo. Further we shall
see that the condition |AT.| « Teo is valid in real sub-
stances. The second term in r.h.s. of Eq. (50) is a typ-
ical negative fluctuation contribution whereas the posi-
tive third term in r.h.s. of the same equality is typical
for first-order transitions [3].

To obtain the jumps As and AC at Ty we have to put
the solution ||+ found from Eq. (45) in Eqs. (47)—(49).
The result will be:

2 3/2\ 2
93¢ kg poA ks py Teq
As = —=< — 51
s b2, *o + 272 ( 6 bi. (51)
and
4040 qgcb
AC = b aOTCO - b2 ) (52)
3¢ 3¢

where bs. and g¢3. are the parameters b3 and g¢3 at
T = T.q. As |AT,| = |Too — Tiq] € Ton we can set
Teq = Teo in r.hs. of Egs. (51) and (52) and obtain
g3c = q3(T = Teq) = q3(Te0) and bs. = b3(T.0).

The latent heat @) = —VT.qAs of the first order
phase transition at T.q can be calculated from Eq. (51).
If we neglect the charge (¢ = 0) which means to set
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po = q3 = 0 and b3 = b in Egs. (51)—(52) we shall get
the result from Ref. [1] for the ratio

(AT)a= 7%z (53)

Here we should mention that Eq. (52) gives the jump AC
at the equilibrium phase transition point of the first order
phase transition, described by |¢|® term [3], while AC
calculated in Ref. [1] is equal to the specific heat jump
at the standard second order transition AC = (a37.q/b)
and is four times smaller. Therefore, we obtain (AT )eq
four times smaller than the respective value in Ref. [1].

C. Numerical values for Al

In order to do the numerical estimates we repre-
sent the Landau parameters «g and b with the help
of the zero-temperature coherence length &y and the
zero-temperature critical magnetic field H.y. The con-
nection between them is given by formulae of the
standard GL theory of superconductivity [2]: &2 =
(h?/AmaoTe) and HZ, = (4malT?2/b). The expres-
sion for the zero-temperature penetration depth Ag =
(hc/?ﬂeHcoé’o) is obtained from the above relation and
Ao = (b/aoTcopo)l/z. We shall use the following experi-
mental values of T.g, Heo and & for Al: T,y = 1.19 K,
Hep =99 Oe, & = 1.6 um, k = 0.01 [1,45]. The exper-
imental values for T.q, H.y and &, vary about 10-15%
depending on the method of measurement and the ge-
ometry of the samples (bulk material or films) but such
deviations do not affect the results of our numerical in-
vestigations.

The evaluation of the parameters asz and b3 for Al
gives:

az = (aoTeo) [to +0.972 x 107*(1 + o) 7] , (54)
and
bs 0.117
R | 55
b T (55)

Setting 7 = 1 corresponds to the cutoff Ay = (7/&)
(Sec 2.5). For 7 = (1/k)a1 = 10? which corresponds to
the much higher cutoff A = (7/Ag) we have b3 = b, i.e.,
the p3 -term in b, given by Eq. (41), can be neglected.
However, as we see from Eq. (55), for 7 = 1 the same p2-
correction in the parameter b3 1s of order 0.15 and cannot
be automatically ignored in all calculations, in contrast
to the supposition in Refs. [1,4]. However, the more im-
portant fluctuation contribution in 3D superconductors
comes from the r-term in Eq. (54) for the parameter as.
This term is of order 10~% for 7 ~ 1 and this is consistent
with the condition [tg] < k% ~ 107% but for 7 ~ 10% ) i.e.,
for A ~ (m/Xo) ~ 10°um, the same 7— term is of order
10% which exceeds the temperature interval (T.o & 107%)
for the validity of BCS condition of Al (Sec. IL.E).
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These results demonstrate that for our theory to be
consistent, we must choose the cutoff A, = (n7/&p),
where 7 is not a large number (7 = 1+ 10). To be more
concrete we set A = Ay = (7/€y) as suggested in Ref. [9].

The temperature shift t.q = to(Teq) for bulk Al can
be estimated with the help of Eq. (50). We obtain that
this shift is negative and very small: toq ~ —107%. Note,
that the second term in the r.h.s. of Eq. (50) is of order
10~* provided A ~ (1/&y) whereas the third term in the
r.h.s. of the same equality is of order 107°. Once again
the change of the cutoff A to values much higher than
(m/&0) will take the system outside the temperature in-
terval where the BCS condition for Al is valid. Let us
note, that in Ref. [10] the parameter ¢ corresponds to
our present notation ty. But the numerical calculation of
the free energy function f3(¢) in Ref. [10] was made for
the SLT variant of the theory and the shifted parame-
ter (to 4+ 0.972 x 10=%) was incorrectly identified with ¢
and this lead to the wrong conclusion for its positiveness
at the equilibrium phase transition point T.q. As a mat-
ter of fact, the shifted parameter (g + 0.972 x 107%) is
positive at Teq but teq = t9(Teq) is negative.

Having in mind these remarks, when we evaluate As
and AC for bulk Al we can use simplified versions of (51)
and (52) which means to consider only the first terms
in the r.h.s and to take g3, &~ ¢3 and b3. ~ b at T.g. In
this way we obtain

_ B o erg
Q= —TuAs = 0.8 x 10 [K.Cmg} . (56)
and
_ 3 erg
AC = 2.62 x 10 {—Cmg} . (57)

The results are consistent with an evaluation of AC for
Al as a jump (AC = «2T./b) at the second order su-
perconducting transition point [1] that, as we mentioned
above, 1s four times smaller than the jump AC' given by
Eq. (57).

A complete numerical evaluation of the function f3(4)
and the jump of the order parameter at T, for bulk
Al was presented for the first time in Ref. [10]. The re-
sults there confirm that the order parameter jump and @
for bulk type I superconductors are very small and can
hardly be observed in experiments.

We shall finish the presentation of bulk Al with a dis-
cussion of the ratio (53). It can be also written in the

form
(AT)eq = 327” (Tczo) (i)S (58)

bag mc?

and it differs by a factor 1/4 from the respective result
in Ref. [1]. This difference is due to the fact that we take
AC as the jump at the first order transition temperature
Teq while in the above cited paper [1] the authors define
AC as a hypothetic jump (Aé’) at the standard second
order phase transition point. From Eq. (56) we obtain

(AT)eq = 6.7 x 107 (T2 IAED),  (59)
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and multiplying the number coefficient in the above ex-
pression by 4 we can obtain Eq. (10) from Ref. [1].

IV. QUASI-2D FILMS

Thin quasi-2D films (ap < Lo < 27/A) can be investi-
gated with the help of the respective free energy density
f(#) given by Eqgs. (30) and (31), Afp(¢) is taken from
Egs. (34) and (36). The free energy of quasi-2D super-
conducting films was derived and analyzed for the first
time in Ref. [9] using the Landau expansion of A fa(¢)) in
powers of |¢|?; see Eq. (35). As is shown for the first time
by Lovesey [39] in the simple 2D case the fluctuation con-
tribution A fp(¢), of form given by Eq. (35), leads to a
fluctuation-induced first order phase transition. In con-
trast to 3D superconductors where the first order of the
phase transition is generated by |¢|>-term in A f3(1), in
2D superconductors the first order of the phase transition
is a result of the presence of |¢|*In|y| in Eq. (35). But
the Meissner phase cannot occur in 2D (single atomic
layer) superconductors because of the strong fluctuations
and hence this case is of no interest. In quasi-2D films,
where the Meissner phase does occur for properly chosen
thickness of the film (Lo < 27/A) [9], the change of the
order of normal-to-superconducting phase transition is
better pronounced than in bulk superconductors. This is
well illustrated in the above cited paper [9] by numerical
data for Al films with thickness Ly = 0.1 gm. Following
Refs. [9,11] and the arguments presented in Sec. IT1.C we
shall choose the cutoff A = 7/&.

The expansion of the respective free energy in powers
of |¢| leads to somewhat clumsy analysis and for this
reason we shall use the approach in Ref. [11,12] where
the quasi-2D films have been investigated with the help
of the general form of Af(¢) described by Eq. (34). In
both variants of the theory (ET and LT; see Sec. I1.D)
the thickness Lo of the quasi-2D film has an effect on
the thermodynamic behaviour, that is similar to the in-
fluence of material parameters «g and b. This i1s very
well seen in the Landau expansion (35) of the free en-
ergy f() given by (36), where the parameters a and b
acquire a fluctuation contribution that depends on Lg.
The influence of Ly on the thermodynamic properties
can be considered as a characteristic feature of quasi-2D
systems [42,43], a feature, absent in purely 2D films [39].
It is unambiguously demonstrated by several theoreti-
cal studies of the 2D-3D crossover in systems with slab
geometry [13,42-44] that the Lp-dependence as given in
Eq. (36) correctly describes quasi-2D films.

Following Refs. [11,12] and having in mind the above

discussion we can present the free energy density f(¢) =

(F(¢)/L1L2) in the form

1) = 290 a1 + o +CO+ )T e] . (60)

I'(y)=(1+yn(l+y) —ylny, (61)
_ 27T2]<7BTCQ
o= (T )

In Eqgs. (60)-(62) we have set A = (n/&) and intro-
duced the notation ¢ = |¢|/no; the quantity g is defined
in Sec. ILE. Some of the properties of free energy (60)
were analyzed in Ref. [11] for Al films and in Ref. [12]
for films of Tungsten (W), Indium (In), and Aluminium
(Al). Here we shall summarize and justify the preceding
results and, moreover, we shall present new results about
the properties of the Landau expansion of effective free
energy. Note, that the function T'(y) cannot be fully ex-
panded in powers of y because of the term of type (yIny)
in Eq. (61).

The extensive investigations [11,12] of films of W, Al
and In with thicknesses from 0.05 pm to 2 pm confirm
the intuitive notion that the HLM effect is stronger for
smaller values of Lg. The numerical analysis shows that
type I superconductors with relatively small GL parame-
ter k and relatively high critical field H.o may be the best
candidates for the experimental observation of the effect.
The best material from the above enumerated substances
seems to be Al; tungsten has an extremely small GL pa-
rameter but also a small critical field that makes it in-
convenient for experiments. The relatively high H g of In
results in relatively large latent heat, ) ~ 4.0 (erg/cm?)
but for films with Ly ~ 0.05 pm the order parameter
jump [¥)eq = @eqno at Tiq is twice smaller than that for
the respective Al films [12]: [¢]eq = 0.05 x 107! for In
and [¢|eq = 0.1 x 107! for Al. We have to stress the
role of critical magnetic field H.y, a fact established for
the first time in [12] and the present paper. With the
help of data from Refs. [9-12] we compared the thermo-
dynamic quantities near the first order phase transition
point in bulk Al and Al films of Ly ~ 0.1 pgm. They
are given in Table 1, where teq = t0(Ttq), @eq = ©(Teq)
is the equilibrium jump of the reduced order parameter
and [Y|eq = @eqno 18 the order parameter jump at Teq.

quantity leq Peq [V]eq |@Q (erg/cm?)
bulk Al —0.492 x 104]0.0032| 0.8 x 10° {0.8 x 102
Lo=0.1 pm| —0.00147 0.032 0.8 x 101°]0.8

Table 1. Numerical data for bulk Al and Al film of thickness Lo = 0.1 pum.
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Fig. 1. The function f(¢) for Al films of thickness Lo = 0.4 pm: the solid line corresponds to ET, the line of crosses (+)
represents LT, and the line of circles (o) stands for SLT. All curves are calculated for Teq corresponding to ET (see the text).
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Fig. 2. The function f(¢) for Al films of thickness Ly = 0.1 pm: the solid line (-) corresponds to ET, the line of crosses
(+) represents LT, and the line of circles (o) stands for SLT. All curves are calculated for Ttq corresponding to the respective

variant of the theory (see the text).

The shift t.q of the equilibrium transition temperature
due to magnetic fluctuations is very small in both bulk
Al and thin Al films so the difference (Ttq — T,0) can
be neglected in all calculations of thermodynamic quan-
tities near 7Teq. The equilibrium jump peq, or, equiva-
lently, |¢|cq, is one order of magnitude higher in the film
with Lo = 0.1 pgm than in bulk Al but the latent heat
@ is 102 times bigger for films. These values are almost
one order of magnitude higher for Ly ~ 0.05 pgm than
for Ly = 0.1 gm. The numerical data in Table 1 are ob-
tained by SLT for the bulk Al samples and by ET for the
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Al film of thickness Ly = 0.1 um; for the abbreviations
SLT, LT and ET, see Sec. I1.D. The difference in the nu-
merical results obtained from ET, LT and SLT will be
discussed in the remainder of the paper.

The investigation of bulk superconductors yields the
same results irrespective of whether we analyze the free
energy f3(¢) by ET, LT or SLT. The situation in quasi-
2D superconductors is however different; the three differ-
ent variants of treatment of the free energy give differ-
ent results, in particular, for relatively small thicknesses
(Lo < &p). This feature of free energy, Eq. (60), is il-
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lustrated in Fig. 1, where three curves for three differ-
ent variants of f(i) are shown for Al films of thickness
Ly = 0.4 pm. The solid line corresponds to ET, the line
of crosses represents the LT result, and the line of cir-
cles stands for SLT. All three curves are calculated for
teq = to(Teq) = —0.00057, which is the ET equilibrium
phase transition temperature Toq = 0.9994 T¢y. Note,
that ¢eq is the nonzero global minimum of f(¢) and the
function f(¢) depicted in Fig. 1 has only one minimum
for ¢ > 0 because all curves are calculated in the ther-
modynamic regime corresponding to the stable Meissner
phase.

The main conclusion that can be made from Fig. 1
is that the two variants of the Landau expansion give
approximately the same quantitative results and there-
fore, the factor (1+41¢) in (60) can always be substituted
by unity, though the present investigation is intended to
quite small physical effects. This conclusion is consistent
with the argument [11] that allows to use the same ap-
proximation (1+1%g) = 1 for the calculation of @ and AC'
in both variants of the theory: ET and LT. Besides, the
Fig. 1 shows that both variants of LT give slightly higher
equilibrium phase transition temperatures 7.4 and sub-
stantially higher equilibrium jumps ¢eq than ET. Thus,

0.0006

:

free energy density

0.0002

60000 0,
o

o

°

using LT for film thicknesses ag < Lo < 0.1 ym one
may obtain up to 10 times higher value of ¢¢q and up to
102 times bigger latent heat @ than the respective values
in Table 1. The problem is whether these higher values
predicted by LT are reliable.

Fig. 2 shows the free energy drawn in the three vari-
ants (ET, LT and SLT) of f(y) for Al films of thickness
Lo = 0.1 pm. In Fig. 2, the curves f(y) are drawn at
their respective equilibrium phase transition points. The
variation in teq (—0. 00148 for the solid line, —0. 00115
for “4” -line and —0. 00046 for o-line) are of order of the
typical values of {oq itself so the differences in t.q due to
the way of calculation cannot be neglected. Although for
both variants of the Landau expansion (LT and SLT),
the quantity peq is again practically the same, the differ-
ence in teq is more pronounced for smaller thickness of
Al film and moreover, both variants of Landau expansion
are not so good approximation to the result of the exact
calculation (ET) as for Ly = 0.4 ym. The conclusions,
we have already drawn from the results shown in Fig. 1,
are completely confirmed by the form of the curves from
Fig. 2 and, moreover, we see that the deviation of the
results of LT from those of ET becomes bigger with the
decrease of film thickness Lg.

°°o
°

a
o
©o el

002
order parameter

Fig. 3. The function f(y) calculated from the ET for Al films of thickness Ly = 0.1 pym and different cutoffs A: the solid
line () corresponds to A = 7 /g, the dashed line represents the case A = 1/, and the line of circles (o) stands for A = #/&.

All curves are calculated at the respective Teq (see the text).

On the basis of the above observations we may con-
clude that in all cases when ET and the respective Lan-
dau expansions give different results, the Landau expan-
sion yields a better established first order transition, with
a higher jump ¢eq, and hence, bigger values of @} and
AC'. In order to establish where LT is a good approxi-
mation we have made systematic numerical calculations
for Al films of different thicknesses Ly = 0.05 = 3 pm.
When Lj is lowered beginning with 3 pm the quanti-
tative differences between the two variants of theory,

with and without Landau expansion, respectively, be-
come substantial about Ly ~ 0.4 gm. Bearing in mind
the condition for the validity of the Landau expansion
(see, Sec. II.E) and the requirement for the equilibrium
jump of the order parameter, /Jgogq < 1 we may suppose
that the predictions done with the help of the Landau ex-
pansions do not satisfy this inequality for Al films with
thicknesses Ly < 0.1 um. For this relatively small Lg-
size, E'T is absolutely reliable. The numerical data show
that films with Ly > 0.1 gm are described well quantita-
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tively by the Landau expansion. The differences between
the curves in Figs. 1 and 2 can be neglected in numerical
calculations intended to give theoretical predictions for
experiments.

This general result 1s supported by the following sim-
ple argument. In the Landau expansion of free energy
(60) for quasi-2D films the parameter a acquires a cutoff
(A-) independent contribution of the form

k
Aa = 57 o .
47TLO

When we compare Aa with the bare parameter value
|a| = (apTeolto]) for Al it is easily obtained that [tg| will
not exceed 10~% for thicknesses Ly which are of order
1 ppm or larger. Therefore, for Ly ~ 0.1 pm the Landau
expansion gives results which are quantitatively different
from those obtained by ET.

We have studied the dependence of the free energy
density f(p) of Al films with Ly = 0.1 pgm on the cutoff
A. Fig. 3 shows the free energy density f(y) for three
values of the cutoff: A = n/Xg, A = 1/ Xy, and A = 7/&;.
As the cutoff increases from (7 /&) to m/Ag ~ 102 (7 /&),
the equilibrium jump . increases, too. We have already
mentioned in Sec. II1.C that the increase of the cutoff A
for type I superconductors up to the value (7/Ag) is in-
consistent in the present theory. The numerical result
for Al films shown in Fig. 3 is, therefore, a demonstra-
tion of the validity of our arguments about the choice of
the cutoff A presented in Sec. ITII.C. If we take the cutoff
A > (m/&) we shall go beyond the scope of validity of
our theory.

There 1s a similarity between the breakdown of the
present theory for cutoffs A >» (7/&;) and the break-
down of the condition (p/A?) < 1 for the validity of LT
at small thicknesses Ly. In both cases, when there is an
inconsistency of the theory, we obtain enhanced values of
the characteristic jumps of thermodynamic quantities at
the equilibrium point of the first-order phase transition.

(63)

V. CONCLUSION

We did a detailed analysis of the HLM effect in bulk
(3D-) superconductors and quasi-2D superconducting
films within the self-consistent approximation introduced
in Refs. [1,4,24]. We have studied for a first time the
validity of this approximation and calculated thermody-
namic quantities of direct experimental interest like the
equilibrium jumps of the order parameter, entropy and
specific heat at the point of the fluctuation-induced first-
order phase transition to superconducting state in a zero
external magnetic field. Our investigation is supported
by numerical calculations for bulk Al and Al films.

We have presented for a first time a comprehensive
analysis of the effective free energy of the superconduc-
tor in a zero external magnetic field and on the basis of
this analysis we compared the results from the investiga-
tion of the effective free energy without a partial Landau
expansion with those from the Landau expansion of the
effective free energy of quasi-2D films. For quasi-2D films

342

of type I superconductors, the Landau expansion leads to
reliable results, provided the film thickness is above some
value depending on the characteristic lengths £y and Ag,
i.e., on the material parameters. For Al films the results
from the Landau expansion become unreliable below film
thicknesses Ly ~ 0.1um. For quasi-2D films of type II su-
perconductors the Landau expansion of the effective free
energy can be used for any thickness above the level of
destruction of superconductivity (Lo ~ 1073 pm).

Our investigation provides a reliable theoretical basis
for a future experimental search of the HLM effect in thin
films of type I superconductors, where the effect 1s much
stronger than in bulk materials. In accord with preceding
works [9-13] we have justified earlier results which indi-
cate that the HLM effect will be better pronounced in
films of materials with relatively high values of the crit-
ical magnetic field H.y and relatively small thicknesses
Lg. We cannot be certain which superconducting mate-
rial provides the best experimental conditions for trans-
port or caloric measurements of the jumps of the ther-
modynamic quantities at the point of the fluctuation-
induced first order transition, but from the data for Al,
W and In available from recent studies [11,12] and the
present paper, the most suitable substance seems to be
Al. But investigations of other superconductors may put
forward materials which are even better candidates for
the experimental test of the HLM effect.

Looking for the most convenient material for the ex-
perimental search of the HLM effect we should have in
mind a number of other experimental requirements which
are not related to the results from the present theoretical
investigation. Here we shall briefly discuss the problem
of the external magnetic field and the possible change
of the superconductivity from type I to type II with the
decrease of the film thickness [46]. This change for film
thicknesses Ly, which are convenient for the experimental
study of the HLM effect, is not a great problem because
we have shown in our investigation that the effect could
be observed also in films of type II superconductors, pro-
vided the external magnetic field Hy is very low so the
effect of the vortex phase and the magnetic energy jump
(HZ2/8) at the phase transition point is negligible. The
magnetic energy jump (HZ/87) may obscure the HLM
effect on the latent heat also in type I superconductors
and, therefore the experimental problem for the elimi-
nation of the residual laboratory external magnetic field
Hy 1s common for both type I and type II supercon-
ducting films. If we take as a basis the latent heat of
order 1 [erg/cm®] in Al films with Lo ~ 0.1 pm, as re-
ported in Sec. 4, the magnetic field which ensures the
ratio (H2/8mQ) < 1 will be obviously about 1 Oe. In
thinner films of convenient materials this experimental
condition may become Hy ~ 10 Oe but no more.
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HOBI PE3VJIBTATH BIIJINBY MATHETHUX ®JIIOKTYAIIIA HA ®A3B0OBUN
NEPEXIO Y HAJIIPOBITHUI CTAH IIPU BIACYTHOCTI MATHETHOTO IIOJISI

H. onosa, T. Tomopos
Jabopamopia CPCM, Incmumym $isuxu meepdozo miaa I. Hadrcarosa

Boneapcora axademin nayx, Codia, BG-1784, Boreapis

IlomaHo cucremarmyte DOCTIIKEHHA BILIMBY MarHeTHHUX PJIIOKTyalii Ha (pa30BHi Mepexin y HaIIpoBlIHANR

CTaH IIpH Bi,HCyTHOCTi 30BHIIIHHOI0 MarHETHOrO MOJIA 3a AJOTIOMOT'OI0 CaMOY3TrOIZKEHOTO HabJImKeHHsT 1 KBasi-

Makpockomiusol Momen I ins6ypra—Jlannay. OTpHMaHO HOBI pe3yJIbTaTh OIS TOHKMNX HAOIPOBINHWX ILIBOK. Po3-

TIIAHYTO THKaBl 3 €KCIEPUMEHTAJIBHOTO TOTIIANY TEPMOIMHAMIYHI BEJMINHU, TaKl, 9K CTPHOOK MapaMeTpa Io-

PAOKY, JIaTeHTHA TeIIOTa, TEIJIOEMHICTD; 1X YHMCEeJIbHO po3paxoBaHo A ob’emuux Al Ta Tomkmx Al 1wriBok.

IIpoanasizoBaHO MOXKJIMBICTH €KCIIEPUMEHTAIBHOI ITEPEBIPKU TEOPETUIHUX TependadeHb.
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