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The spectrum of collective excitations of liquid Cs at 308 K is investigated within the nine-
variable approximation of generalized collective mode approach. An original analysis of spectra
is performed to establish the physical meaning as well as the origin of all the propagating and
relaxing collective modes found. Two branches of low- and high-frequency propagating excitations
are identified with the heat waves. It is shown that a kinetic relaxing mode, caused by density
fluctuations, defines almost completely the shape of ‘density–density’ time correlation function for
wavenumbers close to the main peak position of the static structure factor. Amplitudes of mode
contributions to the ‘density–density’ and ‘heat density–heat density’ time correlation functions are
studied in detail.
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I. INTRODUCTION

Liquid cesium is one of the most simple and most stud-
ied representatives of a wide family of alkali metallic liq-
uids with well-defined collective excitations, which are
observable on dynamical structure factor S(k, ω) (k and
ω being wavenumber and frequency, respectively) in a
broad range of wavenumbers k (up to k ∼ 0.8kp [1]
in the case of cesium, where kp is the position of the
first maximum of the static structure factor S(k)). This
feature of liquid alkali metals makes a significant differ-
ence with other simple liquids, for instance with dense
Lennard-Jones systems, and has attached intensive theo-
retical and experimental investigations. Neutron scatter-
ing experiments [2,3], performed on liquid Cs just above
the melting point, have shown that: (i) the well-visible
peak at ω 6= 0 exists in S(k, ω) for k < 1.2 Å−1; (ii) at
k ≈ kp = 1.4 Å−1 the well-known de Gennes narrowing,
governed by a cooperative-diffusion-like relaxation pro-
cess, is observed; (iii) for 1.8 Å−1 < k < 2.0 Å−1 the
existence of propagating modes in liquid Cs appears as a
shoulder in S(k, ω). In addition to these features it was
found that the damping coefficient of observed propagat-
ing modes increases almost linearly in the k region cov-
ered in the experiment, and a clear enhancement over the
sound velocity is seen in the dispersion of density fluctu-
ations for small wavenumbers k. This allowed to assume
that the clear evidence of nonhydrodynamic propagation

is observed in liquid cesium near the melting point and
the further experimental and theoretical attempts to ex-
plain the features observed are needed [2, 3].

Cesium near the melting point was studied rather
intensively by computer simulations [4–6]. Kambayashi
and Kahl performed [4] a molecular dynamics study on
liquid Cs with two-body potentals derived from Ashcroft
empty-core pseudopotentials, and found very good agree-
ment between the MD results and the experimental data
for both static and dynamic structure factors. It was also

found no sufficient evidence for existence of propagating
sound modes beyond the main peak in S(k), although
the authors correctly mentioned that the absence of dis-
tinct peaks in S(k, ω) does not imply the absence of prop-

agating sound modes. An important consequence of the
molecular dynamics simulations, performed in Refs. [5,6]
for models of liquid Na, K, Rb and Cs near the melting
point with the pair potential proposed by Price, Singwi
and Tosi [7], is that both the equilibrium and the time-
dependent correlations can be cast in a properly scaled
form, which is in a very good approximation the same
for all the alkali liquid metals. Within this ‘unitary de-
scription’ of the ‘classical’ alkali metals it was shown that
the presence of well-defined propagating modes at rela-
tively large wavenumbers (up to k ≤ 3kp/4) appears to
be peculiar to them near the melting point. Note that
the scaling idea used in Ref. [5] is somewhat similar to
that of Lennard-Jones potentials for inert gases, and this
indicates strongly that the different dynamic behaviour
of Lennard-Jones-like systems and liquid-alkali metals is
mainly attributed to the different softness of the poten-
tial cores. Such a conclusion was numerically verified [8,9]
in molecular dynamics simulations, and it was shown
that the Brillouin peaks in S(k, ω) are more pronounced
and persist up to larger k for softer potentials.

In the theoretical analysis of molecular dynamics da-
ta [4–6] the dynamical properties of liquid Cs were main-
ly considered (see also [10,11]) within the hydrodynamic
treatment, viscoelastic or simplified mode-coupling theo-
ries. To our knowledge the first attempt to treat a liquid
metal within the generalized collective mode (GCM) ap-
proach was reported in Ref. [12]. Herein, the spectrum
of generalized longitudinal collective excitations in liq-
uid Cs was obtained within the simplest non-trivial five-
variable scheme, and very good agreement with the MD
results for the ‘density–density’ time correlation function
in a wide range of wavenumbers k was found. Consider-
ing the higher order mode approximations, in [13] the dy-
namics of transverse fluctuations in Cs was studied with
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the main attention focused on the properties of trans-
verse excitations and (k, ω)-dependent shear viscosity.

The concept of GCM was initially suggested in [14]
to investigate dynamical properties of a simple Lennard-
Jones liquid in a wide range of wavevectors. The main
idea of this method was to extend the basis set of dynam-
ical variables by taking in addition to the hydrodynamic
ones their time derivatives, which were supposed to de-
scribe short-time processes in liquids. The time evolution
of these ‘extended’ variables was obtained in molecular
dynamics (MD) simulations in order to evaluate relevant
time correlation functions and static averages. All stat-
ic averages and some fitting parameters were used then
to estimate the matrix elements of secular equation de-
rived from the generalized Langevin equation. In [15] this
method of generalized collective modes (GCM) was mod-
ified into a parameter-free approach (see also [16]) and
has advanced later in [17] to a high-variable approxima-
tion with up to three first time derivatives of the hy-
drodynamic variables. In general, the basis set of Nv dy-
namical variables generates Nv×Nv secular equation and
results in Nv generalized collective modes (eigenvalues).
The GCM method proved to be very useful for inves-
tigation of spectra of collective excitations in Lennard-
Jones pure liquids [14–17], a semimetallic liquid Bi [18],
liquid water [19], ‘fast-sound’ mixture He65Ne35 [20–22],
Lennard-Jones binary mixture [23–25], liquid glassform-
ing metallic alloy Mg70Zn30 [24–26], and metallic molten
alloy Li4Pb [24].

In the hydrodynamic limit (k → 0, ω → 0) the col-
lective mode spectrum can be studied analytically using
three-mode treatment [27–29]. For longitudinal dynam-
ics in pure liquids there exist three conserved dynamical
variables (density of particles n̂(k, t), density of longi-

tudinal current Ĵl(k, t), and energy density ê(k, t)) for
which the local conservation laws are satisfied. The solu-
tion of hydrodynamic equations for pure liquids is well-
known: three collective modes completely determine the
longitudinal dynamics of pure liquid in long-wavelength
limit. They are the two sound waves propagating in op-
posite directions (a pair of complex-conjugated eigenval-
ues) and one relaxing thermodiffusive mode (a purely
real eigenvalue).

Among Nv eigenvalues the lowest ones (three modes in
the case of pure liquids, and four ones for binary systems)
always correspond in the region of small wavenumbers
to the hydrodynamic excitations, predicted by the lin-
ear hydrodynamics. All the other eigenvalues are called

kinetic modes and correspond to the processes of short-
time scale. These modes cannot be obtained within the
standard hydrodynamic treatment. Namely the kinetic
modes are responsible for the ‘fast sound’ phenomenon in
binary liquids [21]. Also, optic-like excitations in many-
component liquids are in fact the kinetic modes. How-
ever, no attention was paid to the possibility to ob-
serve kinetic modes in collective dynamics of pure liq-
uids. Even, the origin of kinetic modes for pure systems
is not known a priori. Therefore, the theoretical study of
generalized mode spectra with special attention to the
origin of modes formation in pure metals and semimet-
als would be of great interest.

The first attempt to treat a liquid metal within the
GCM approach was reported in Ref. [12]. The spec-
trum of liquid Cs was obtained within the simplest non-
hydrodynamic five-variable treatment. However, the ori-
gin of kinetic collective modes was not studied herein.
The next investigation of transverse dynamics of liquid
Cs [13] was already performed within the high-variable
approximation and was focused on the study of (k, ω)-
dependent shear viscosity of a liquid metal. The origin of
kinetic collective modes in a liquid semimetallic Bi was
considered in our recent papers [18]. The most recent
study of both kinetic propagating and relaxing collec-
tive modes for two temperatures within the high-variable
approximation of GCM method has been performed for
liquid Pb [30].

The goal of this study is: (i) to estimate the spectrum
of generalized collective excitations for a liquid Cs within
the high-variable approximation of the GCM approach;
(ii) to establish the origin of longitudinal kinetic propa-
gating and relaxing collective modes found in the spec-
trum; and, (iii) to focus on the contributions of different
collective modes to various time correlation functions.

The paper is organized as follows: in Sec. II we briefly
describe the methodology of our calculations; the results
for spectrum of generalized collective excitations as well
as for the separated mode contributions to different time
correlation functions are reported in Sec. III, and con-
clusions are given in Sec. IV.

II. DETAILS OF CALCULATIONS

For the generalized treatment of longitudinal dynam-
ics within the GCM method we accept the nine-variable
basis set consisted of the following operators:

A
(9)(k, t) = {Ai(k, t)} =

{

n(k, t), Jl(k, t), e(k, t), J̇l(k, t), ė(k, t), J̈l(k, t), ë(k, t),
...

J l (k, t),
...
e (k, t)

}

, (1)

where the dots denote the order of the time deriva-
tive of relevant operator Ai. This basis set of dynamical
variables was used to generate the eigenvalue problem
for generalized hydrodynamic matrix T(k) (see [16–18]).

Complex-conjugated and purely real eigenvalues zα(k) of
the generalized hydrodynamic matrix form the spectrum
of collective excitations.

In general case, for the basis set of Nv dynamic vari-

36



GENERALIZED COLLECTIVE MODES IN LIQUID CESIUM

ables, all the time correlation functions, constructed on
the variables {Ai}, can be expressed in the GCM ap-
proach as a weighted sum of Nv mode contributions,
namely:

FGCM

ij (k, t) =

Nv
∑

α=1

Gα
ij(k)e−zα(k)t , (2)

where Gα
ij(k) is the weight coefficient of αth mode con-

tribution to the time correlation function Fij(k, t). The
weight coefficients Gα

ij(k) can be expressed via the rel-
evant eigenvectors associated with the αth eigenvalue.
In contrast to purely hydrodynamic treatment (expres-
sions with three mode contributions), functions (2) re-
produce explicitly the first (2S+1) frequency moments of
relevant spectral function F GCM

nn (k, ω), F GCM
JJ (k, ω), and

FGCM
ee (k, ω), where S is the maximum number of dots of

particular operator Ai taken in the basis set. Moreover,
because of the relation ṅ(k, t) ∼ Jl(k, t), for the ‘density–
density’ time correlation function F GCM

nn (k, ω) the first
(2S + 3) frequency moments coincide with the genuine
ones. Thus, in the particular case of the basis set (1),
the calculated function F GCM

nn (k, ω) should contain itself

the first nine exact frequency moments (including zeroth
one), while the GCM ‘energy–energy’ function does sev-
en ones.

The expression for the Laplace-transforms, which fol-
lows from (2),

F̃GCM

ij (k, z) =

Nv
∑

α=1

Gα
ij(k)

z + zα(k)
(3)

allows us to study in detail the mode contributions to the
dynamical structure factor or any other spectral function
of interest. Note that in (2) and (3) the weight coeffi-
cients Gα

ij(k) are in general the complex functions, so
that taking into account symmetrical properties of the
amplitudes and the assumption that among Nv eigenval-
ues there are Npr pairs of complex-conjugated eigenval-
ues z±α (k) (or propagating modes) with

z±α (k) = ±iωα(k) + σα(k), α = 1, 2, . . . , Npr , (4)

and Nrl purely real ones (or relaxing modes) with
zα(k) = dα(k), one can rewrite (2) in a widely accepted
form

FGCM

ij (k, t) =

Nrl
∑

r=1

Ar
ij(k)e−dr(k)t +

Npr
∑

p=1

{

Bp
ij(k) cos[ωp(k)t] + Cp

ij(k) sin[ωp(k)t]
}

e−σp(k)t, (5)

where all the amplitudes Ar, Bp and Cp are the functions
of k only. We will call the terms with amplitudes Bp and
Cp, originated by propagating modes, as symmetric and
asymmetric ones, respectively. Obviously, that the equal-
ity

Nrl
∑

r=1

Ar
ij(k) +

Npr
∑

p=1

Bp
ij(k) = Fij(k, t = 0). (6)

should be satisfied giving in fact the zeroth frequency
moment of Fij(k, ω). The expression for the higher order
frequency moments can be derived from (2) straightfor-
ward by considering the time derivatives at t = 0. By
taking the Fourier transform of the expression (5) one
can study the separated mode contributions into spec-
tral functions Fij(k, ω), which are formed by: Nrl central
Lorentzians, Npr noncentral Lorentzians (symmetric con-
tributions), and Npr non-Lorentzian corrections (asym-
metric contributions), respectively. It is well-known that
the functions Fij(k, ω) are simply related to the corre-

sponding Laplace transforms F̃ij(k, z),

Fij(k, ω) =
1

π
Re F̃ij(k, z),

so that the expression (3) is very useful in this respect.

To obtain spectra of collective excitations in a liquid
within the GCM method, one has to estimate the el-
ements of generalized hydrodynamic matrix T(k) first.
The information about static correlation functions need-
ed can easily be extracted from the molecular dynamics
simulations for the system considered. Solving then the
eigenvalue problem for matrix T(k) at each k-value sam-
pled in MD, we obtain the set of k-dependent eigenvalues
which form the generalized collective mode spectrum.
Eigenvectors, estimated in such an approach, allow us
to obtain the weight coefficients, giving the information
about the separated mode contributions to time corre-
lation functions considered. In our subsequent study we
follows along this general scheme, described in details, for
instance, in Ref. [16, 18, 30, 31]. It should be emphasized
that the results, to be obtained in such an approach,
describe the Nv × Nv set of time correlation functions
in self-consistent way, giving all the needed information
about maximum positions in the spectral functions, the
height and width the origin of collective excitations.

The MD simulations were performed in standard mi-
crocanonical ensemble for liquid Cs with mass densi-
ty ρ = 1832.1 kg m−3 at average temperature 308 K.
We consider a finite system of 1000 particles interacting
through oscillating potential Φij(r) at constant volume
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V = L3. The smallest wavenumber reached in our MD
study is kmin = 0.1272 Å−1. Time evolution of hydrody-
namic variables and their time derivatives was observed
during the production run over 3 ·105 steps. The effective
two-body potential was taken from [4]. This potential re-
produced very nicely the experimental static structure
factor of liquid Cs near the melting point. The follow-
ing energy, length and time scales ε = kBT , σ = k−1

min,

τ = σ(m/ε)1/2 = 5.6626 ps are used below for the reduc-
tion of dimensional quantities.

III. RESULTS AND DISCUSSION

A. Spectrum of collective excitations

Results, obtained for eigenvalues of the generalized hy-
drodynamic matrix T(k), generated on the basis set (1),
are shown in Figures 1 and 2. As the functions of k they
form the spectrum of collective excitations. It is seen,
that for k < 2.2 Å−1 the spectrum consists of three
branches of propagating modes (three pairs of complex
conjugated eigenvalues z±

α (k) with α = 1, 2, 3 in Fig-
ures 1a and 1b). In this k-region there exist also three
relaxing modes (see Figure 2) with purely real eigen-
values zi(k) = di(k) with i = 1, 2, 3, so that the total
number of collective modes is equal to nine as it should
be for the nine-variable set (1).
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Fig. 1. Spectrum of propagating collective excitations of a

liquid Cs at 308 K, obtained for the nine-variable basis set
A

(9)(k, t). Imaginary and real parts of eigenvalues are shown
in frames (a) and (b), respectively. Asymptotic hydrodynam-
ic behaviour for the sound excitations is shown by dashed
lines. Solid lines are the spline interpolation between the MD
data.

In Figure 1a one can see the emergence of the fourth
pair of propagating modes at k = k0 ' 2.2 Å−1, which
is well observed also for larger wavenumbers. The re-
al part of the corresponding eigenvalues z±

0 (k) defines
the damping coefficient, which is the highest one among
all complex eigenvalues (see Figure 1b for k > k0). For
smaller k-values the propagating modes z±

0 (k) disappear
in so-called propagating gap, creating instead the pair of
purely real eigenvalues. Thus, in the region k > 2.2 Å−1

there exists only a single relaxing mode within the nine-
variable GCM treatment. We note that almost the same
picture for generalized collective spectrum was observed
in our previous studies of a LJ liquid [17], metallic liq-
uid Pb [30], and semimetallic liquid Bi [18]. The main
difference between these cases is in the mutual disposi-
tion of propagating modes and in the value of k0, where
the branch z±

0 (k) disappears. For instance, in the case
of liquid Bi [18] we have not found the branch z±

0 (k) for
k < 3 Å−1. For more detailed discussion of the origin
of low-frequency kinetic propagating excitations we refer
the readers to the Refs. [18, 30], while in this study we
will mainly focus on the region k < 1.8 Å−1 and espe-
cially on the origin of kinetic relaxing modes.
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Fig. 2. Purely real eigenvalues of a liquid Cs at 308K, ob-
tained for the nine-variable basis set A

(9)(k, t). Asymptot-
ic hydrodynamic behaviour for the thermodiffusive modes is
shown by dashed lines. Solid lines are the spline interpolation
between the MD data.

From the behaviour of complex eigenvalues at k → 0
one can estimate, that the lowest pair of propagating
modes z±1 (k) corresponds to the generalized sound exci-
tations with linear dispersion ωs(k) in the small-k region:

z±1 (k) ' Γk2 ± icsk , k → 0. (7)

It is seen in Figure 1a that in the vicinity of main peak of
the static structure factor S(k), located for this thermo-
dynamic point of liquid Cs at kp = 1.4 Å−1 (see [4, 12]),
the branch z±

1 (k) exhibits a wide minimum. We note
that when k ∼ kp the damping of sound modes is still
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not sufficiently larger (see Figure 1b) than their frequen-
cy (σs < ωs), so that these propagating excitations are
well defined in that region.

The straight dashed line in the upper frame of Fig-
ure 1a illustrates, that the lowest branch z±

1 (k) has a
‘positive dispersion’, that is in complete agreement with
the results of previous studies [2–4, 12]. From the slope
of this line the sound velocity in liquid Cs can easily be
estimated, and we found cs ' 1170 m/s, that is nearly
the same value as obtained within the five-variable treat-
ment [12]. It should be noted that this value differs rather
significantly from the experimental result [34], which,
otherwise, is in a good agreement with estimate following
from the well-known formula for adiabatic sound veloc-
ity cs = [kBTγ/S(0)m]1/2 ' 970 m/s. To understand
such a difference, which is difficult to explain completely
due to anomalous dispersion caused by the hydrodynam-
ic mode coupling effects [32, 33], one can agree with the
view-point proposed in [3]. The real part of z±

1 (k), which
defines the damping (or inverse time of life) of gener-
alized sound excitations, in hydrodynamic limit must be
the function of k2 with Γ being the sound attenuation co-
efficient. From the smallest k-point we have estimated Γ
to be 1.49 · 10−7 m2/s. Beyond the hydrodynamic region
the short-time effects become more important and they
can change the dependence (7). For the case of real parts
of eigenvalues z±

1 (k) the departure from hydrodynamic
parabolic form (shown by dashed line in Fig. 1b) dis-
plays negative dispersion. Qualitatively this is in agree-
ment with predictions of mode coupling theory [32, 33],
but taking into account the results of [3], other mecha-
nisms of such a behaviour can be considered as well. Note
that beyond the hydrodynamic region (k > 0.2 Å−1 and
up to k ' 1.2 Å−1) the damping coefficient σs(k) could
be well fitted by a linear function of k what was noted
in [3]. In particular, this indicates strongly that the vis-
coelastic mechanism of Maxwell-like relaxation might be
very important beyond the hydrodynamic region.

Another hydrodynamic eigenvalue, which is purely re-
al one and corresponds to the thermodiffusive mode, has
to behave according to predictions of the linear hydro-
dynamics as follows

d1(k) ' DT k2 , k → 0 , (8)

with DT being the thermodiffusion coefficient. As one can
judge from the Figure 2 (dashed line), the k-dependence
of the lowest lying real eigenvalue in the small k region
(k < 0.2 Å−1) behaves like (8). From the smallest k-point
we have estimated the value DT = 1.60 · 10−7 m2/s. It is
seen in Figure 2, that in fact two purely real eigenvalues
d1(k) and d2(k) are very close each other for k < 1.2 Å−1,
so that it is rather difficult to distinguish a priori their
k-dependence. The way we have separated in this study
the relaxing modes d1(k) and d2(k) in the Figure 2 will
be explained in the next subsection.

The pair of propagating excitations z±

1 (k) and ther-
modiffusive mode d1(k), form the set of the generalized
hydrodynamic collective excitations. All the other eigen-
values correspond to kinetic modes, which in small-k lim-

it, in contrast to generalized hydrodynamic ones, have
the finite damping coefficients (or finite lifetime) and
do not contribute significantly to the long-wavelength
dynamics. However, beyond the hydrodynamic region
the real parts of generalized hydrodynamic and kinet-
ic modes can have comparable values, and the relevant
kinetic modes can change the hydrodynamic shape of
time correlation functions. The approximate width of hy-
drodynamic region for liquid Cs, beyond which the non-
hydrodynamic effects are not anymore negligible, can be
roughly estimated as the width of propagation gap kH

for shear waves (transverse acoustic-like excitations). In
Ref. [13] we have found kH to be 0.092 Å−1.

Two branches of kinetic propagating modes z±

2 (k) and
z±3 (k) have much larger damping coefficients (real parts
of eigenvalues in Figure 1b) than the generalized acoustic
excitations in small-k region. However, for k > 1 Å−1 all
the propagating excitations have comparable damping,
that implies comparable contributions to the dynamical
properties in that k-region. An interesting feature is that
the branch z±

2 (k) exhibits for small wavenumbers rapid-
ly decaying behaviour, what makes sense to study more
carefully the origin of this propagating modes as well as
its contribution to the density–density time correlation
functions.

Qualitatively the nine-mode spectrum of generalized
collective excitations shown in Figures 1 and 2 for k <
2 Å−1 is similar to the case of liquid Bi [18]. For high-
er k-values, however, it resembles the one obtained in
the same approximations for a Lennard-Jones fluid [17]
and liquid Pb [30], where a low-frequency branch of heat
waves with a relatively small propagation gap was found.
The emergence of the low-frequency branch z±

0 (k) com-
plicates very much the understanding of general features
of mode contributions to the time correlation functions.
Therefore, we will mainly focus in this study on the
physical origin of mode formation and the calculations
of mode contributions to time correlation functions of a
liquid Cs in the region of propagation gap (k < 2.2 Å−1)
for the low-frequency branch z±

0 (k).

B. Analysis of the origin of collective excitation
branches

For the correct interpretation of generalized collective
excitations one has to investigate carefully main phys-
ical processes responsible for the mode formation. In
this study, we proceed in the following steps: i) we in-
troduce the separated orthogonal subsets of dynamical
variables, which describe some ‘pure’ physical processes
being strictly identified as thermal or/and viscoelastic
ones; ii) the spectra of generalized modes are calculated
on the separated subsets, generated by these new or-
thogonal dynamical variables; iii) comparing the results,
obtained for the spectra on the separated subsets as well
as on the basis set A

(9), one can establish in a systematic
way which kind of processes are mainly responsible for
an appearance of each branch in the spectrum. In the
case of week mode coupling effects we may expect, that
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some collective modes, obtained for the ‘coupled’ basis
set A

(9), will be reproduced very well by the eigenvalues
found for the separated subsets. The similar analysis has
been used previously in our studies of the longitudinal
dynamics of liquid Pb [30] and Bi [18] and the trans-
verse dynamics of binary liquids [24]. In the later case,
in particular, it was proved the existence of optic-like
excitations in nonionic binary liquids [24] under some
special condition.

It is well known that in contrast to the energy density

operator, one can consider the operator ĥ(k, t),

ĥ(k, t) = ê(k, t) −
fne(k)

fnn(k)
n̂(k, t), (9)

which is orthogonal to the particle density operator
n̂(k, t). In (9) the fne(k) and fnn(k) are the stat-
ic correlation functions ‘density–energy’ and ‘density–
density’ [or static structure factor fnn(k) ≡ S(k)], re-
spectively. Hence, the hydrodynamic set of three vari-

ables n̂(k, t), Ĵ(k, t), ĥ(k, t) contains only the orthogonal
dynamic variables, and this set can be extended by their
time derivatives within the generalized collective mode

approach. The dynamical variable ĥ(k, t) describes, in
fact, the heat density fluctuations [29, 36], and in the
limit k → 0 it is easily to show that the thermodiffusive
mode (8) emerges exclusively due to the heat density
fluctuations.

Let us consider now the two separated sets of dynami-
cal variables, which describe separately the heat and vis-
coelastic processes, namely:

A
(4h)(k, t) =

{

h(k, t), ḣ(k, t), ḧ(k, t),
...

h (k, t)
}

, (10)

and,

A
(5v)(k, t) =

{

n(k, t), Jl(k, t), J̇l(k, t), J̈l(k, t),
...

J l (k, t)
}

.

(11)

Both subsets (10) and (11) together form the nine-
variable basis set, which could be related to A

(9)(k, t) [see
(1)] by simple linear transformation of the dynamic vari-
ables. Note that in general it is easily to check out that
a linear transformed set and an initial one should have
the same set of eigenvalues. Hence, we can expect that
the spectra of collective modes, obtained on the separat-
ed subsets (10) and (11), should be very similar to the
results obtained previously (see Figures 1 and 2) and the
comparison of spectra gives us an additional information
about the origin of modes formation and the strength of
mode coupling effects.

In Figure 3 the spectra of propagating eigenvalues, ob-
tained on the separated sets (10) and (11), are shown by
dashed and solid spline lines, respectively. It is well seen,
that the second branch of propagating modes z±

2 (k) re-
flects the heat density fluctuations in liquid. The high-
frequency branch of propagating modes z±

3 (k) is also con-

nected with the thermal processes and due to the high
damping can not contribute significantly to the dynami-
cal properties of a liquid Cs in small-k region. For small
wavenumbers, these excitations have extremely short life-
time, defined as the inverse real part of their eigenvalues,
in comparison with the hydrodynamic modes. One can
say also, that in the region k > 0.4 Å−1 the heat and
viscoelastic processes are well separated and the subsets
(10) and (11) generate eigenvalues in very nice agree-
ment with the nine-variable spectrum, shown by sym-
bols. This finding is in agreement with the conclusion,
made in Ref. [3], that the anomalous dispersion of sound
excitations in a liquid Cs near the melting point can
mainly be explain by the viscoelastic mechanism of the
Maxwell-like relaxation. For smaller wavenumbers it is
seen in Figure 3 that the mode coupling effects between
the heat and viscoelastic processes increase and that re-
sults in the observed deviation of the values found for the
branch z±2 (k) on two different sets of dynamic variables,
namely, on the sets (10) and (1).
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Fig. 3. Spectra of propagating collective excitations, ob-
tained for the separated subsets A

(5v)(k, t) (spline interpo-
lated solid line) and A

(4h)(k, t) (spline interpolated dashed
line). Imaginary and real parts of eigenvalues are shown in
the frames (a) and (b), respectively. Symbols denote the same
eigenvalues as in Figure 1.

The four-variable subset A
(4h)(k, t), describing the

separated heat fluctuations, yields a pair of complex con-
jugated eigenvalues z±

2 (k) and two purely real modes
[d1(k) and d3(k)], when k is small (k < 2.2 Å−1). A
general tendency for the k-dependence of purely relaxing
eigenvalues d1(k) and d3(k) is to have closer values, when
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k increases to the region of emergence of a new propa-
gating branch [heat waves z±

0 (k)]. For higher k-values in-
stead of the pair of purely relaxing modes one obtains an
additional pair of complex-conjugated eigenvalues, which
correlate well with the branch z±

0 (k) shown in Figure 1.
Similar behaviour of relaxing modes in the region of the
emergence of new branch of propagating excitations was
observed in the case of transverse dynamics [23]. The
analogy between shear waves and low-frequency kinetic
heat waves was used in our analytical treatment of heat
waves for the case of a liquid Pb, reported in [30].

In small k-domain the lowest lying purely real eigen-
value, obtained on the subset A

(4h)(k, t) (see the dashed
line in Figure 4), correlates very well with the thermod-
iffusive mode (8), obtained on the nine-variable basis set
(1) and marked by us in Figure 2 as d1(k). For larg-
er wavenumbers (starting from k ∼ 0.3 Å−1), due to
the strong coupling of the modes d1(k) and d2(k), one
can see some deviation between these purely real eigen-
values, obtained on the four- (10) and nine-variable (1)
basis sets. Another interesting feature that follows from
our study is seen in Figure 2: the thermodiffusive heat
mode d1(k) is not in fact the lowest one in the nine-mode
spectrum for the intermediate and large wavenumbers.
In this region the significant contribution to time corre-
lation functions can be expected from another relaxing
mode d2(k), which is mainly caused by the viscoelastic
processes.
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Fig. 4. Relaxing mode d1(k) obtained for the nine-variable
set A

(9)(k, t) (open circles) and the lowest relaxing mode
found for the four-variable set A

(4h)(k, t) (spline interpolat-
ed dashed line). Symbols denote the same eigenvalues as in
Figure 2.

The viscoelastic subset A
(5v)(k, t) generates five eigen-

values, namely, two pairs of propagating modes, which
correspond to z±

1 (k) and z±

3 (k), and one relaxing kinetic
mode d2(k). In Figure 5 the eigenvalue d2(k), obtained
for the ‘coupled’ nine-variable basis set and shown by
closed boxes, is given in comparison with the results,
found for the five-variable subset A

(5v)(k, t) (solid line).
It is well seen that for k > 0.3 Å−1 both k-dependences
are in very good correlation. Otherwise, for smaller
wavenumbers a rather strong deviation between the rel-

evant relaxing eigenvalues, obtained by the ‘coupled’ ba-
sis set A

(9)(k, t) and the viscoelastic one A
(5v)(k, t), is

observed. This indicates, that the viscoelastic approach
cannot reproduce correctly the collective relaxing be-
haviour close to the hydrodynamic region. Another inter-
esting conclusion can be made by comparing behaviour
of d2(k) with a relaxing mode, obtained within the sim-
plest one-variable treatment with A

(1)(k, t) = {n̂}. One
can immediately derive the analytic expression for this
single-mode eigenvalue:

d0(k) = τ−1
nn (k) , (12)

where τnn(k) is the generalized correlation time asso-
ciated with ‘density–density’ time correlation function
[15]. It is seen in Figure 5 that the eigenvalue d0(k)
(dashed line) qualitatively behaves very similar to d2(k).
Moreover, it reproduces perfectly the behaviour of d2(k)
(closed boxes) in the region of k ∼ kp, where the main
peak of static structure factor is located. This means,
that in this k-region the relaxing kinetic mode d2(k) is
completely defined by the density fluctuations, which are
well separated from the other viscoelastic processes as-
sociated with the current operator Ĵl(k, t) and its time
derivatives. Similar result was obtained previously in the
case of a liquid Pb [30] for the state near the melting
point and this seems to be a quite general feature in a
simple liquid.
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C. Mode contributions to time correlation functions

The GCM method with the basis set of Nv dynamic
variables allows one to separate the Nv mode contribu-
tions to different time correlation functions, constructed
on the variables considered, as well as to any correspond-
ing spectral functions, according to (2) and (3), respec-
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tively. In this study we are mainly interested in calcula-
tions of the mode contributions, caused by the general-
ized collective modes, to the ‘density–density’ and ‘heat
density–heat density’ time correlation functions.

The ‘density–density’ time correlation function. In
Figures 6a and 6b the separated mode contributions
to the ‘density–density‘ time correlation function, ob-
tained at two values of k, are shown by different lines.
It is seen in Figure 6a that at the smallest wavenumber
k = kmin, sampled in our MD simulations, the shape of
Fnn(k, t) (solid line) is mainly determined by the sound
excitations z±

1 (k) (short-dashed line), and, as it could be
shown, the symmetric contribution (see Eq. 5) of these
modes is dominant. The contribution of heat waves z±

2 (k)
(long-dashed line) is smaller in several orders of magni-
tude. Two relaxing modes also contribute to the func-
tion Fnn(k, t) for this k-value. One can distinguish in
Figure 6a the long-time contribution of thermodiffusive
mode d1(k) (dotted line) and short-time one of kinetic
relaxing mode d2(k) (dash-dotted line). Taking into ac-
count the relatively large magnitude of kinetic relaxing
mode d2(k), one can conclude that in fact the wavenum-
ber k = kmin considered is already beyond the hydrody-
namic region. This is in agreement with our estimates
found in the study of transverse dynamics [13].
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Fig. 6. Mode contributions to the ‘density–density’ time
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At higher value of wavenumber, k = 1.322 Å−1, two
main contributions to the ‘density–density’ time corre-
lation function are seen in Figure 6b. The tail of time
correlation function is completely defined by the kinet-

ic relaxing mode d2(k) (dash-dotted line) and a small
short-time contribution is due to the acoustic-like modes
z±1 (k) (it was found that this is mainly an asymmetric
contribution). Another interesting finding is that for the
k considered the thermodiffusive mode d1(k) does not
make any visible contribution to the shape of Fnn(k, t).

In more complete form the study of mode contribu-
tions can be presented by considering the k-dependence
of the normalized [with the factor 1/Fnn(k, 0)] ampli-
tudes Ār

nn(k), B̄p
nn(k) and C̄p

nn(k) (see Eq. (5)). In Fig-
ure 7a the normalized mode amplitudes of some gener-
alized collective excitations are shown, namely, we have
plotted in this Figure: the symmetric B̄1 (open circles)
and asymmetric C̄1 (closed circles) contributions of the
sound excitations z±

1 (k); the symmetric B̄2 (open tri-
angles) contribution of the propagating kinetic modes
z±2 (k); and the normalized amplitudes Ā1 (asterisks) and
Ā2 (closed boxes) of the thermodiffusive d1(k) and kinet-
ic relaxing d2(k) modes, respectively. It is seen in the Fig-
ure 7a that the generalized thermodiffusive mode d1(k)
only weakly contributes to Fnn(k, t), when k > 0.4 Å−1.
In the hydrodynamic limit k → 0 its amplitude tends to
the value (γ−1)/γ, predicted by the linear hydrodynam-
ics [35, 36]. In the case of a liquid Cs an experimental
value of the ratio of specific heats is γ = 1.102 [4, 12],
and the normalized amplitude of thermodiffusive contri-
bution in the hydrodynamic limit has to reach the value
0.093. From the other side, it is well-known [35,36] that,
according to hydrodynamic expressions, the amplitude of
generalized sound excitations z±

1 (k) should tend to the
value 1/γ = 0.907. One can see in Figure 7a, that when
k → 0, the symmetric contribution of generalized acous-
tic modes is rapidly increasing. However, for the smallest
wavenumber, considered in our MD simulations, only the
tendency to reach the appropriate hydrodynamic values
is observed for both amplitudes Ā1 and B̄1. In this re-
spect we would like to remind, that the width of hydro-
dynamic region for a liquid Cs near the melting point
is very small (at least smaller than 0.092 Å−1 as it was
shown in [13]).

The normalized symmetric amplitudes of kinetic heat
waves z±

2 (k) are shown by triangles in Figure 7a. It is
seen, that these excitations almost do not contribute to
the ‘density–density’ time correlation function. Never-
theless, there exists another kinetic mode, namely the
relaxing mode d2(k) (closed boxes), the normalized am-
plitude of which is rather large beyond the hydrodynamic
region. If k → 0 this amplitude tends to zero (as it should
be according the linear hydrodynamic theory), but in
the region 0.4 Å−1 < k < 1.1 Å−1 the kinetic relaxing
mode d2(k) contributes sufficiently with the amplitude
comparable with the symmetric contribution of general-
ized sound excitations z±

1 (k) (open circles). In the region
close to kp the kinetic relaxing mode d2(k) defines almost
completely the shape of ‘density–density’ time correla-
tion functions. Otherwise, as far as we can judge from
Figure 7a, in the region of k ∼ kp, the symmetric contri-
bution of acoustic excitations is extremely small. This,
in particular, explains well why numerous attempts to
find far beyond the hydrodynamic region a sufficient ev-
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idence for the propagation of sound modes with the help
of simple methods, based on spectral analysis scheme
alone, were mainly not very successful (see, e.g., [10] and
the references cited herein). Observing the results pre-
sented in Figure 7a, we can conclude that absence of a
visible side sound peak in the dynamic structure factor
does not mean the absence of generalized sound modes.
In many cases such a peak is impossible to observe just
because of small relative symmetric amplitude of sound
excitations, what is well seen in fact in Figure 7a for
0.85kp < k < 1.15kp. In this range of wavenumbers
there is also a small asymmetric contribution [associated
with the non-Lorentzian term in (5)] from the general-
ized sound modes with the normalized amplitude (closed
circles) being about 0.2 in the whole k-region considered.
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modes d1(k) (asterisks) and d2(k) (closed boxes), generalized
sound excitations z±

1 (k) (symmetric and asymmetric contri-
butions are shown by open and closed circles, respectively),
and heat waves z±

2 (k) (symmetric contribution, open trian-
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(open boxes). Lines denote spline interpolation.

Another conclusion, which follows from the results pre-
sented in Figure 7a, is that in a wide range of wavenum-
bers the shape of function Fnn(k, t) is mainly determined

by the viscoelastic properties. In order to illustrate this
statement we have plotted in Figure 7b the sum of two
normalized amplitudes, namely, the amplitudes describ-
ing the symmetric contribution B̄1 of sound excitations
z±1 (k) and the contribution Ā2 of the kinetic relaxing
mode d2(k). The function Ā1

nn(k), which gives the infor-
mation about the relative weight of thermal processes, is
also shown in Figure 7b. It is well seen, that just beyond
a small-k region (in our case for k > 0.4 Å−1), in which
the contribution of heat processes is of the order predict-
ed by the hydrodynamic theory, the shape of ‘density–
density’ time correlation function is almost completely
defined by the viscoelastic processes. In particular, this
means, that for larger k, in contrast to the predictions
of the purely hydrodynamic treatment, the central peak
of dynamic structure factor S(k, ω) can not be attribut-
ed anymore to the thermodiffusion and is mainly formed
by the viscoelastic processes. One of the evident reason
for such a result is a small value of (γ − 1) ' 0.1 in the
system considered, showing that the static coupling be-
tween the thermal and viscoelastic properties is rather
weak. The conclusion drawn allows one to understand
better the success of different viscoelastic theories (see,
e. g., [3, 4, 10, 11]), used for the description of dynamic
structure factor in a liquid Cs. It is also seen in Fig-
ure 7b that when the wavenumber k decreases, the sum
of contributions Ā2 and B̄1 as a function of k behaves like
the symmetric contribution of sound modes alone. This
just reflects the fact that the amplitude Ā2 of relaxing
kinetic mode d2(k) is decreasing at least as k2 when k
is small. However, as it was already mentioned above,
the contribution of this mode becomes very sufficient for
intermediate and large wavenumbers.

In order to clarify further the physical meaning of re-
laxing kinetic mode d2(k), let us recall the expression (6)
for zeroth order frequency moment and apply this ex-
pression to the function Fnn(k, t). Taking into account,
that the contribution of the mode d2(k) to Fnn(k, t) is
dominant at k ∼ kp (see Figure 7a) one may conclude
that the kinetic relaxing mode defines almost completely
the main peak of the static structure factor S(k) in the
sense of Eq. (6) [or vice versa]. This means that the kinet-
ic mode d2(k) reflects mainly the structural properties of
a liquid [at least on the spatial scale of nearest neighbors]
and, therefore, one can call d2(k) as the structural relax-

ation kinetic mode. Following along such a line it is pos-
sible to distinguish three k-regions, in which the shape of
static structure factor S(k) is related to different kinds
of dynamical processes: (i) in the longwavelength lim-
it the sound excitations and thermodiffusion process are
dominant, (ii) for intermediate k-values only the acoustic
modes and the kinetic structural relaxation contribute to
S(k), and (iii) when k ∼ kp the kinetic structural relax-
ation is mainly responsible for the structural properties
and the shape of the main peak of S(k).

The ‘heat density–heat density’ time correlation func-

tion. Completely opposite picture for the mode contri-
butions is observed in the case of the ‘heat density–heat
density’ time correlation function (see Figures 8a and
8b). For the smallest k-value considered in our MD sim-

43



T. BRYK, I. MRYGLOD

ulations, the shape of the function Fhh(k, t) is mainly
determined by the thermodiffusive mode d1(k) (dotted
line in Figure 8a). The generalized sound excitations
z±1 (k) (short-dashed line) make rather small and mainly
symmetric contribution which results in some modula-
tion of Fhh(k, t). There exist also very small short-time
contributions of the high-frequency heat waves z±

2 (k)
(long-dashed line) as well as the kinetic relaxing mode
d2(k) (dash-dotted line). For larger wavenumber, k =
1.322 Å−1, only two modes determine mainly (see Figure
8b) the shape of Fhh(k, t), namely, the thermodiffusive
mode d1(k) and the high-frequency heat waves z±

2 (k). In
the later case the asymmetric contribution is dominant.

The linear hydrodynamic theory predicts for the time
correlation function Fhh(k, t) [35, 36], that the normal-
ized amplitude of thermodifusive mode d1(k) and the
symmetric normalized contribution of sound excitations
z±1 (k) should be 1/γ and (γ−1)/γ, respectively. It is seen
in Figure 9 that at the smallest wavenumber kmin con-
sidered, these amplitudes (shown by asterisks and open
circles, respectively) are already very close to the values,
predicted by the hydrodynamic theory. For k > 0.4 Å−1

the contributions of generalized sound excitations into
the ‘heat density–heat density’ time correlation function
are very small. The normalized amplitude of thermodiffu-
sive mode Ā1

hh(k) exhibits a minimum for k ∼ 0.3 Å−1,
originated by strong hybridization effects between two
relaxing modes d1(k) and d2(k) with a cross-section (see
Figure 2) in this k-region.
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Fig. 8. Mode contributions to the ‘heat density–heat
density’ time correlation function for two k-values: (a)
k = 0.127 Å−1 and (b) k = 1.322 Å−1. Time scale is 5.6626 ps.

For intermediate k-values the generalized thermodiffu-
sive mode d1(k) determines almost completely the shape
of Fhh(k, t). Interesting to note, that for wavenumbers
approaching the boundary of propagation gap for the
low-frequency heat waves z±

0 (k) (see Figure 1a) the nor-
malized amplitudes of relaxing modes d1(k) and d3(k)
(shown by open boxes in Figure 9) take rather large pos-
itive and negative values, respectively. However, it can
be shown easily that in the vicinity of propagation gap
boundary the sum of these contributions is finite, so that
all the properties of time correlation function Fhh(k, t)
are reproduced correctly. It is also seen in Figure 9 that
the high-frequency heat waves z±

2 (k) contribute weak-
ly to the shape of Fhh(k) (symmetric and asymmetric
contributions are shown by open and closed triangles, re-
spectively). Thus, one can make a conclusion, that in the
case of ‘heat density–heat density’ time correlation func-
tion the main relaxing contribution for the system con-
sidered is due to the generalized thermodiffusive mode
d1(k).

It should be noted that the results for the normalized
amplitudes, presented in this subsection, together with
the calculations, performed for the generalized collective
modes, gives us the full information about the ‘density–
density’ and ‘heat density–heat density’ time correlation
functions in the considered range of k as well as about
other time correlation functions which can be written as
their time derivatives (see (1) and (2)).
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IV. CONCLUSIONS

The main results of this study are as follows:

(i) The spectrum of generalized collective excitations
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of a liquid metallic Cs near the melting point is obtained
and analyzed within the nine-variable GCM approach.
These results are found in self-consistent way without
any adjustable or fitting parameters. With the help of an
idea of separated subsets of dynamic variables we have
studied in detail the origin of mode formation that al-
lows us to identify precisely each branch in the spectrum
of longitudinal collective excitations. In particular, it is
shown that in the system considered the truly hydrody-
namic region is very narrow and in a wide k-range beyond
this region the dynamical processes, describing the heat
and viscoelastic fluctuations, are well separated;

(ii) It is shown that one of the kinetic relaxing modes
found, namely the mode marked d2(k), plays a very im-
portant role in the dynamics of density fluctuations. In
particular, the contribution of this mode to ‘density–
density’ time correlation function Fnn(k, t) in the region
of intermediate wavenumbers (close to the position of
the first maximum of static structure factor) is domi-
nant and, therefore, this mode might be considered as
responsible for structural relaxation phenomena. Oth-
erwise, the generalized sound excitations contribute to
Fnn(k, t) very weakly in this range, so that it might be a
good example when the well defined excitations are not
visible, however, in time correlation function because of
extremely small amplitudes of their contributions;

(iii) On the basis of our numerical study of the mode
contributions to the ‘density–density’ and ‘heat density–

heat density’ time correlation functions one can con-
clude that in the system considered the thermal and
viscoelastic fluctuations are rather well separated be-
yond the hydrodynamic region: the relaxing behaviour of
‘density–density’ time correlation function for interme-
diate wavenumbers is mainly determined by structural
relaxation, whereas the ‘heat density–heat density’ cor-
relation function reflects mostly the processes, described
by the generalized thermodiffusive mode.

We would like finally to make a remark, that this GCM
study of dynamics of a liquid metal above the melting
point is based on MD simulations with two-body inter-
atomic potentials, which allow us to reproduce very nice-
ly a static structure factor S(q) [4,12]. Therefore, we are
not able to study bonding correlations in systems above
freezing, which can affect the spectrum of collective ex-
citations. Such a study is possible to perform by com-
bining the GCM method with ab initio MD simulations,
that might be the next step in applications of the GCM
approach.
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УЗАГАЛЬНЕНI КОЛЕКТИВНI МОДИ В РIДКОМУ ЦЕЗIЇ

Т. Брик, I. Мриглод
Iнститут фiзики конденсованих систем, Нацiональна академiя наук України

вул. Свєнцiцького, 1, Львiв, 79011, Україна

Спектр колективних збуджень у рiдкому цезiї при температурi 308 К дослiджено в межах дев’яти-

змiнного наближення пiдходу узагальнених колективних мод. Застосовано ориґiнальний аналiз спектрiв з

метою визначення природи всiх отриманих гiлок пропаґаторних та релаксацiйних колективних мод. Двi гiл-

ки низько- та високочастотних пропаґаторних збуджень iдентифiкуються з тепловими хвилями. Показано,

що кiнетична релаксацiйна мода, породжена флюктуацiями густини, визначає майже повнiстю форму часо-

вих кореляцiйних функцiй “густина–густина” для хвильових чисел, близьких до положення головного пiка

статичного структурного фактора. Докладно дослiджено амплiтуди модових внескiв у часовi кореляцiйнi

функцiї “густина–густина” та “теплова густина–теплова густина”.
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