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In this work the expression for optical conductivity of spherical metal nanoshell as a function
of internal and external radii of nanoshell and photon energy — Fermi energy ratio is obtained.
Quantization of electron energy in nanoshells is shown to lead to the appearance of an oscillating
dependence of optical conductivity on the light frequency. An explicit expression of oscillating
addends for optical conductivity is obtained.
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INTRODUCTION

In recent years the research of physical properties of
various nanostructures has become significant and popu-
lar. It is known that physical properties of small particles
and their ensembles differ drastically from similar prop-
erties of bulk substance. In particular, when we deal with
ensembles of metal particles, new phenomena like elec-
tron and photon emission at the introducion of power
into ensemble [1] appear. These phenomena happen at
the power that is relatively small so that in bulk metal
they are not observed. A multitude of new effects is ob-
served in the absorption of light by small metal particles
(in particular, a steep dependence of absorption from the
shape of a particle and polarization of electromagnetic
wave appear [2]).

In this work, optical conductivity of metal nanoshells
is studied theoretically. An experimental study of such
systems is described in [3]. Our task is to find out how
effect of quantization of electron spectrum in spherical
metal nanoshells affects optical conductivity.

I. SETTING OF THE PROBLEM

Let’s study spherical metal nanoshell with the inter-
nal radius r = a and external radius r = b. The potential
energy of an electron in such a shell as a function of the
radial coordinate V (r) is given on Fig. 1.

We investigate light absorption in metal nanoshell.
First, we should find eigenfunctions and energy spectrum
of the electron in the potential well V (r). The Hamilto-
nian of our system can be written as follows:

Ĥ =
p̂2

2m0
+ V (r) (1)

Here, p̂ is the momentum operator of the electron, m0 is
its effective mass.

The eigenfunctions of the Hamiltonian Ĥ can be rep-
resented in the form

ψ(r) = R(r)Ylm(θ, ϕ) (2)

Here Ylm(θ, ϕ) are spherical functions, the radial func-
tion R(r) must satisfy the following equation:

R′′ +
2
r
R′ +

(
2m0E

h̄2 − l(l − 1)
r2

)
R = 0, r ∈ (a, b) (3)

Here E is the electron energy, l is the orbital quantum
number.

Fig. 1. The potential in which the electron moves as a
function of radial coordinate for a model potential of the
nanoshell. U0 is the dielectric barrier height, which is sup-
posed to be equal outside the particle and in the inner cavity,
a and b are internal and external radii of nanoshell, corre-
spondingly.

The solution of (3) can be written in the form

R(r) = B1jl(kr) +B2nl(kr), (4)
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where jl and nl are the spherical Bessel functions, B1

and B2 are the constants.
Also, we should mention that

h̄k =
√

2m0E. (5)

To equation (3) we must add boundary conditions. If
weak lowering of wavefunction in the barrier is neglected,
boundary conditions can be written as follows:

R(a) = R(b) = 0 (6)

(a and b are internal and external radii of nanoshell,
correspondingly). Condition (6) is satisfied exactly for
a barrier with infinite height.

Then, we presume that condition

ka ≥ 1 (7)

is satisfied.
From (5) we can see that this condition is satisfied, for

instance, if electron energy has the order of magnitude
of Fermi energy and a ≥ 2 · 10−7 cm.

From (7) we can see that condition kr � 1 is satisfied
for r ∈ (a, b] and for the vicinity of a and b; we use this
in our further calculations.

If (7) is satisfied, we can use asymptotics for the func-
tions jl and nl:

jl (kr) ≈
1
kr

cos
(
kr − (l + 1)

π

2

)
,

nl (kr) ≈
1
kr

sin
(
kr − (l + 1)

π

2

)
. (8)

Then, we introduce amplitude and phase instead of con-
stants B1 and B2:

B1 = B sinα, B2 = B cosα, (9)

so the asymptotics of normalized on 1 function (4) can
be written as

R(r) ≈
(

2
b− a

) 1
2 1
r

sin
(
kr − (l + 1)

π

2
+ α

)
. (10)

Let’s denote the values of k that satisfy (6) as knl.
Taking into consideration (10), we can see that condi-
tions (6) are satisfied if

knla− (l + 1)π/2 + αnl = πn,

knl (b− a) = πn. (11)

The second condition in (11) means that the interval be-
tween a and b contains an integer number of wavelength-

es.
Replacing k with knl in (5), we obtain quantum levels

of electron energy

E = Enl =
h̄2

2m0

(
πn

b− a

)2

(12)

As we can see, energy is degenerated by orbital and az-
imuthal quantum numbers.

To be strict, this claim needs to be elaborated. More
precise calculations (see Appendix) give instead of (12)

Enl =
h̄2

2m0

((
πn

b− a

)2

+
l (l + 1) + 1

b2

)
, (13)

so Enl is a function of l. But taking into consideration
the fact that b � b − a and l ≤ 2n, we can see that
the second addend in brackets is negligible as compared
with the first one. After neglecting this addend, we ob-
tain (12). Even for b ∼ b − a (a small value of a) and
l = 2n the second addend is by 2.5 times less than the
first one.

Now let us take into consideration the finiteness of a
potential well. We suppose that the difference of a dis-
turbed wavefunction V0 < +∞, E < V0, Knla � 1,
where Knl =

√
2m(V0 − E)/h̄ ≈

√
2mV0h̄ from the non-

disturbed one can be described with small addends to k
and α:

Rnl(r) =
B̃

r
sin
(
(knl + ∆knl)r−

π

2
(l + 1) + (α+ ∆α)

)
,

r ∈ (a, b]. (14)

It can be easily seen that for r /∈ (a, b]

r ≤ a, Knlr � 1, (15)

Rnl = Ãjl(iKnlr) ≈
A

r
exp(Knlr)

in an analogous way

r > b, Rnl ≈
C

r
exp(−Knlr) (16)

(here Ã, A and C are the normalization constants) we
will find small addends to k and α from the condition of
sewing the radial part of the wavefunction for r = a and
r = b, we use sewing of a logarithmic derivative:

r → b+ 0 :
R′nl(b+ 0)
Rnl(b+ 0)

≈ −Knl, as Knlb� 1,
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r → a− 0 :
R′nl(a− 0)
Rnl(a− 0)

≈ Knl, as Knla� 1.

Taking into consideration only addends of the first or-
der of magnitude, we can easily obtain

R′nl(b− 0)
Rnl(b− 0)

=
knl

∆knlb+ ∆α
,

R′nl(a+ 0)
Rnl(a+ 0)

=
knl

∆knla+ ∆α
.

From the condition of sewing the logarithmic deriva-
tive we obtain ∆knlb+ ∆α = −knl/Knl,

∆knla+ ∆α = knl/Knl.
(17)

(We do not calculate ∆knl and ∆α because for fur-
ther calculations we need not more exact expressions of
the electronic spectrum and phase but the value of wave-
function on the border of the potential well; it is obtained
from the combinations of ∆knl and ∆α given above).

We have obtained the wavefunctions and energy spec-
trum of the electron in a metal shell. Now we start the
study of light absorption.

II. LIGHT ABSORPTION

The Hamiltonian of the electron interaction with an
electromagnetic wave field can be written in the form

Ĥint = − e

m0c
Ap̂. (18)

Here e is electron charge, c is light velocity, A is vector-
potential of the electromagnetic field.

We suppose that A can be written in the form

A = A0 sinωt, (19)

where ω is light frequency.
Let us direct the z axis along A0. Then we can write

Ĥint in the form

Ĥint = i
eA0

2m0c
p̂z

(
eiωt − e−iωt

)
≡ Ĥ ′ ·

(
eiωt − e−iωt

)
.

(20)

The energy that is absorbed by the electron system
during a unit of time is given by the following expres-
sion:

W =
2π
h̄

∑
(i,f)

∣∣∣〈i|Ĥ ′|f〉
∣∣∣2 (Ei − Ef ) f(Ei) (1− f(Ef ))

× δ (Ef − Ei − h̄ω) (21)

In (21) index i means the initial and f , respectively, the
final state, f(E) us a function of electrons distribution
by energy.

For the sake of simplicity we denote the energy of the
initial state Ei as E and that of the final state Ef as E′.

In correspondence with (20) we can write

〈i|Ĥ ′|f〉 = i
eA0

2m0c
〈i|p̂z|f〉 ≡ −

ieE0

2m0c
〈i|p̂z|f〉. (22)

In this equation we expressed the amplitude of the
vector-potential A0 through amplitude of the electrical
field of the wave (E0 = −ωA0/c).

The matrix element of momentum operator p̂ can be
easily calculated using functions (2) and (10):

〈i|p̂z|f〉 ≡
∫
drRnl(r)Ylm (θ, ϕ) p̂zRn′l′(r)Yl′m′ (θ, ϕ).

(23)

The function Rnl in (23) is obtained from (10) after the
replacement of k and α with knl and αnl; also, 〈i| ≡ 〈nlm|
and |f〉 ≡ |n′l′m′〉.

The integral by r in (23) can be easily calculated, we
obtain

〈i|p̂z|f〉 =
2ih̄
b− a

knlkn′l′

k2
nl − k2

n′l′

(
1− (−1)n+n′)

×
∫
dΩYlm (θ, ϕ)Y ∗l′m′ (θ, ϕ) cos θ. (24)

An integral by the angle can also be easy calculated:

∫
dΩYlm (θ, ϕ)Y ∗l′m′ (θ, ϕ) cos θ =

((
(l′ +m′) (l′ −m′)
(2l′ + 1) (2l′ − 1)

) 1
2

δl,l′−1 +
(

(l +m) (l −m)
(2l + 1) (2l − 1)

) 1
2

δl,l′+1

)
δm,m′ . (25)

From (11) we can see that

knl =
π

b− a
n ≡ k(n), (26)

129



P. M. TOMCHUK, V. V. KULISH

so knl is not a function of l. It means that after substituting
∣∣∣〈i|Ĥ ′|f〉

∣∣∣2 into (21) we can perform summation over
(l, m) and over (l′, m′). Summation over m is performed in limits −l ≤ m ≤ l and l changes from 0 to 2n, l′ and
m′ change correspondingly. But the presence of delta-indices δm,m′ and δl,l′+1 changes the picture of summation. In
fact, l and l′ change from 0 to 2 min(n, n′)±1. If absorption take place, n is less than n′, so 0 ≤ l, l′ ≤ 2n (we neglect
unity comparing to 2n). Having made this notations, we can write

W =
4π
3

(eE0)
2 · h̄4

m4
0ω

3 (b− a)2
∑
n,n′

(
1− (−1)n−n′)

k2 (n) k2 (n′)n2f(E) (1− f(E′)) δ (E′ − E − h̄ω) . (27)

We remind that E is given by (12) and E′ can be obtained from (12) after replacing n with n′.
The power absorbed by electronic system can also be expressed through optical conductivity σ(ω) in the following

way:

W =
1
2
Vbσ(ω)E2

0 .

Here Vb is the volume of metal shell. Comparing this with (27), we obtain the expression for σ(ω)

W =
8π
3Vb

e2h̄4

m4
0ω

3 (b− a)2
∑
n,n′

(
1− (−1)n−n′)

n2k2 (n) k2 (n′) f(E) (1− f(E′)) δ (E′ − E − h̄ω) . (28)

In this paragraph we neglect discreteness of electronic spectrum and replace in (28) the sum with integral. At this
we take into account that

∆n =
b− a

π
∆k, ∆n′ =

b− a

π
∆k′. (29)

The function
(
1− (−1)n−n′)

takes discrete values 0, 2, 0, 2, . . ., so we replace it with its mean, i. e., unity. So we
obtain

σ0 (ω) =
8e2 (b− a)2 h̄4

3π3m4
0ω

3Vb

∞∫
0

∞∫
0

dk dk′k4k′
2
f(E) (1− f (E′)) δ (E′ − E − h̄ω) . (30)

The integral by k and k′ can easily be calculated after following an approximation of the function f(E)

f(E) = 1− χ(E − Ef ), (31)

where χ is the Heaviside function and Ef is Fermi energy. First, we make substitution

k2 =
2m0

h̄2 E, k dk =
m0

h̄2 dE.

We obtain

+∞∫
0

+∞∫
0

k4 (k′)2 f(E)(1− f(E′))δ(E − E′ − h̄ω) dk dk′

=

+∞∫
0

+∞∫
0

(
2m0

h̄2 E

) 3
2
(
m0

h̄2 E
′
) 1

2
(
m0

h̄2

)
f(E)(1− f(E′))δ(E − E′ − h̄ω) dE dE′

(after using (31))
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≈
(
m0

h̄2

)2(2m0

h̄2

)2
Ef∫

Ef−h̄ω

E
3
2
√
E + h̄ω dE =

(
m0

h̄2

)2(2m0

h̄2

)2

E3
f

1∫
1−ν

q
3
2
√
q + ν dq =

(
m0

h̄2

)2(2m0

h̄2

)2

E3
f f̃(ν),

where ν = h̄ω/Ef and

f̃(ν) =

1∫
1−ν

q3/2√q + ν dq =

(
(q(q + ν))3/2

3
−
ν(2q + ν)

√
q(q + ν)

8
+
ν3

8
ln(
√
q +

√
q + ν)

)∣∣∣∣∣
1

1−ν

.

For optical conductivity

σ1 =
8e2h̄4 (b− a)2

3π3m4
0ω

3Vb

(
m0

h̄2

)2(2m0

h̄2

)2

E3
f f̃(ν) =

32e2 (b− a)2

3π3h̄4ω3Vb

E3
f f̃(ν),

and as nanoshell volume

Vb =
4π
3
(
b3 − a3

)
,

we can write

σ1 =
32e2 (b− a)2

3π3h̄4ω3

3
4π (b3 − a3)

E3
f f̃(ν) =

8e2 (b− a)2

π4h̄ (b3 − a3)
E3

f

(h̄ω)3
f̃(ν) =

8e2 (b− a)2

π4h̄ (b3 − a3)
f(ν),

where

f (ν) =
f̃ (ν)
ν3

,

so sought optical conductivity

σ1 =
8e2

π4h̄

(b− a)2

b3 − a3
f(ν), (32)

where ν = h̄ω/Ef and function f(ν) is given by the following expression:

f(ν) = ν−3

1∫
1−ν

q3/2√q + ν dq =
1
ν3

(
(q(q + ν))3/2

3
−
ν(2q + ν)

√
q(q + ν)

8
+
ν3

8
ln(
√
q +

√
q + ν)

)∣∣∣∣∣
1

1−ν

. (33)

For the case ν ≡ h̄ω/Ef � 1 (33) gives

f(ν) ≈ ν−2, (34)

so in this limit dependence optical conductivity from frequency is the same as for bulk metal.

III. OSCILLATIONS OF OPTICAL CONDUCTIVITY AS A RESULT OF QUANTITIZATION OF THE
ELECTRONIC SPECTRUM

In this paragraph we shall investigate the displays of discrete nature of electronic spectrum in optical conductivity
(and, consequently, in absorption). Let us rewrite equation (28) in the following form:
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W =
8π
3Vb

e2h̄4

m4
0ω

3 (b− a)2
∑

n

n2

(
k2 (n) +

2m0ω

h̄

)
k2 (n)f(E) (1− f(E + h̄ω))

×
∑
n′

(
1− (−1)n′−n

)
δ (E′ − E − h̄ω). (35)

In (35) we used energy conservation law and expressed
E′ through E and k2(n′) through k2(n). Let us remind
that dependence of E on n is given by (12), E′ depends
on n′ in the same way.

Instead of replacing the sum with integral here we use
the exact formula for summation — the Poisson formula:

∞∑
n=1

y(n) =

∞∫
0

dn

(
y(n) + 2

∞∑
s=1

y(n) cos(2πsn)

)
(36)

Such a procedure is used in theory of de Gaaz–van Alfen
oscillations (see, for instance, [4]).

Applying the Poisson formula for summation over n
does not make any difficulties. But when we use this for-
mula for summation over n′ we need to take into account
some specific points. We should calculate the following
sum:

G (E(n) + h̄ω) ≡
∞∑

n′=1

(
1− (−1)n−n′

)
(37)

× δ (E(n′)− E(n)− h̄ω) .

The first notation is the following: δ-function of dis-
crete indices (n and n′) has no mathematical sense. If we
want to use it, we should remember that the δ-function
in physics is, in fact, a limit of some classical function

(for example, from C∞ or given below). After taking the
limit area under the graph of classical function remains
equal to 1 when the width of the figure under the graph
tends to zero and its height to infinity. We use the fol-
lowing classical function:

δ∗ (x) =

 0, x < −∆E/2
1/∆E, −∆E/2 < x < ∆E/2
0, x > ∆E/2.

. (38)

with ∆E →0 limit.

The second note concerns the factor
(
1− (−1)n′−n

)
that equals 0 or 2 depending on whether from the fact,
is the number n′ − n even or odd. In the previous para-
graph we replaced this function with its mean (unity). If
we take into consideration discreteness of spectrum, the
possibility of such an approximation should be proved.
It can be proved if we consider for (37) two situations
(n being even and n being odd) separately. For exam-
ple, if n in (37) is odd, only even n (n′ = 2m′, where
m′ = 1, 2, 3, . . .) will remain in the sum. Then,

G (E(n) + h̄ω) = 2
∞∑

m′=1

δ∗ (E(2m′)− E(n)− h̄ω). (39)

Now we use (36) to calculate the sum (39):

G (E(n) + h̄ω) =

∞∫
0

dm′ · 2δ∗ (E (2m′)− E(n)− h̄ω)

(
1 + 2

∞∑
s=1

cos (2πs · 2m′)

)

=

∞∫
0

dn′ δ∗ (E (n′)− E(n)− h̄ω)

(
1 + 2

∞∑
s=1

cos (2πsn′)

)
.

We can see that the result is the same as if we replaced
(
1− (−1)n−n′)

with 1 from the beginning. For even n this
fact could be proved in the same way (in this case only odd n′ (n′ = 2m′ − 1) makes an essential contribution).

So we replace in (37) the discrete function
(
1− (−1)n−n′)

with its mean that equals one and the delta-function
with δ∗ and use the Poisson formula for a resulting sum. We obtain

G (E + h̄ω) =
(b− a)

√
2m0

2πh̄
√
E + h̄ω

(
1 + 2

∞∑
s=1

cos
(
s
2 (b− a)

h̄

√
2m0 (E + h̄ω)

))
. (40)

For the sake of simplicity we throw away index n for En in (40). Also, in (40) we have already made limit transition
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∆E → 0 (here ∆E is the same as in (38)). After substituting G (E + h̄ω) into (35) we use one more time (36) for
the summation over n. We obtain

σ0 (ω) =
32e2 (b− a)2

3 (πh̄ω)3 h̄Vb

∞∫
0

dE · E 3
2 (E + h̄ω)

1
2 f (E) (1− f (E + h̄ω))

×

(
1 + 2

∞∑
s=1

cos
(
s
2 (b− a)

h̄

√
2m0E

))(
1 + 2

∞∑
s′=1

cos
(
s′

2 (b− a)
h̄

√
2m0 (E + h̄ω)

))
. (41)

The addend in (41) that does not contain cosine has already been calculated in the previous paragraph (see (32)).
Now we should calculate the oscillating addends.

It is easy to calculate that for b− a ≥ 2 · 10−7cm and the energies that have order of magnitude of Fermi energy
arguments of cosines in (41) are much bigger than unity. It means that cosines in (41) are quickly oscillating functions
of energy. So an essential contribution into integral (41) are made only by addends with s = s′, that contain difference
of cosine, arguments:

ϕs (E) ≡ s
2 (b− a)

h̄

√
2m0

(√
E + h̄ω −

√
E
)
. (42)

This happens because these addends oscillations are the slowest and, consequently, their contribution into integral
(41) dominates.

If we leave in (41) only addends of the type of (42), we obtain

σ(ω) =
32e2 (b− a)2

3π3h̄4ω3Vb

∞∫
0

dE · E 3
2 (E + h̄ω)

1
2 f(E) (1− f(E + h̄ω))

(
1 + 2

∞∑
s=1

cosϕ′s(E)

)
. (43)

Now we can see that the problem is mathematically analogous with the problem of de Gaaz–van Alfen oscillations
(see [4]). So we use analogous approximations, but first, we use the equality

f(E) (1− f (E + h̄ω)) =
(
1− e−h̄ω/θ

)−1

(f(E)− f(E + h̄ω)) . (44)

In (44) θ is the temperature (in energetic units). Equality (44) allows us to limit calculation of integral (43) that
contains only f(E). An analogous integral that contains f(E + h̄ω) can be obtained after replacing Fermi energy in
previous integral.

Now, let us expand function ϕs(E) into series in the vicinity of Fermi energy:

ϕs(E) ≈ ϕs(Ef ) + ϕ′s(Ef ) (E − Ef ) . (45)

Now integral from (43) could be written in the for

∞∫
0

dE · E 3
2 (E + h̄ω)

1
2 f(E) cosϕs(E)

≈ Re

(
µ

3
2 (µ+ h̄ω)

1
2 exp (iϕs (Ef ))

∞∫
0

dE f(E) exp (iϕ′s (Ef ) (E − Ef ))

)
. (46)

In (46) we put factor before exponent into the integral (for E = Ef ). If oscillations amplitude needs to be calculated
more precisely, this function can be expanded in a series analogously to (45).

Now, let us take into account the following:
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∞∫
0

dE f(E) exp (iϕ′s (Ef ) (E − Ef )) = θ

∞∫
−

Ef
θ

dy · exp (iϕs (Ef ) y)
ey + 1

≈ θ

∞∫
−∞

dy · exp (iϕs (Ef ) y)
ey + 1

= − iπθ

sinh (πϕ′s (Ef ) θ)
. (47)

Now, we have all the necessary equations to obtain the final expression for a high-frequency conductivity of metal
shell considering discreteness of electronic spectrum:

σ1(ω) = σ0
1(ω) +

64e2 (b− a)2

3π2h̄4ω3Vb

θ
(
1− e−

h̄ω
θ

)−1

(Φ(Ef )− Φ(Ef − h̄ω)) , (48)

where the function Φ(Ef )

Φ (Ef ) = E
3
2
f (Ef + h̄ω)

1
2

∞∑
s=1

sinϕs(Ef )
sinh (πθϕ′s(Ef ))

(49)

and σ0
1 is optical conductivity of a nanoshell without con-

sidering discreteness of electronic spectrum (see (32)).
In (48) Vb is absorption volume of the nanoshell:

Vb =
4π
3
(
b3 − a3

)
.

For thin nanoshells

Vb ≈ 4πa2 (b− a) .

We can use the fact that h̄ω < Ef and expand into
series ϕs(Ef ) by h̄ω (see (42)), we obtain

ϕs ≈ s (b− a)
(

2m0

Ef

) 1
2

ω = s · 2 (b− a)
ω

vf
= sτω (50)

in (50) vf is the Fermi speed, τ is the time of electron
flight from inner surface of shell to external and back
(τ = 2 (b− a) /vf ). We can see that when photon energy
h̄ω is negligible a comparing to Fermi energy, oscillations
possess completely classical nature.

In our approximation, the inequality h̄ω < Ef is es-
sential because for energies E′ = E − h̄ω inequality (7)
must be fulfilled. But, as is mentioned in Appendix, for
thin shells ((b − a)/b � 1) the solution could be found
without using inequality (7).

Fig. 2. Relative oscillative addend (for 2 addends in (49))
as a function of incident photon energy — Fermi energy
ratio. Graph is given for Fermi energy of nanoshell metal
Ef = 5.53 eV (Fermi energy of gold), internal radius of the
nanoshell a = 40nm, nanoshell thickness b − a =100 nm. In-
terval of ν is chosen so that ∆σ1 is small relative to σ0

1 and
ν = h̄ω/Ef � 1.

Now we give graphical representation of the re-
sult. We suppose that Fermi energy of nanoshell metal
Ef=5.53 eV (Fermi energy of gold), temperature T =
300 K, internal radius of the nanoshell a = 40nm,
nanoshell thickness b−a=100 nm. Our calculations show
that for T = 300 K factor

(
1− e−

h̄ω
θ

)−1

is negligible for
practical values of photon energy (it could be replaced
with 1). The graphs show that we can leave only 2 ad-
dends in sum (49). The dependence of relative oscillating
addend ∆σ1/σ

0
1 , where ∆σ1 is the second addend in (48),

from photon energy Fermi energy ratio ν for 2 addends
in (49) is given in Fig. 2. An analogous dependence for
b − a = 50nm and 5 addends in (49) is shown in Fig. 3
(for b− a = 50 nm we can leave 5 addends in sum (49)).
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Fig. 3. Relative oscillation addend (for 5 addends in (49))
as a function of incident photon energy — Fermi energy
ratio. Graph is given for Fermi energy of nanoshell metal
Ef=5.53 eV (Fermi energy of gold), internal radius of the
nanoshell a =40 nm, nanoshell thickness b − a=50 nm. In-
terval of ν is chosen so that ∆σ1 is small relative to σ0

1 and
ν = h̄ω/Ef � 1.

RESULTS AND REMARKS

In this work the expression for optical conductivity of
spherical metal nanoshell is obtained. Quantization of
electron energy in nanoshells is shown to lead to the ap-
pearance of an oscillating dependence of optical conduc-
tivity from the external electromagnetic field frequency.
Oscillations also depend on thickness of metal shell and
Fermi energy. An explicit expression of oscillating ad-
dends for optical conductivity is obtained.

To perform summation over discrete quantum indices
we used the Poisson summation formula and, as electron-
ic spectrum of nanoshells possess quasi-one-dimensional
nature, the problem of the investigation of oscillations
of optical conductivity becomes mathematically analo-
gous with that of the investigation of de Gaaz–van Alfen
oscillations.

In the calculus of optical conductivity according to
(41) we left only those addends for which s = s′ (be-
cause cosines oscillate quickly). But situations when
s
√
Ef + h̄ω ≈ s′Ef , so such s and s′ cannot be neglect-

ed, are, in principle, possible.
And finally, we point out that the electric field E0 that

figures in this work is the one inside the conductor. It can
differ from that outside (see, for example, [1]).

APPENDIX

For thin shells ((b − a)/b � 1) equation (3) can be
solved in another way, if we neglect the dependence of
coefficients from (3) from the coordinate the interval
a ≤ r ≤ b. Instead of (3) we can write

R′′ +
2
b
R′ +

(
k2

nl −
l(l + 1)
b2

)
R = 0. (A1)

The solution of (A1) can be written in the form

R = C1e
λ1r + C2e

λ2r, (A2)

where

λ1,2 = −1
b
± iη ≡ −1

b
± i

√
k2

nl −
l2 + l + 1

b2
. (A3)

After taking into consideration (A3) expression (A2) can
be transformed:

R = const · e− r
b sin (ηr + ϕ0) . (A4)

Condition R(a) = R(b) = 0 gives

η =
πn

b− a
, ϕ0 = − πna

b− a
. (A5)

From the definition of η using (A3) we obtain

η2 = k2
nl −

l2 + l + 1
b2

. (A6)

So

k2
nl = η2 +

l2 + l + 1
b2

=
(

πn

b− a

)2

+
l2 + l + 1

b2
(A7)

and, consequently, eigennumbers of energy equal

Enl =
h̄2

2m0
k2

nl =
h̄2

2m0

((
πn

b− a

)2

+
l2 + l + 1

b2

)
.

(A8)
This result is similar to the result obtained in [5].
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Отримано вираз для оптичної провiдности сферичної металевої оболонки як функцiї внутрiшнього й
зовнiшнього радiуса нанооболонки й вiдношення енерґiї фотона до енерґiї Фермi. Показано, що квантуван-
ня енерґiї електрона в нанооболонках зумовлює появу осциляцiйної залежности оптичної провiдности вiд
частоти свiтла. Отримано явний вигляд осциляцiйних складових в оптичнiй провiдностi.
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