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We investigate a nonparaxial vector generalization of the scalar 3D+1 Nonlinear Schrödinger
Equation (NSE). In spherical presentation it is possible to reduce this equation to usual scalar
Nonlinear Schrödinger Equation in respect to t, r =

p
x2 + y2 + z2 coordinates. Thus, all periodical

and solitary solutions of the NSE will generate 3D+1 vector solitons. Such reduction is possible
only when the spatial dependence of the nonlinear refractive index is of the type of n2

∼= (x2 +
y2)χ(3)/r0. Exact analytical 3D+1 soliton solutions are obtained for the first time in media of
spatial dependance of the nonlinear refractive index.
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I. INTRODUCTION

The nonlinear effects in optics are of great interest in
physics of the nonlinear waves. There are no difficulties
now to obtain picosecond or femtosecond optical pulses
with equal duration in x, y and z directions. The prob-
lems with so generated light bullets arise in the process
of their propagation in dispersive nonlinear media. As it
was established in [1–3], the scalar paraxial approxima-
tion (no dispersion in the direction of propagation), is in
very good accordance with the experimental results in
the transparency region of a dispersive Kerr type media.
The paraxial approximation, used in the derivation of
the scalar 2D+1 nonlinear Schrödinger equation (NLS),
does not include the second derivative of the amplitude
function in the direction of propagation. The result in the
case of a linear propagation (pulses of small intensity) is:
the generated optical bullets at short distance are trans-
formed in optical disks, with large transverse and small
lengthwise dimension. Only in some special cases, as op-
tical pulses near the Langmuir frequency or near some of
the electronic resonances [4], the sign of the dispersion is
negative and the scalar 2D+1 NLS becomes 3D+1 NLS
ones [5–7]. The main result for the propagating of local-
ized optical pulses in the dynamics of scalar 3D+1 NLS
case may be generalized as self-focusing and as instabili-
ties of the pulses. Optical bullets under the dynamics of
3D+1 scalar NLS are investigated also in relation to a
different kind of the nonlinearity [8, 9]. Generation of a
new kind of 2D and 3D optical pulses, so called optical
vortices, has recently become a topic of considerable in-
terest. Generally, the optical vortices are such a type of
optical pulses, which admit angular dependence of elec-
trical field or helical phase distribution. The electrical
field or intensity is zero also in the center of the vor-
tices. The original scalar theory of optical vortices was
based on the well known 2D+1 NSE [10–12]. In a self

focusing regime of propagation optical rings, can be gen-
erated but they are modulationally unstable [13,14]. One
alternative way of stabilizing optical vortices in 2D and
3D case, using saturable [15,16] or cubic–quintic [17,18]
nonlinearity, was also discussed. On the other hand, the
experiments with optical vortices show that polarization
and the vector character of the electric field play an im-
portant role in the dynamics and the stabilization of the
vortices [19]. To investigate these cases we are going to a
vector version of 3D+1 NSE. Solitons in the 3D+1 Vector
NLS (VNLS) case, when the nonlinear refractive index is
proportional to x2+y2 are obtained in [20]. Such a profile
can be obtained by doping in some new polymers [21].
The analysis of transient optical response of large organ-
ic molecules allows to estimate the nonlinear nonlocal
susceptibility of such material. The spatial dependance
of χ(3) can be reached by diffusion effects in semiconduc-
tor technology [22] also. The oldest method for realizing
such local nonlinearity variation using additional optical
field was presented in [23].

In this paper, we analyze a nonparaxial vector general-
ization of the scalar 3D+1 NLS with spatial dependance
of nonlinear refractive index. It is important, that on-
ly in this case a reduction to usual one dimensional in
t, r =

√
x2 + y2 + z2 coordinate NLS is possible, and we

obtain for the first time exact analytical soliton solutions.

II. BASIC EQUATIONS

The vector 3D+1 NLS (VNLS) describing the propa-
gation of light in a dispersive media of cubic nonlinearity
and in coordinate system, which moves with group ve-
locity v = ∂ω/∂k is [4] :

−i
∂A
∂t

+
v

2k0
∆⊥A− v3k′′0

2
∂2A
∂z2

(1)
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+
n2k0v

2
|A|2 A = 0,

where ∆⊥ = ∂2

∂x2 + ∂2

∂y2 , k is the carrying wave num-
ber, k′′ = ∂2ω/∂k2 is the dispersion of the group ve-
locity and n2 is the nonlinear refractive index. As was
pointed above, we investigate the case when the nonlin-
ear refractive index depends on the transverse coordi-
nates n2 = (x2 + y2)χ(3)/r0. We investigate the case of
negative dispersion when k′′ < 0. Defining the rescaled
variables:

A = A0A′; x = r0x
′; y = r0y; z = r0z

′; t = t0t
′, (2)

and constants:

α = k0r
2
0/t0v; β = v2k′′k0; γ = k2

0r
2
0n2 |A0|2 /2, (3)

equation (1) can be transformed in the following (the
primes are not written):

−iα
∂A
∂t

+
1
2
∆⊥A− 1

2
β

∂2A
∂z2

(4)

+ γ(x2 + y2) |A|2 A = 0.

The linear parameter β in transparency region of the
media is usually one or two order of magnitude smaller
(β ∼ 10−2). We will investigate the case, when β = −1
(negative dispersion) and γ = 1. The constant α has a
typical value of α ≈ 102 (α ≈ r0k0). Using these val-
ues, for the negative dispersion region the equation (4)
becomes:

−iα
∂A
∂t

+
1
2
∆⊥A +

1
2

∂2A
∂z2

+ (x2 + y2) |A|2 A = 0. (5)

If the vector field satisfies the condition divA = 0 equa-
tion (6) can be written as:

−iα
∂A
∂t
− 1

2
(∇× (∇×A)) + (x2 + y2) |A|2 A = 0. (6)

We are solving the nonlinear vector equation (6) in
spherical coordinates, r, θ, ϕ and it is convenient to write
the system in a physical basis. We point here that main
difficulties to solve this vector system (6) arise from the
first term of the radial differential operators of the kind
of:

2
r

∂

∂r
+

∂2

∂r2
. (7)

We try to solve the next problem: Is there such a type of
vector fields, where after applying twice the vector mul-
tiplication by nabla the first (singularity) term in (7) will
disappear? Then we can transform equation (6) to usual

NLS in respect to ‘r’ coordinate.
We find three types of vector which satisfy the con-

ditions for the singularity term vanishing. In spherical
coordinates r, θ, ϕ they are:

A = [0, B(r, t)/r sin θ, 0], (8)

A = [0, 0, B(r, t)/r sin θ] (9)

and their superposition:

A = [0, B(r, t)/r sin θ, B(r, t)/r sin θ]. (10)

We should note here that these vector fields (8)–(10) sat-
isfy also the condition divA = 0. Substituting the vector
fields (8)–(10) in the nonlinear vector equation (6) the
next equation on θ and ϕ components of the field A is
obtained (the others are zero):

−iα
∂B
∂t

+
1
2

∂2B
∂r2

+ |B|2 B = 0. (11)

Equation (11) is one dimensional in ‘r’ direction NLS.
Hence all solutions (periodical and solitary) of NLS, di-
viding dy r sin θ, generate the solutions of equation (6).
In Cartesian coordinates the one-soliton solutions of (6),
which are generated by the vector fields of kind of (8)-
(10) and NLS (11) are the following:

1. For the vector field of kind (8):

Ax(x, y, z, t) = α sech(αr)
zx

r

1
(x2 + y2)

exp(−iαt/2), (12)

Ay(x, y, z, t) = α sech(αr)
zy

r

1
(x2 + y2)

exp(−iαt/2), (13)

Az(x, y, z, t) = −α sech(αr)
r

exp(−iαt/2). (14)

2. For the vector field of kind (9):

Ax(x, y, z, t) = −α sech(αr)
y

(x2 + y2)
exp(−iαt/2), (15)

Ay(x, y, z, t) = α sech(αr)
x

(x2 + y2)
exp(−iαt/2), (16)

Az(x, y, z, t) = 0. (17)

3. For the vector field of kind (10):

Ax(x, y, z, t) = α sech(αr)
(zx− ry)
r(x2 + y2)

exp(−iαt/2), (18)

Ay(x, y, z, t) = α sech(αr)
(zy + rx)
r(x2 + y2)

exp(−iαt/2), (19)
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Az(x, y, z, t) = −α sech(αr)
r

exp(−iαt/2), (20)

where r =
√

x2 + y2 + z2.
The Ax component is shown in Fig. 1. when following

the expression (15). The solutions are not determined in
the origin and they do not admit a limit when r → 0.
We should note, that this is illusive because when r → 0,
then n2 → 0 too as n2 depends from x2 + y2. This leads
to linearization of the equation (6) and the problem is
divided into two parts:

Fig. 1.

i) when r � r0 we obtain a linear equation from (6).
ii) when r ≈ r0 we solve the full nonlinear equation

(6). This corresponds to a solving of the following math-
ematical problem:

−iα
∂B
∂t

+
1
2

∂2B
∂r2

+ |B|2 B = 0 (21)

when r ≈ r0 and

−iα
∂B
∂t

+
1
2

∂2B
∂r2

= 0 (22)

when r � r0. We look for smooth conditions of sew up
for the function B and its first derivative in ‘r’ direction
on the boundary. The equation (22) admits the solutions
of the kind of:

B(r, t) = A0 sin(αr) exp(iαt/2), (23)

B(r, t) = A0 exp(−αr) exp(−iαt/2). (24)

which are finite when r → 0 and there are possibility
for smooth conditions at some fixed r and α. So, the full
solution is a sum of a solution of linear problem near the
origin of the localized waves and a solving of the nonlin-
ear problem when it reaches r ≈ r0.

III. DISCUSSION AND SUMMARY

Recently, experimental evidence of 2D spatial solitons
has been reported in [22], [24] using various physical
mechanisms of the optical nonlinearity. One of these
mechanisms is a diffusion [22] along z (or x,y). The dif-
fusion effects may be due to the optically excited charge
carriers, which become extremely mobile and they trav-
el significant distances before the recombination. This
gives a spatial dependence of the nonlinear refractive in-
dex upon the coordinate. When both bounding media
are nonlinear, then the minimum power which is neces-
sary for the existence of the nonlinear asymmetric guided
wave, increases with the diffusion length growth [22]. We
should note that the observations of the three dimension-
al solitons because of large nonlinearity in polymers JEN
is also perspective.

In conclusion, we present nonlinear media of suitable
symmetry, experimental evidence of three-dimensional
solitons in these materials being possible. The proposed
reduction of the VNLS allows the find various exact local-
ized soliton solutions and to apply the inverse scattering
method to the 3D case. Following the results of this pa-
per the main application of these optical 3D+1 solitons
is in realizing of stable waveguide propagation of laser
pulses in dielectric nonlinear media and in semiconduc-
tor compounds.
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ТРИВИМIРНI СОЛIТОНИ В СЕРЕДОВИЩАХ IЗ ПРОСТОРОВОЮ ЗАЛЕЖНIСТЮ
НЕЛIНIЙНОГО РЕФРАКТИВНОГО IНДЕКСУ

Л. М. Ковачев, Н. I. Каймаканова1, Д. Й. Дакова1, Л. I. Павлов2, Р. А. Русев2, С. Ґ. Донев2, Р. Л. Павлов2
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Вивчено непараксiяльне векторне узагальнення скалярного нелiнiйного 3D+1 рiвняння Шрединґера
(НРШ). У сферичному зображеннi можна звести це рiвняння до звичайного скалярного нелiнiйного рiв-
няння Шрединґера щодо координат t, r =

p
x2 + y2 + z2. Тому всi перiодичнi та одиничнi НРШ давати-

муть (3D+1) векторнi розв’язки. Таке зведення можливе лише коли просторова залежнiсть нелiнiйного
рефрактивного iндексу є типу n2

∼= (x2 + y2)χ(3)/r0. Точнi аналiтичнi (3D+1)-розв’язки вперше отримано в
середовищах iз просторовою залежнiстю нелiнiйного рефрактивного iндексу.
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