ВИМІРЮВАННЯ ДОВЖИН ХВИЛЬ В ОБЛАСТІ ВИПРОМІНЮВАННЯ МОЛЕКУЛИ XeCl

М. Г. Зубрілін, С. І. Осипов, І. А. Павлов, О. А. Парнюк

Інститут фізики НАН України, проспект Науки, 46, Київ, 03028, Україна, (Отримано 1 листопада 2004 р.)

Описано методику прецизійних вимірювань довжин хвиль у ділянці спонтанного та вимушеного випромінювання молекули XeCl (перехід $B^2\Sigma_{1/2}^+ \rightarrow X^2\Sigma_{1/2}^+$) 3030–3100 Å. Наведено ділянку спектра випромінювання лампи (Fe) з порожнистим катодом у цьому спектральному діяпазоні. Обернена лінійна дисперсія спектрографа становила 0,53 Å/мм. Виміряно довжини хвиль 131 ідентифікованої лінії, включаючи лінії інших елементів, наявних у цьому спектрі, і довжини хвиль у спектрі випромінювання електророзрядного XeCl лазера в електронноколивальних переходах 0–0, 0–1, 0–2 і 0–3.

Ключові слова: електророзрядний ексимерний лазер, спектр випромінення, атлас довжин хвиль.

PACS number(s): 29.30.-h, 33.20.Lg, 42.55.Lt

вступ

Прецизійні вимірювання довжин хвиль у спектрах випромінювання дають змогу одержувати інформацію про молекулу, що випромінює (наприклад, розраховувати коливальні константи й аналізувати потенційні криві нижнього та верхнього станів молекул [1, 2]). Як відомо, у спектрі випромінювання XeCl лазера при низьких тисках проявляється тонка структура, яка зумовлена обертанням молекул [3, 4]. Унаслідок малої величини обертальної сталої й особливо коливального кванта в Х-стані, а також перекриття обертальних гілок різних коливальних рівнів, відстані між лініями тонкої структури у спектрах випромінювання молекули XeCl становлять близько десятих часток см⁻¹. Слід також урахувати наявність у природній активній суміші дев'яти ізотопів ксенону (п'ять з яких можуть давати помітний внесок у спектр випромінювання) і двох ізотопів хлору. Для розділення тонкої структури у спектрах випромінювання та вимірювання довжин хвиль потрібна спектральна апаратура з високою роздільною здатністю, а також відомий еталонний спектр, який має багато ліній у цій ділянці.

Спектр випромінювання заліза широко застосовується для ідентифікації довжин хвиль досліджуваних спектрів від ІЧ ділянки до вакуумного ультрафіолету. Вигляд спектра заліза суттєво залежить від типу й параметрів розряду. У літературі відомо багато атласів спектра заліза й таблиць спектральних ліній. Однак більшість відомих джерел орієнтовано на дуговий спектр заліза [5, 6]. У багатьох випадках для прецизійних вимірювань застосовують спектр заліза в тліючому розряді лампи з порожнистим катодом, оскільки він дає вужчі лінії. Дуговий спектр і спектр лампи з порожнистим катодом суттево відрізняються зовнішнім виглядом. Багато ліній в обох спектрах мають різну інтенсивність, крім того, деякі лінії, які наявні в одному спектрі, — відсутні в іншому і навпаки. Атласів спектра заліза лампи з порожнистим катодом у відомій нам літературі немає, а за таблицями спектральних ліній, які є [7, 8], іноді важко ототожнити лінії спектра, що використовується. Крім того, у спектрі випромінювання лампи з порожнистим катодом наявні лінії інших елементів, які, як правило, відсутні в таблицях [5–8] і були б корисними при вимірюванні довжин хвиль досліджуваного спектра. У цій статті описано методику високоточних вимірювань довжин хвиль у ділянці 3030–3100 Å і виміряно довжини хвиль тонкої структури у спектрах випромінювання електророзрядного XeCl лазера.

ТЕХНІКА ЕКСПЕРИМЕНТУ

Як еталон у роботі використано спектр лампи з порожнистим катодом (Fe) типу ТСПК. Напруга на електродах лампи в робочому режимі становила 190 В. Струм — 29 мА. Лампу розташовано безпосередньо перед щілиною спектрографа ДФС-8. В експериментах використано дифракційні ґратки 1800 штр/мм та 2400 штр/мм. При ширині вхідної щілини 15 мкм, що приблизно відповідає нормальній ширині щілини, у другому порядку спектра ґратки 2400 штр/мм роздільна здатність становила 0.01 Å. При цьому обернена лінійна дисперсія була 0.529 Å/мм, що дає змогу без утрати роздільної здатности використовувати для фотореєстрації крупнозернисту плівку типу РФ. Для усунення накладання першого порядку спектра використано світлофільтр УΦС-1.

Плівки зі спектрами випромінювання сканували на сканері UMAX PowerLook 1000 з оптичною роздільною здатністю 2400 dpi, після чого обробляли за допомогою комп'ютера.

В експериментах використано електророзрядний лазер с автоматичною іскровою передйонізацією. Об'єм розрядного проміжку становив 38 × 1.5 × 0.8 см³

(1.5 см — міжелектродна відстань). У резонаторі використано зовнішні дзеркала з напиленням тугоплавкими окислами на плоскопаралельні пластини з кварцу марки КУ-1 товщиною 8 мм. Такі ж пластинки були вікнами камери. В експериментах використано "щільний" резонатор. Коефіцієнти відбивання дзеркал — $R_1 \approx 100 \ \%, R_2 \approx 97 \ \%. Як донор хлору використано$ CCl₄ і фреон-12 (CF₂Cl₂), буферний газ — гелій.

МЕТОДИКА Й РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТІВ

На рис. 1 як ілюстрацію, подано (зверху вниз) фотографії спектрів випромінювання заліза при збудженні дуговим розрядом [5], лампи з порожнистим катодом та спектр ґенерації XeCl лазера.

Рис. 1. (зверху вниз) спектр випромінювання заліза при збудженні дуговим розрядом [5] і спектр випромінювання лампи з порожнистим катодом та спектр ґенерації нашого XeCl лазера (P = 0.2 атм).

Вимірювати довжини хвиль у досліджуваному спектрі можна, маючи дисперсійну криву плівки, яка внаслідок процесів, що не контролюються при обробці плівки, різна для кожного знімка. Для цього фотоплівку зі спектром випромінювання XeCl лазера і спектром випромінювання лампи з порожнистим катодом сканували на просвіт, й одержаний рисунок зберігали в точковому форматі ВМР. Далі цей рисунок за допомогою програми Mathcad перетворювали в прямокутну матрицю чисел, де кожний елемент матриці $A_{i,j}$ являє собою ступінь почорніння (від 0 до 255) точки с координатами i, j. Після цього вирізали ту частину матриці, яка відповідала спектрові заліза, і знаходили середнє значення кожного стовпця. У результаті ми мали одномірний масив A_i , де кожній точці з координатою i відповідає її почорніння A_i . На графіку залежности $A_i(i)$ визначали координати максимумів, які відповідають координатам спектральних ліній заліза.

Наступним етапом є ідентифікація ліній, у результаті чого кожному i повинно відповідати визначене значення довжини хвилі. Використовуючи спектр ґенерації ХеСІ лазера, атлас дугового спектра заліза та спектр ртуті, за допомогою лінійної інтерполяції наближено визначено довжини хвиль деяких ліній заліза. Однак лінійна інтерполяція, як відомо, дає велику похибку, особливо в тих випадках, коли вимірювані лінії перебувають далеко від відомих. Тому наступним етапом було одержання функції, яка описує дисперсійну криву. Визначити цю функцію можна за стандартними програмами. Ми використовували програму Mathcad. За координатами ліній спектра заліза й довжинами хвиль цих ліній будували криву з найменшою середньоквадратичною похибкою й описували функцією у вигляді полінома деякого степеня *п*. У нашому випадку найбільша точність досягалася при n = 2. Однак оскільки поліном другого степеня не може описати функцію одночасно додатної й від'ємної кривизни, доводилося методом проб розбивати криву на ділянки, які мають кривизну одного знака, і описувати ці ділянки окремо. Ця функція, яка описує дисперсійну криву, дозволяє за заданими координатами ліній визначати їхні довжини хвиль. На рис. 2 показано відхилення значень довжин хвиль, які розраховані за одержаною формулою, від табличних значень. Середньоквадратичне відхилення становить 0.0026 Å.

Рис. 2. Відхилення виміряних довжин хвиль від літературних даних.

З використанням одержаної дисперсійної кривої виміряно довжини хвиль у спектрі випромінювання електророзрядного XeCl лазера при низькому тиску активного середовища (табл. 1).

Структура у спектрі випромінювання XeCl лазера зумовлена проявом обертань в електронноколивальних переходах 0–0, 0–1, 0–2 і 0–3. Докладнішу інформацію про обертальну структуру молекули XeCl можна одержати з використанням ізотопно збагачених ксеноном і хлором активних середовищ.

Цей метод вимірювання довжин хвиль має переваги порівняно з вимірюванням відстаней між лініями за допомогою компаратора. Хоча компаратор дозволяє вимірювати відстані з мікронною точністю (при нашій оберненій дисперсії це відповідає точності 0.00053 Å), за його допомогою неможливо точно визначити координату максимуму почорніння на плівці, тобто координату лінії.

На рис. З зображено спектр випромінювання лампи з порожнистим катодом (Fe) типу ТСПК. Вертикальними штрихами позначено лінії, для яких було проведено вимірювання. Кожна п'ята лінія відзначена порядковим номером лінії.

Рис. 3. Спектр випромінювання лампи з порожнистим катодом. Вертикальними штрихами відзначено лінії, для яких проведено вимірювання.

У таблиці 2 подано довжини хвиль у повітрі спектральних ліній, які були виміряні та ідентифіковані у спектрі випромінювання лампи з порожнистим катодом. У колонці 4 вказано літературні джерела, за допомогою яких ідентифіковано лінії.

висновки

Отже, описана методика дає змогу з великою точністю (не гірше 0.003 Å) вимірювати довжини хвиль. Ідентифіковано та виміряно довжини хвиль спектральних ліній, які випромінює лампа з порожнистим катодом (Fe) типу ТСПК у спектральній ділянці 3030–3100 Å. З ідентифікованих 131 ліній більш ніж 50 ліній належать атомам та йонам інших елементів (Ne, Ni, Al, Co).

Рис. 3 можна використати як атлас для спектрального діяпазону 3030–3100 Å.

Виміряно довжини хвиль у спектрі випромінювання XeCl лазера на електронно-коливальних переходах 0–0, 0–1, 0–2 та 0–3, структура у яких зумовлена проявом обертання молекул. Для докладнішого вивчення молекули XeCl потрібно дослідити спектри люмінесценції та ґенерації із застосуванням моноізотопів ксенону і хлору.

Автори висловлюють подяку М. П. Чорноморцеві та В. І. Лукашенкові за корисні дискусії.

N	$\lambda, \text{\AA}$	N	$\lambda, \text{\AA}$	N	$\lambda, \text{\AA}$	N	$\lambda, \text{ Å}$	N	$\lambda, \text{\AA}$
1	3084.252	16	3082.353	31	3080.712	46	3078.974	61	3077.713
2	3084.107	17	3082.248	32	3080.624	47	3078.898	62	3077.596
3	3083.954	18	3081.935	33	3080.532	48	3078.838	63	3077.488
4	3083.813	19	3081.862	34	3039.258	49	3078.738	64	3077.298
5	3083.761	20	3081.814	35	3080.354	50	3078.655	65	3077.209
6	3083.681	21	3081.742	36	3080.254	51	3078.618	66	3076.832
7	3083.530	22	3081.697	37	3080.136	52	3078.53	67	3076.729
8	3083.480	23	3081.529	38	3080.046	53	3078.467	68	3076.651
9	3083.295	24	3081.376	39	3080.003	54	3078.307	69	3076.481
10	3083.182	25	3081.318	40	3079.785	55	3078.237	70	3076.318
11	3083.009	26	3081.165	41	3079.687	56	3078.157	71	3076.195
12	3082.814	27	3081.040	42	3079.302	57	3078.074		
13	3082.556	28	3080.968	43	3079.166	58	3077.984		
14	3082.493	29	3080.892	44	3079.099	59	3077.896		
15	3082.443	30	3080.800	45	3079.039	60	3077.796		

Таблиця 1. Довжини хвиль випромінювання XeCl лазера при тиску активного середовища P = 0.2 атм.

No	$\lambda, \text{\AA}$	Елемент	Літ.	No	$\lambda, \text{ Å}$	Елемент	Літ.
1	2	3	4	1	2	3	4
1	3100.840	Fe I	5	67	3060.536	Fe I	5
2	3100.665	Fe I	5.8	68	3059.089	Fe I	5.8
3	3100.301	Fe I	5.8	69	3057.638	Ni I	10
4	3099.964	Fe I	5.8	70	3057.443	Fe I	5.8
5	3099.891	Fe I	5.8	71	3057.395	Ne I	9
6	3099.104	Ni I	10	72	3055.266	Fe I	5
7	3098.186	Fe I	5	73	3054.676	Ne II	9
8	3097.121	Ni I	10	74	3054.318	Ni I	10
9	3095.269	Fe I	5	75	3053.427	Fe I	5
10	3095.104	Ne II	9	76	3053.067	Fe I	5
11	3094.903	Fe I	5	77	3050.825	Ni I	10
12	3094.007	Ne II	9	78	3050.477	Ne II	9
13	3093.880	Fe I	5	79	3048.996		
14	3093.806	Fe I	5	80	3048.890	Co I	10
15	3093.356	Fe	5	81	3048.451	Fe	5
16	3092.903	Ne II	9	82	3047.601	Fe I	5
17	3092.838	Al I	10	83	3047.051	Fe I	5
18	3092.783	Fe I	5	84	3045.559	Ne II	9
19	3092.709	Al I	10	85	3045.079	Fe I	5
20	3092.097	Ne II	9	86	3045.007	Ni I	10
21	3091.576	Fe I	5	87	3044.086	Ne II	9
22	3089.596	Co I	10	88	3044.005	Co I	10
23	3088.165	Ne II	9	89	3042.664	Fe I	5.8
24	3086.778	Co I	10	90	3042.485	Co I	10
25	3083.742	Fe I	5.8	91	3042.020	Fe I	5
26	3082.617	Ne II	9	92	3041.739	Fe I	5.8
27	3082.151	Al I	10	93	3041.636	Fe I	5.8
28	3081.338	Ne II	9	94	3040.426	Fe I	5.8
29	3080.743		_	95	3039.585	Ne II	9
30	3080.107	Fe	5	96	3039.316	Fe I	5
31	3079.989	Fe I	5	97	3037.930	Ni I	10
32	3079.178	Ne I	9	98	3037.776	Fe I	5
33	3078.878	Ne I	9	99	3037.718	Ne II	9
34	3078.678		_	100	3037.388	Fe I	5.8
35	3078.586	Ne	9	101	3036.965		
36	3078.429	Fe I	5	102	3035.920	Ne II	9
37	3078.013	Fe I	5	103	3035.737	Fe I	5
38	3077.634	Fe	5	104	3034.440	Co I	10
39	3077.166	Fe II	5	105	3031.863	Ni I	10
40	3076.973	Ne I	9	106	3031.634	Fe I	5
41	3076.434		_	107	3031.212	Fe I	5
42	3076.355	Ne II	9	108	3030.787	Ne II	9
43	3075.721	Fe I	5.8	109	3030.604	Fe I	5
44	3074.434	Fe	5	110	3030.325		
45	3074.144	Fe I	5	111	3030.148	Fe I	5.8
46	3073.977	Fe I	5	112	3029.235	Fe I	5
47	3072.652	Ne II	9	113	3028.865	Ne II	9
48	3072.341	Co I	10	114	3028.702	Ne II	9
49	3071.529	Ne II	9	115	3027.014	Ne II	9
50	3071.087	Ne II	9	116	3026.461	Fe I	5

No	$\lambda, \mathrm{\AA}$	Елемент	Літ.	No	$\lambda, \text{\AA}$	Елемент	Літ.
51	3070.889	Ne II	9	117	3026.368	Co I	10
52	3068.173	Fe I	5	118	3025.843	Fe I	5
53	3067.947	Fe I	5	119	3025.638	Fe I	5
54	3067.244	Fe I	5.8	120	3025.276	Fe I	5
55	3067.117	Fe I	5.8	121	3024.026	Fe I	5.8
56	3067.001	Fe I	5	122	3021.552	—	—
57	3066.480	Fe I	5	123	3021.076	Fe I	5
58	3064.620	Ni I	10	124	3020.642	Fe I	5
59	3064.368	Co I	10	125	3020.493	Fe I	5
60	3063.926	Fe I	5	126	3019.290	Fe I	5
61	3063.694	Ne I	9	127	3019.149	Ni I	10
62	3063.299	Ne II	9	128	3018.990	Fe I	5.8
63	3062.490	Ne II	9	129	3018.134	Fe I	5
64	3062.232	Fe II	5	130	3017.623	Fe I	5.8
65	3061.817	Co I	10	131	3017.544	Co I	10
66	3060.979	Fe I	5				

Таблиця 2. Довжини хвиль випромінювання лампи з порожнистим катодом (Fe).

- J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, J. Chem. Phys. 64, 2484 (1976).
- [2] A. Sur, A. K. Hui, J. Tellinghuisen, J. Mol. Spectrosc. 74, 465 (1979).
- [3] І. С. Горбань, М. Г. Зубрілін, А. С. Кучеров, М. П. Чорноморець, Укр. фіз. журн. 29, 596 (1984).
- [4] Н. Г. Басов, И. С. Горбань, Н. Г. Зубрилин и др., ДАН СССР, 281, 64 (1985).
- [5] Таблицы стандартных справочных данных. Спектр железа. Область 2320–3500 Å ГСССД 68-84. (Издательство стандартов, Москва, 1986).
- [6] С. К. Калинин, В. Л. Марзуванов, С. М. Мухтаров,

Атлас дугового спектра железа от 2280 до 6430 Å. Академия наук Казахской ССР. (Издательство "Металлургия", 1965).

- [7] H. M. Crosswhite, J. Res. Nat. Bur. Stand. A. Phys. Chem. **79 A**, 17 (1975).
- [8] G. Nave, R. C. M.Learner, A. P. Thorne, C. J. Harris, Opt. Soc. Am. B, 8, 2028 (1991).
- [9] А. Р. Стриганов, Г. А. Одинцова, Таблицы спектральных линий атомов и ионов (Энергоиздат, Москва, 1982).
- [10] А. Н. Зайдель, В. К. Прокофьев, С. М. Райский, Таблицы спектральных линий (Наука, Москва, 1977).

MEASUREMENTS OF WAVELENGTHS OF XeCl MOLECULE IN THE EMISSION RANGE

N. G. Zubrilin, S. I. Osypov, I. A. Pavlov, A. A. Parnyuk Institute of Physics of NAS of Ukraine, 46 Nauky Ave., Kyiv, 03028, Ukraine e-mail: zubrilin@iop.kiev.ua

A method for precise characterization of wavelengths for spontaneous and stimulated emission of molecules XeCl 3030–3100 Å (transition $B^2\Sigma_{1/2}^+ \rightarrow X^2\Sigma_{1/2}^+$) is described. The region of the emission spectrum for iron hollow cathode lamp in this spectral range is shown. Reciprocal linear dispersion of the spectrograph is 0.53 Å/mm. This method allows accuracy of wavelength characterization better than 0,003 Å. Wavelength for 131 identified lines are characterized, including lines for other elements (atoms and ions of Ne, Ni, Al, Co), which are present in this spectrum. Wavelength for emission spectrum for XeCl laser with electric discharge excitation are characterized for electron-oscillation transitions 0–0, 0–1, 0–2, and 0–3.

The obtained emission spectrum for hollow iron cathode lamp could be applied as the atlas for the spectral range 3030–3100 Å.