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We investigate the thermodynamics of phase transitions in pseudospin-electron model with strong
coupling, and focus on the role of fluctuation effects in the vicinity of transitions. We analyze the
behaviour of grand canonical potential, and find the mean value of physical quantities as well as
root-mean-square fluctuations of an internal field within the generalized random phase approx-
imation (GRPA), the Onyszkiewicz type approximation, and self-consistent gaussian fluctuation
approximation. Within all of these approximations we obtain the possibility of first order phase
transitions with a jump of pseudospin mean value and reconstruction of electron spectrum. The
final results are presented in the form of phase diagrams in plane temperature–longitudinal field
Tc−h, and we find that the fluctuation effects cause quantitative and, in some special cases, qualita-
tive changes on the phase diagrams near a critical point. We show that taking the fluctuations into
account may also lead to narrowing the temperature range where modulated (chessboard) phase
can be found.
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I. INTRODUCTION

Properties of pseudospin-electron model (PEM) have
attracted much attention in connection with the in-
vestigations of systems characterized by strong short-
range correlations between the conducting electrons, and
strong coupling of the electrons with local anharmonic
lattice vibrations. Such a consideration arises from the
analysis of distinguishing features of copper-oxide high-
Tc superconductors (HTSC). These are novel materials
with a layered perovskite-type structure, and experimen-
tal data have pointed out (i) strong electron correlations
related to the Hubbard type interactions in the con-
ducting bands; (ii) strong anharmonicity in the vibra-
tions of apical oxygen ions along the axis normal to the
copper-oxide layers; and another important feature, (iii)
significant correlation between the position of the api-
cal oxygen ions and the energy of the electron states in
the conducting planes. To be concrete, we can mention
experimental analysis of EXAFS [1] and Raman scat-
tering measurements [2,3] on YBa2Cu3O7 crystal where
two equilibrium positions of the apical oxygen ions have
been observed, that can point out the presence of a local
double-minimum potential well. Experimental data giv-
en by Cava et al. [4] have shown the existence of a large
electron-vibration coupling between the electrons in the
conducting CuO2 planes and the positions of the apical
oxygen ions in the double-well potential.

In the case when two equilibrium positions of anhar-
monic ions really exist it is reasonable to use a pseu-
dospin formalism; the pseudospin variable Sz

i = ±1/2
defines these two positions. Then, strong local coupling of

the anharmonic mode with the conducting electrons can
be modeled by a pseudospin-electron approach. Starting
from Müller’s work [5] and series of Hirsch’s papers [6,7]
the pseudospin-electron approximation is applied to the
YBaCuO type systems. Recently a similar model was
used by Matsushita [8, 9] to investigate proton-electron
interactions in molecular and crystalline systems with
hydrogen bonds. In such systems the pseudospin formal-
ism describes two equilibrium positions of a proton in
the hydrogen bond. It is worth noting also that in one
special case, as we shall explain below, the PEM was be-
lieved to be similar to the Falicov–Kimball models used
for binary alloys.

The Hamiltonian of the PEM has the following form:

H =
∑

i

Hi +
∑

ijσ

tijc
+
iσcjσ , (1)

where the single-site part is given by

Hi =−µ(ni↑ + ni↓) + Uni↑ni↓

+g(ni↑ + ni↓)S
z
i − hSz

i − ΩSx
i . (2)

Here, c+
iσ , ciσ are σ-spin electron creations and annihi-

lation operators and niσ = c+
iσciσ is the electron occu-

pation number. This Hamiltonian (1),(2) consists of the
kinetic energy (tij term) together with (i) the energy of
electron correlation (U term), (ii) the energy of electron-
pseudospin coupling (g term), (iii) the energy of anhar-
monic potential asymmetry that is involved in the model
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as a longitudinal filed acting on the pseudospins (h term),
and (iv) the energy of tunnelling splitting involved as
a transversal filed acting on the pseudospin subsystem
(Ω term). Hence, with respect to the YBaCuO system,
the PEM describes the electronic states of CuO2 planes
within the Hubbard model, and anharmonic vibrations of
the apical oxygen ions within the pseudospin formalism.
The term gniσSz

i determines the change in the energy
of an electron on the site i due to the transition of the
apical oxygen ion on the same site from one minimum
(Sz

i = + 1

2
) of the anharmonic potential to the other one

(Sz
i = − 1

2
). The magnitude of coupling g is several elec-

tron volts due to the strong oxygen polarizability of the
CuO2 planes.

Based on model (1,2) a possible connection between
the superconductivity and lattice instability of ferroelec-
tric type in the HTSC systems has been discussed in the
literature [7, 10]. Investigations of the electron spectrum
and electron statistics of the PEM have been performed
by Stasyuk et al. [11], who have used the technique
of double-time temperature-dependent Green’s functions
within the Hubbard-I approximation. A series of works
[12, 13] has been carried out where pseudospin 〈SzSz〉,
mixed 〈Szn〉, and charge 〈nn〉 correlation functions were
calculated within a generalized random phase approxi-
mation (GRPA) in the limit of infinite single-site electron
correlations (limit of U → ∞ in the Hamiltonian (1,2)).
Some authors have shown a possibility of divergence of
the correlation functions at certain temperature, and in-
terpreted this result as a manifestation of dielectric in-
stability or ferroelectric type anomaly. They have also
established the tendency to forma a spatially modulated
charge and pseudospin ordering. In the next work [14]
within the same (GRPA) approach the instability with
respect to the phase separation in the PEM with U → ∞
has been also marked. We want to emphasize that in the
above mentioned works authors investigated the insta-
bilities of the correlation functions with respect to the
formation of different phases, but the questions concern-
ing the existence, transitions and thermodynamical sta-
bilities of the phases were not considered.

The great progress in the understanding of the ther-
modynamic properties of the systems described by the
PEM has been connected with detailed investigations of
a simplified PEM [15,16]. The model Hamiltonian (1),(2)
in the case of the zero electron correlation U = 0 and tun-
nelling splitting Ω = 0 was originally considered in [15]
within the framework of dynamical mean field approxi-
mation (DMFA), and in [16] within the self-consistent
GRPA scheme. An important feature of this simplified
PEM is that the model does not contain the direct
electron-electron and the direct pseudospin-pseudospin
on-site interactions, but an effective many-body pseu-
dospin interaction via the subsystem of conducting elec-
trons exists. Hence, from the theoretical point of view,
the simplified PEM gives a good opportunity to clari-
fy a role of the retarded nondirect interaction between
the pseudospins in the appearance of phase transitions
and phase separations, as well as in the modification of
electron spectrum.

As we have already mentioned the PEM Hamiltonian
(1,2) allows one to describe the binary alloy type model.
In order to prove this statement we introduce projective
operators on pseudospin states P±

i = 1/2±Sz
i ; then the

Hamiltonian of the binary alloy model can be obtained
by substitution P+

i = pi, P−
i = 1 − pi where pi is the

concentration of one component of the binary alloy, and
1 − pi is the concentration of the second one. The main
difference between these two models is in the way (i) how
an averaging procedure over projection operators P± is
performed: thermal statistical averaging in the case of the
simplified PEM, and configurational averaging for the bi-
nary alloy; and (ii) how the self-consistency is achieved:
fixed value of the longitudinal field h for the simplified
PEM, and fixed value of the component concentration p
for the binary alloy.

Besides, if we remove in (1),(2) spin indices and rewrite
Hamiltonian of the simplified PEM in terms of operators
of the mobile di (ciσ = di) and localized fi (P+

i = f+
i fi,

P−
i = 1 − f+

i fi) electrons, we shall get the Hamiltonian
of the Falicov–Kimball (FK) model

HFK =
∑

ij

tijd
+
i dj + U

∑

i

d+
i dif

+
i fi

−µf

∑

i

f+
i fi − µd

∑

i

d+
i di, (3)

where the field h/2 in the PEM plays the role of chemical
potential for the localized f -electrons in the FK model
(µf term), the parameter µ + g/2 in the PEM plays the
role of a chemical potential for the mobile d-electrons in
the FK model (µd term), and the coupling constant g in
the PEM describes strong local interaction between the
mobile and localized particles in the FK model (U term).

Detailed investigations of the simplified PEM within
the self-consistent GRPA approach have been made in
the series of works [16–18]. This novel approach was orig-
inally proposed in work [16] for the simplified PEM and
then was generalized for the Hubbard type models with
an infinite on-site repulsion [19]. The self-consistent GR-
PA allows us to calculate the grand canonical potential,
pseudospin mean value, electron concentration together
with the correlation functions. We have shown that this
approximation does not violate the electron-hole sym-
metry in the model, and all obtained phase diagrams
completely satisfy the internal Hamiltonian symmetry of
the simplified PEM: µ → −µ, h → 2g − h, n → 2 − n,
Sz → −Sz.

In our works [16–18] we identified two different regimes
in which the system can exist:

1) the µ = const regime; it is supposed that electrons of
other structural elements, which are not included explic-
itly into the model, play the role of thermostat ensuring
the fixed value of the chemical potential µ (despite the
possible changes of temperature and parameters of the
model). In this case a statistical ensemble of the system is
described by the grand canonical one. Our investigations
have shown that in the µ = const regime the first order
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phase transitions between the different uniform phases

take place when the chemical potential is located within
the lower or upper electron subband of spectrum. Ob-
tained within the self-consistent GRPA scheme phase
diagrams quite sufficiently coincide with corresponding
ones calculated in the DMFA [15]. Further, the compari-
son of the grand canonical potential for the uniform and
modulated chessboard phases has led to the conclusion
that at low temperature the modulated phase is thermo-
dynamically stable when the chemical potential is placed
in the gap of electron spectrum or in the lower (upper)
subband close to the gap. In the latter case the inter-
band transitions in the effective many-body interaction
prevail over intraband ones. We have shown possibilities
of the second and first order phase transitions between
the uniform and modulation phases. Our investigations
have disclosed that the electronic band structure is deter-
mined by the pseudospin mean value, as expected, and a
jump of this mean value at the first order transition point
is accompanied by the electron spectrum reconstruction.

Note that our results extended the existing ones for the
FK model [20], where authors have made an assumption
that the transitions to the chessboard phase are always
continuous. We have also analyzed the temperature be-
haviour of the correlation functions, and shown the im-
possibility of an incommensurate phase appearing in the
strong-coupling limit (g � t) of the simplified PEM. The
same conclusion has been obtained in work [21] for the
FK model an other thermodynamic regime.

2) the n = const regime; this situation is more custom-
ary at the consideration of electron systems, and means
that now the chemical potential is a function of T , h,
electron concentration, etc. The analysis of the chemical
potential and free energy behaviours versus the electron
concentration has shown the existence of the phase sep-

aration in the electron and pseudospin subsystems. We
have revealed two possibilities (i) phase separation into
the states with the uniform (but different) pseudospin
mean values and electron concentrations; and (ii) sepa-
ration into the uniform phase and the modulated chess-
board phase. The former one is caused by the leading
role of the intraband transitions, while the latter one,
i.e. the appearance of the phase with the chessboard
modulation, has been explained as a result of the inter-
band transitions (effects associated with the many-body
interaction). We have also investigated the behavior of
the pseudospin subsystem in the separated phases, and
changes in the electron spectrum and in the density of
states of the electron bands. At one time, the competi-
tion between the phase separation and charge-density-
wave ordering has been obtained for the FK model in
the strong coupling case within the DMFA [20]. But the
comprehensive analysis of phase stability was not made.
Therefore, in the work [20] (just as it has been done in
other works [22–24]) phase diagrams for the FK mod-
el within the DMFA have been obtained by using the
Maxwell construction, or based on the analysis of corre-
lation functions divergences. Such investigations are not
enough to build the correct phase diagrams in the case
when phase separation to the regions with different mod-

ulated phases can exist; the investigation of the free en-
ergy are required (see our paper [18]).

In the present paper we continue our consideration
of the simplified PEM, and calculate the thermodynam-
ic and correlation functions by taking into account the
fluctuations of the effective self-consistent field [25]. We
emphasize that our study of the simplified PEM is not
expected to explain some of the observed properties of a
real system; in fact, this work stands only as a theoretical
study of the role of the fluctuation effects on the ther-
modynamics of phase transitions in the model. The only
regime of the fixed chemical potential value (µ = const)
is considered (actually in this regime the possibility of
phase transitions has been established). We consider the
case of the strong local interaction (g � t), and discuss
the applicability of the schemes previously used to the
model. For this purpose the results of the investigations
within the self-consistent GRPA [16] and the DMFA [15]
are presented together with the recent examinations (i. e.
within the scheme that allows one to take the fluctuation
effects into account).

Our paper is organized as follows. In order to put the
paper in a self-contained form a short review of the self-
consistent GRPA is presented in Section II, and several
new results calculated within the GRPA scheme are pre-
sented and compared with the corresponding ones ob-
tained within the DMFA [15]. In Section III, we present
the self-consistent gaussian fluctuation approximation
for the PEM, and give the simplified version of this ap-
proximation (analogous to the approximation proposed
by the Onyszkiewicz [26, 27] for spin models). Then, in
Section IV we present an examination of numerical re-
sults calculated within the gaussian fluctuation method
and the Onyszkiewicz method, including a comparison
with the GRPA results. Finally, in Section V we summa-
rize our paper and give conclusions.

II. SELF-CONSISTENT GRPA METHOD

For the first time GRPA method was formulated
by Izyumov et al. [28], and authors have applied this
method to the Hubbard and the t − J models. The
GRPA allows one to investigate the magnetic susceptibil-
ity of the system, and takes into account the same topo-
logical class of diagrams (so-called loop diagrams) as the
traditional random phase approximation (RPA) does.
The main difference between the GRPA and the RPA
is a way of choosing the basic states: splitt (Hubbard-
I) band states in the GRPA and pure band states in
the RPA. The question how to calculate the thermody-
namic quantities within the GRPA has been open until
recent works [16,19]. In this section we briefly show how
to construct the self-consistent GRPA for the simplified
PEM. An important feature of this method is that it can
be used to obtain both thermodynamic and correlation
functions [16].

We perform our calculations in the strong coupling
case (g � t) using the single-site states as the basic
ones. The formalism of electron annihilation (creation)
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operators

aiσ = ciσP+
i , ãiσ = ciσP−

i , (4)

a+
iσ = c+

iσP+
i , ã+

iσ = c+
iσP−

i , (P±
i =

1

2
± Sz

i )

acting on a site with certain pseudospin orientation is
introduced [16]. Within the proposed representation (4),
the initial Hamiltonian of the simplified PEM (i.e. Hamil-
tonian (1,2) in the limit U = 0, Ω = 0) has the form

H = H0 + Hint =
∑

iσ

{

ε1niσ + ε2ñiσ − h

2
Sz

i

}

+
∑

ijσ

tij(a
+
iσajσ+a+

iσ ãjσ+ã+
iσajσ+ã+

iσ ãjσ). (5)

Here

niσ = a+
iσaiσ = c+

iσciσP+
i ,

ñiσ = ã+
iσ ãiσ = c+

iσciσP−
i (6)

are the electron occupation operators acting on a site
with a certain pseudospin orientation, and

ε1,2 = −µ ± g/2 (7)

are the energies of the single-site states.

The perturbation expansion in the electron transfer
Hint (5) leads to the infinite series of terms containing
the averages of the T -products of the aiσ , ãiσ , a+

iσ , ã+
iσ

operators. The evaluation of such averages is made us-
ing the appropriate Wick’s theorem [16] formulated in
the spirit of the Wick’s theorem for the Hubbard opera-
tors [29]. This theorem gives an algorithm reducing the
average of the product of n creation (annihilation) op-
erators to the sum of averages of n − 2 operators. The
result is expressed in terms of the products of nonper-
turbed Green’s functions and averages of the projection
operators P±

i , the latter are calculated by means of the
semi-invariants expansion.

Nonperturbated electron Green’s function is

g(ωn) = 〈gi(ωn)〉,

gi(ωn) =
P+

i

iωn − ε1

+
P−

i

iωn − ε2

, (8)

where ωn =
2n + 1

β
π for n ∈ Z are the Fermi Matsubara

frequencies. Then, in the uniform case 〈Sz
i 〉 = 〈Sz〉, we

can write down a single-electron Green’s function within
the Hubbard-I type approximation as

= Gk(ωn) =
(

g−1(ωn) − tk
)−1

. (9)

In [16] we have shown that the Hubbard-I type approx-
imation does not violate the particle-hole symmetry of
the simplified PEM, i. e. our results are invariant with
respect to the transformation µ → −µ, h → 2g − h,
n → 2 − n, Sz → −Sz.

Poles of the Green’s function Gk(ωn) determine the
electron spectrum

εI,II(tk) = −µ +
tk
2

± 1

2

√

g2+4tk〈Sz〉g+t2k. (10)

Two branches εI(tk) and εII(tk) of the spectrum form two
electron subbands always separated by a gap at g 6= 0.
Reconstruction of the electron spectrum (10) takes place
with the change of the pseudospin mean value 〈Sz〉.

In the self-consistent GRPA scheme the diagrammatic
series for the pseudospin mean value can be presented in
the following form [16]

〈Sz〉 = − + _1
2! − ...,

(11)

where the corresponding diagrammatic notations are
used: − Sz, − gi(ωn), wavy line is the Fourier
transform of the hopping integral tk. The semi-invariants
are represented by ovals and contain δ-symbols on site
indices.

In Eq. (11) we take the renormalization of the ba-
sic semi-invariants in the spirit of the mean field type
approach, i. e. we insert independent loop fragments in
the all ovals. It should be noted that within the self-
consistent GRPA scheme in the sequence of diagrams
the connections between any two loops by more than one
semi-invariant are omitted. The analytical expression for
the loop is the following

=
2

N

∑

n,k

t2k
g−1(ωn) − tk

(

P+
i

iωn − ε1

+
P−

i

iωn − ε2

)

= β(α1P
+
i + α2P

−
i ), (12)

where expressions for symbols α1,2 are defined according to the written formula (12).
It is easy to show, that summation of the diagrammatic series (11) for the pseudospin mean value is equivalent to
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averaging with the mean-field type Hamiltonian

HMF=
∑

i

{ε1(ni↑+ni↓) + ε2(ñi↑+ñi↓) − ySz
i }, (13)

where expression

y=h + α2 − α1 = h +
2

Nβ

∑

n,k

t2k
g−1(ωn) − tk

(

1

iωn − ε1

+
1

iωn − ε2

)

(14)

=h +
2

N

∑

k

gtk
εI(tk) − εII(tk)

[nF(εI(tk)) − nF(εII(tk))], nF(ε) =
1

1 + eβε

determines an internal effective self-consistent field

formed by retarded many-body interaction between
pseudospins via conducting electrons.

Finally, the equation for the pseudospin mean value in
the uniform case is found to be

〈Sz
l 〉 = 〈Sz〉MF =

Tr
(

Sz
l e−βHMF

)

Tr (e−βHMF)
= b(y), (15)

where

b(y) =
1

2
tanh

{

β

2
y + ln

1 + e−βε1

1 + e−βε2

}

. (16)

An analytical expression for mean value of particle num-
ber operator can be presented in the following form [16]

〈n〉 =
2

N

∑

k

[

nF(εI(tk)) + nF(εII(tk))
]

−[1+2〈Sz〉]nF(ε2) − [1−2〈Sz〉]nF(ε1). (17)

A diagrammatic equation on the pseudospin correlator
〈SzSz〉q within the self-consistent GRPA can be written
as

〈SzSz〉q = −=

(18)

Eq. (18) differs from the corresponding one for the Ising
model in the RPA by the replacement of a direct ex-
change interaction by the electron loop which describe
the many-body retarded interaction between pseudospins

via conducting electrons

Πq =

=
2

N

∑

n,k

tk
1 − tkg(ωn)

tk+q

1 − tk+qg(ωn)

×
(

1

(iωn−ε)
− 1

(iωn−ε̃)

)2

=
2

N

∑

n,k

Λ2
nt̃n(k)t̃n(k+q), (19)

where

Λn =
g

(iωn+µ)2−g2/4
,

t̃n(k) =
tk

(1 − g(ωn)tk)
. (20)

The first term in Eq. (18) is the zero-order correla-
tor renormalized due to the inclusion of the mean-field
type contributions (‘single-tail’ parts) in all basic semi-
invariants. Such contributions coming from the effec-
tive pseudospin interaction and, therefore, are calculated
with the help of the Hamiltonian HMF (Eq. (13))

−= + 1
2!
− −... = 〈SzSz〉MF
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=
Tr

(

SzSze−βHMF

)

Tr (e−βHMF)
=

1

4
− 〈Sz〉2MF. (21)

In the analytical form, solution of Eq. (18) turns out to be

〈SzSz〉q =
1/4− 〈Sz〉2

1 + 2

N

∑

n,k

Λ2
nt̃n(k)t̃n(k + q)(1/4− 〈Sz〉2) , (22)

and we find that the pseudospin correlator is different
from zero only in a static case. This comes from the fact
that the pseudospin operator commutes with the initial
Hamiltonian.

Within the same approach, the grand canonical poten-
tial can be written in the following analytical form [16]

ΩGRPA = − 2

Nβ

∑

n,k

ln(1−tkg(ωn))

− 2

Nβ

∑

n,k

g(ωn)t2k
g−1(ωn) − tk

− 1

β
ln Tr(e−βHMF). (23)

We can verify that all the above presented physical quan-
tities can be derived from the expression on the grand
canonical potential

dΩ

d(−µ)
= 〈n〉, dΩ

d(−h)
= 〈Sz〉,

d〈Sz〉
d(βh)

= 〈SzSz〉q=0. (24)

This demonstrates the thermodynamic consistence of the
proposed GRPA scheme.

In the µ = const regime we use the grand canoni-
cal ensemble, and, thus, the equilibrium conditions are
determined from the minimum of the grand canonical
potential Ω. In our works [16–18] we have performed
detailed numerical examination of the grand canonical
potential, the pseudospin mean value, and the pair pseu-
dospin correlation function. We have found that in the
case when the chemical potential µ is placed within the
gap of the electron spectrum, the uniform phase becomes
unstable with respect to fluctuations with the wave vec-
tor q = (π, π) [18]. As a result, the possibility of sec-
ond order phase transitions between the uniform and
chessboard phase exists (at the change of temperature
or field). Next, we have established that the first or-
der phase transitions between different uniform phases
(bistability effect) at the change of temperature T or
field h can be realized in the case when the chemical po-
tential µ is placed within the electron subband (lower or
upper).

In the present paper time we study the simplified PEM

in the latter case, i. e. in the case when the chemical po-
tential is fixed and placed within the electron subband.
Thus, we analyze the thermodynamics of the first order
phase transitions, which are characterized by the jump
of the pseudospin mean value, see figure 1a. As we men-
tioned above, the electron band structure is determined
by the pseudospin mean value. Therefore, the jump like
change of the pseudospin mean value in the first order
transition point is accompanied by a rapid reconstruc-
tion of the electron spectrum, figure 1b (see [16, 17] for
details).

a)

0.04 0.06 0.08 0.10 0.12
-0.5

0.0

0.5

h

〈〈〈〈Sz〉〉〉〉

b)

0.04 0.06 0.08 0.10 0.12

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

µµµµ    = − = − = − = − 0.5

h

εεεε

Fig. 1. Field dependences of a) pseudospin mean value,
and b) electron bands boundaries; in the µ = const regime
when the chemical potential is placed in the lower subband
of the electron spectrum. (The self-consistent GRPA scheme;
g = 1, tk=0 = 0.2, µ = −0.5, T = 0.0132).

It is worth noting that the simplified PEM was con-
sidered in work [15] within the DMFA scheme. In fig-
ures 2a,b we show the phase diagrams of the first order
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transitions within the self-consistent GRPA and DMFA
methods. In figures 1a,b and 2a,b we present the case
when the chemical potential is placed in the center of the
lower electron subband µ = −0.5. If the chemical poten-
tial is placed in the upper subband, the results transform
according to the symmetry of the model

µ → −µ, h → 2g − h,

n → 2 − n, Sz → −Sz. (25)

a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.000

0.005

0.010

0.015

0.020

h

Tc

b)

TC

h

Fig. 2. Tc − h phase diagrams a) within the self-consistent
GRPA, b) within the DMFA [15]. Solid and dashed lines in-
dicate the first order phase transition line and boundaries
of the phase stability (spinodal lines), respectively (g = 1,
tk=0 = 0.2, µ = −0.5).

One can see a quite sufficient coincidence of shapes of
the first order phase transition curves (thick solid line in
figures 2a,b). But, unlike the phase diagram in figure 2b
obtained within the DMFA, the boundaries of the phase
stability region calculated in the self-consistent GRPA
scheme possess the same slope. Thus, we can find a re-
gion where the vertical line twice crosses the boundary
of the phase stability region (figure 2a, the GRPA calcu-
lation). The analysis of the 〈SzSz〉 correlator behaviour
in this region (i.e.the field h = 0.0875, the chemical po-
tential µ = −0.5) has shown that with the decrease of
temperature a high temperature phase becomes unstable
with respect to fluctuations with the wave vector q = 0 at
the lower crossing point of the vertical line and boundary
of the phase stability region (dashed line in figure 2a).
Similar results were obtained previously in works [12,13]

for temperature behaviour of the correlation functions in
the case of infinite single-site electron correlation U → ∞
within the GRPA method.

At the end of this paragraph let us give a short discus-
sion of another thermodynamical regime which is more
customary at the consideration of the electron system.
In the regime of the fixed value of the electron concen-
tration n = const we use the canonical ensemble, and
the equilibrium conditions are determined by the mini-
mum of free energy (see our works [16, 18] or paper [15]
for more details). In this regime the first order phase
transition with a jump of the order parameter and elec-
tron concentration transforms into a phase separation in-
to the regions with the different electron concentrations
and pseudospin mean values. For the first time the insta-
bility with respect to the phase separation in the PEM
was marked in work [14], where authors have obtained
such an instability within the GRPA scheme in the limit
of the infinite single-site electron correlation.

III. A SELF-CONSISTENT GAUSSIAN
FLUCTUATION APPROXIMATION

The above considered approximation takes into ac-
count only the contributions of the mean field type. In
this paragraph of the paper we present a self-consistent
gaussian fluctuation approximation. This approximation
allows one to calculate the thermodynamic and correla-
tion functions, and takes into account the fluctuations
of the self-consistent mean field [25]. As we shall show
below, the self-consistent gaussian fluctuation approx-
imation can be easily reduced to a more suitable one
for numerical calculations. The Onyszkiewicz method
that takes into account a restricted, in a certain way,
class of diagrams. Such a method has been proposed
by the Onyszkiewicz for spin models with a direct in-
teraction [26, 27], and yields a much better description
of critical properties of the spin models in the whole
range of temperature in comparison with other analytical
schemes.

In constructing a higher order approximation that
takes into account the fluctuation effects of the mean
field, we use the self-consistent GRPA scheme as the
zero-order approximation. This means that all ‘single-
tail’ parts of the diagrams (11),(21) have been al-
ready summed up, i. e. all semi-invariants are calculat-
ed using the distribution with the effective Hamiltonian
HMF (13). Now all these semi-invariants are represent-
ed graphically by thick ovals, and they contain the δ-
symbols on site index

= 〈Sz〉MF = b(y),

= 〈SzSz〉cMF =
∂b(y)

∂βy
,

= 〈SzSzSz〉cMF =
∂2b(y)

∂(βy)2
. (26)
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As an approximation that goes beyond the self-
consistent GRPA scheme we use (similarly to [30, 31])
the method of summation of the so-called ‘double-tail’
diagrams. A corresponding diagrammatic series for the
pseudospin mean value can be written as

〈Sz〉 = (27)

+ _1
2!= 1

2
_ + 1

2
_

2 +... 1
1!
_

The diagrammatic equation for the pseudospin correlator

〈SzSz〉q within the adopted here approximation is sim-
ilar to the corresponding one within the self-consistent
GRPA scheme (18)

〈SzSz〉q = (28)

−= ,

but now all semi-invariants in this equation are renor-
malized due to the insertion of the ‘double-tail’ parts

Ξ = +...= + 1
2
_  1

1!
_

2
_1
2!

+ 1
2
_ . (29)

The contribution that corresponds to the ‘double-tail’ fragment of the diagrams can be written in the following
analytical form

X = =
22

N3

∑

n,n′

∑

k,k′

∑

q

Λ2
nt̃n(k)t̃n(k−q)〈SzSz〉qΛ2

n′ t̃n′(k′)t̃n′(k′+q), (30)

where we used the notation from Eq. (19). The equa-
tion on the pseudospin correlation function (28) has the
following solution

〈SzSz〉q =
Ξ

1 + 2

N

∑

n,k

Λ2
nt̃n(k)t̃n(k+q)Ξ

. (31)

Since the pseudospin correlator (31) is a frequency inde-
pendent function, in the expression for X (30) we have
two independent sums over the internal Matsubara fre-
quencies, that allows one (by decomposition into the sim-
ple fractions) to perform the summation over all internal
frequencies.

The diagrammatic series (27) and (29) can be ex-
pressed in the following analytical forms

〈Sz〉 =
1√

2πX

+∞
∫

−∞

exp
(

− ξ2

2X

)

b(y + ξ) dξ, (32)

Ξ =
1

X
√

2πX

+∞
∫

−∞

exp
(

− ξ2

2X

)

ξb(y + ξ) dξ. (33)

As one can see the contribution of diagrammatic series
with the ‘double-tail’ parts corresponds to the average

with the Gaussian distribution, where X can be inter-
preted as a root-mean-squares (r.m.s.) fluctuation of the
internal mean field around its mean value y (14). Thus,
we obtain a self-consistent set of the equations for the
pseudospin mean value (32) and the r.m.s. fluctuation
parameter (30) together with the expression for the pseu-
dospin correlation function (31).

The grand canonical potential within the adopted
gaussian fluctuation approximation is given by the di-
agrammatic series

βΩ = βΩGRPA (34)

+ 1
2
_ { 1

3
_− +...1

2
_ {

− 1
2
_

− −1
2
_  1

1!
_ _1

2!
1
2
_

2 −...

The corresponding analytical expression is

Ω = ΩGRPA

+
1

2

1√
2πX

+∞
∫

−∞

e−
ξ2

2X ξb(y+ξ) dξ
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− 1

2

+∞
∫

−∞

{

1−erf

( |ξ|√
2X

)

}

sign(ξ)b(y+ξ) dξ

− 1

2
Ξ

2

N

∑

n,k

Λ2
nt̃n(k)2

+
1

2
ln

(

1 + Ξ
2

N

∑

n,k

Λ2
nt̃n(k)2

)

. (35)

This grand canonical potential satisfies the stationary
conditions

dΩ

dX
= 0,

dΩ

d〈Sz〉 = 0, (36)

which are equivalent to Eqs. (30),(32). The consistency
of the approximation used for the pseudospin mean val-

ue, the pseudospin correlation function, and the grand
canonical potential can be checked explicitly using the
relations

dΩ

d(−h)
= 〈Sz〉, d〈Sz〉

d(−hβ)

∣

∣

∣

X=const
= 〈SzSz〉q=0.

(37)

In the limit of vanishing fluctuations our results go over
into the corresponding ones obtained within the self-
consistent GRPA scheme.

The analytical scheme presented in this paragraph
(i. e. the gaussian fluctuation approximation), and used
for the simplified PEM can be easily reduced to the
scheme proposed by the Onyszkiewicz for the pure spin
models. For this purpose we consider the renormaliza-
tion by using the simplest pseudospin correlation func-
tion that involves the ‘double-tail’ fragments of the dia-
grams, i. e. the first term in Eq. (28)

+...= + 1
2
_  1

1!
_

2
_1
2!

+ 1
2
_

(38)

Therefore, in all diagrammatic expressions (27),(29),
(30), and (34) we replace the shadowed oval into the
new one defined by Eq. (38). Within the framework of
this simplification the grand canonical potential satisfies
the stationary conditions (36) and can be written in the
following analytical form

Ω = ΩGRPA +
1

4
ΞX

−1

2

+∞
∫

−∞

{

1 − erf

( |ξ|√
2X

)

}

sign(ξ)b(y + ξ) dξ.

The diagrammatic series for the pseudospin mean value
has the same structure as the above presented ones (27),
and the final set of equations on the pseudospin mean
value and the r.m.s. fluctuation parameter within the
Onyszkiewicz type approximation can be written down
as

〈Sz〉 =
1√

2πX

+∞
∫

−∞

exp
(

− ξ2

2X

)

b(y + ξ) dξ, (39)

X =





2

N

∑

k,n

Λ2
nt̃

2

n(k)





2

× 1

X
√

2πX

+∞
∫

−∞

exp
(

− ξ2

2X

)

ξb(y + ξ) dξ.

IV. PHASE DIAGRAMS WITHIN THE
GAUSSIAN FLUCTUATION APPROACH

In this paragraph we present the results of numerical
solution of equations for the pseudospin mean value and
the r.m.s. fluctuation parameter within all the above de-
scribed methods (the self-consistent GRPA, the gaussian
fluctuation approximation, and the Onyszkiewicz type
approximation). We consider the regime of fixed chemical
potential value (µ = const), and deal with the simplified
PEM on a square lattice with the nearest-neighbour hop-
ping. The stable state of the system is described by the
solution that corresponds to the global minimum of the

grand canonical potential ; metastable states are related
to the solutions that correspond to the local minima.

60



THERMODYNAMIC PROPERTIES OF PSEUDOSPIN-ELECTRON MODEL. . .
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b)
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0.02 T

h

Fig. 3. Tc − h phase diagrams within the a) gaussian fluc-
tuation methods, b) self-consistent GRPA scheme (g = 1,
tk=0 = 0.2, µ = −0.4).

We note that there are no particular differences be-
tween the results obtained within the framework of the
self-consistent gaussian fluctuation approximation (by
solving the set of Eqs. (30),(32)) and the Onyszkiewicz
type approximation (by solving the set of Eqs. (39),(40)).
The representative results are shown on the first order
phase diagram (figure 3a) where thick solid line is the
result of the calculations within the Onyszkiewicz type
approximation, and thin solid line is the result of the
gaussian fluctuation approximation. We can see only a
minor quantitative difference between these two phase
transition lines.

In general, for a wide range of the model parameters
we have found that both ‘full’ the self-consistent gaussian
fluctuation approximation and its ‘simplified version’ the
Onyszkiewicz type approximation give the same topolog-

ical type and slope of phase diagrams, a similar field and
temperature behaviours of the pseudospin mean value
and the grand canonical potential. Therefore, to show
the influence of the fluctuation effects on the thermody-
namic properties of the simplified PEM we present all
the results within the Onyszkiewicz type approximation.
With this latter approximation it is simple to complete
numerical calculations, this approximation leads to the
lowest value of temperature in the critical point, and rep-
resents all features of the self-consistent gaussian fluctu-
ation approximation.

a)

0.00 0.02 0.04

-0.4

-0.2

0.0

T

〈〈〈〈Sz〉〉〉〉

b)

0.00 0.02 0.04
0

1

2

3

4

T

X

Fig. 4. Temperature dependences of (a) pseudospin mean
value and (b) r.m.s. fluctuation parameter (g = 1, tk=0 = 0.2,
µ = −0.4, h = 0.204). Thick solid lines correspond to ther-
modynamically stable states, other lines denote metastable
and unstable ones.

In figures 3a and 3b we present the first order phase
transition diagrams within the different approximations
in the case when the chemical potential is fixed and
placed within the lower electron subband µ = −0.4. As
one can see, taking the fluctuations into account (fig-
ure 3a) does not change qualitatively the results obtained
within the self-consistent GRPA scheme (figure 3b). Such
a situation is typical in the case when the chemical po-
tential is placed within the lower/upper subband of the
electron spectrum except for some special cases described
below. The quantitative changes due to fluctuations are
important in the region of the critical point, fluctuations
lead to a significant lowering of the critical point temper-
ature: T = 0.018 for the self-consistent GRPA method
(in figure 3b), and T = 0.0145 for the Onyszkiewicz type
approximation (in figure 3a).

Typical temperature behaviours of the pseudospin
mean value and the r.m.s. fluctuation parameter with-
in the Onyszkiewicz type approximation are presented
in figures 4a,b for the fixed value of the field h = 0.204
and for the chemical potential µ = −0.4 (same as in fig-
ures 3). At increasing temperature the pseudospin mean
value jumps from the branch of low temperature phase
to the branch of high temperature phase in the phase
transition point T = 0.0109, and the r.m.s. fluctuation
parameter rapidly changes its magnitude by about seven
times.
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A certain qualitative change takes place when the
chemical potential is placed near the center of the elec-
tron subband (µ = −g/2 = −0.5).

0.000.000.000.00 0.040.040.040.04 0.080.080.080.08 0.120.120.120.12 0.160.160.160.16
0000....00000000

0000....01010101

0000....02020202

h

Tc

Fig. 5. Tc−h phase diagrams within the Onyszkiewicz type
approximation (g = 1, tk=0 = 0.2, µ = −0.5).

Comparing with the self-consistent GRPA or the
DMFA (figure 2a,b) a change of slope of the phase tran-
sition curve is observed (figure 5). The vertical line on
the Tc −h phase diagram twice crosses the phase transi-
tion curve (thick solid line in figure 5), and, hence, there
exists a possibility of two sequential first order phase
transitions with the change of temperature (reentrance).
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Fig. 6. Tc −h phase diagrams within the A) self-consistent
GRPA: (a) µ = −0.588, (b) µ = −0.6, (c) µ = −0.613; B)
the Onyszkiewicz type approximation (g = 1, tk=0 = 0.2,
µ = −0.6).
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Fig. 7. Field dependences of the pseudospin mean value
a) above the triple point (T = 0.01370), b) below the triple
point (T = 0.01316) (g = 1, tk=0 = 0.2, µ = −0.6).
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Fig. 8. Field dependences of the r.m.s. fluctuation param-
eter a) above the triple point (T = 0.01370), b) below the
triple point (T = 0.01316) (g = 1, tk=0 = 0.2, µ = −0.6).
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Fig. 9. Field dependences of the grand canonical potential
a) above the triple point (T = 0.01370), b) below the triple
point (T = 0.01316) (g = 1, tk=0 = 0.2, µ = −0.6).
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Fig. 10. Temperature dependences of the pseudospin mean
value a) h = 0.01467, b) h = 0.01495 (g = 1, tk=0 = 0.2,
µ = −0.6).

Further, we find that for the different values of the
chemical potential a slope of the phase transition curve
can vary: see figure 6A where we present phase tran-

sition curves for three deferent chemical potential val-
ues in the self-consistent GRPA calculations. Within the
region, where the change of phase curve slope occurs
(µ ' −0.6±0.005) a possibility of three sequential phase
transitions of the first order at change of temperature is
observed (phase diagram in figure 6A(b)). In this region
the qualitative changes, i.e. the change of the topolog-
ical type of the first order phase transition curve and
the appearance of the triple point are observed when
we include the gaussian fluctuations in calculations (see
figure 6B). Therefore, the fluctuation effects become sig-
nificant when the chemical potential has a value within
the mentioned range. This serves to note that the de-
scribed situation occurs also in the case when the chem-
ical potential is placed within the other region of the
lower electron subband µ ' −0.425± 0.005.

The field dependences of the pseudospin mean value
and the r.m.s. fluctuation parameter in the tempera-
ture vicinity of the triple point are presented in figures 7
and 8, both above and below the triple point. The phase
transition points (denoted as a, b and c points in fig-
ures 7,8) correspond to the crossing points of different
branches of the grand canonical potential Ω(h) in fig-
ure 9. Figures 7a–9a demonstrate the situation the with
temperature above the triple point. We find two sequen-
tial phase transitions: at the point a the transition to
the intermediate phase with the pseudospin mean value
Sz ∼ 0 and large fluctuations occurs; then at increasing
field one has the transition to the phase with Sz ' 0.2
and small fluctuations. The existence of the stable inter-
mediate solution can be interpreted as a manifestation of
instability with respect to phase modulation. Below the
triple point the intermediate state is metastable, and we
see one phase transition (figures 7b–9b). In figures 10a,b
we present the temperature dependences of the pseu-
dospin mean value at the fixed field from the left and
right of the triple point. In both cases three sequential
first order phase transitions are found.

Let us recall that in all above — presented figures we
considered the case when chemical potential is placed
within the lower electron subband. We established that
the self-consistent gaussian fluctuation approximation
and the Onyszkiewicz type approximation do not vio-
late the electron-hole symmetry in the simplified PEM.
Therefore, if the chemical potential is placed in the up-
per subband our results transform according to the men-
tioned above electron-hole symmetry (25) of the initial
Hamiltonian.

V. SUMMARY AND DISCUSSION

To summarize, we have presented a theoretical investi-
gation of the simplified PEM in the strong coupling limit
(g � t). The self-consistent gaussian fluctuation approx-
imation, i. e. the approximation that takes into account
the corrections of the gaussian fluctuations to the self-
consistent GRPA, has been employed to study the first
order phase transitions in the simplified PEM. This ap-
proximation allows one to calculate the grand canonical
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potential, the pseudospin mean value together with the
pseudospin correlation function. We have also reduced
the self-consistent gaussian fluctuation approximation to
the Onyszkiewicz type approximation by taking into ac-
count the restricted class of diagrams on the analogy with
the Onyszkiewicz’s works [26,27]. The Onyszkiewicz ap-
proximation was originally proposed for the spin mod-
els, and is more suitable to perform numerical calcula-
tions. Moreover, the Onyszkiewicz approximation yields
a much better description of critical properties of the
spin models in comparison with other approaches.

We have analyzed the grand canonical potential, the
behaviour of pseudospin mean value and r.m.s. fluctua-
tion parameter within both full gaussian fluctuation ap-
proximation and restricted the Onyszkiewicz type ap-
proximation in a wide range of temperature and mod-
el parameters. Our results have demonstrated that the
Onyszkiewicz approximation does not change qualita-
tively any of the results obtained within the full gaussian
fluctuation approximation. Further, we find that the low-
est temperature in the critical points corresponds to the
Onyszkiewicz type approximation.

By comparing the results of calculations in the
mean field type approximations (self-consistent GRPA,
DMFA) with the Onyszkiewicz approximation we con-
clude that the fluctuation effects are very strong near the
critical point, and lead to the quantitative and for cer-
tain chemical potential values to the qualitative changes
in the behavior of thermodynamical functions and in the
shape of phase diagrams. We have obtained that fluctu-
ations lower the critical point temperature and shift the
corresponding value of the longitudinal field. We have
found that the triple point can appear on the phase tran-
sition curve due to the fluctuations, and the transition
to the phase with pseudospin mean value Sz ∼ 0 and
very high fluctuations occurs in the vicinity of the triple
point.

Our preliminary analysis of temperature behaviour of
the pseudospin correlation function 〈SzSz〉q (31) (with
the fixed r.m.s. fluctuation parameter) shows that the
high temperature phase become unstable with respect to
the fluctuations with the wave vector q 6= 0 in the case
when chemical potential µ is placed between the electron
subbands, i. e. in the gap of the spectrum. The maximal
temperature of instability is achieved for q = (π, π), that
indicates a possibility of phase transition into a modulat-
ed chessboard phase. This result confirms the previously
obtained one within the framework of the self-consistent
GRPA [17, 18], but taking the fluctuations into account
noticeably lowers the temperature where the instability
occurs. Therefore, we conclude that fluctuations lead to
the narrowing of the temperature range where modulat-
ed phase can be found.

In this paper we investigated possible phase transitions
in PEM within the gaussian fluctuation approximation
without the creation of super structures, and all the pre-
sented phase diagrams concern only this case (q = 0).
However, presented in the paper the gaussian fluctua-
tions method as well as the Onyszkiewicz approximation
can be used to investigate the influence of fluctuations on
the thermodynamic properties of modulated chessboard
phase just as it was done in [18] within the self-consistent
GRPA. This issue will be the subjected of a further in-
vestigation.
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ТЕРМОДИНАМIЧНI ВЛАСТИВОСТI ПСЕВДОСПIН-ЕЛЕКТРОННОЇ МОДЕЛI
В НАБЛИЖЕНI ҐАУССОВИХ ФЛЮКТУАЦIЙ

К. В. Табунщик
Iнститут фiзики конденсованих систем Нацiональної академiї наук України,

вул. Свєнцiцького, 1, Львiв, 79011, Україна

Дослiджено вплив ефектiв, пов’язаних iз флюктуацiями внутрiшнього ефективного поля на термоди-
намiку фазових переходiв у псевдоспiн-електроннiй моделi. У межах самоузгодженого методу врахування
ґауссових флюктуацiй (на основi схеми узагальненого наближення хаотичних фаз (УНХФ)), а також у
наближеннi типу Онишкевича розраховано термодинамiчний потенцiял, середнє значення оператора псев-
доспiну та величину середньоквадратичної флюктуацiї внутрiшнього ефективного поля.

Розрахунок термодинамiчних функцiй показав, що, на вiдмiну вiд спiнових моделей з прямою взаємо-
дiєю (коли повне врахування ґауссових флюктуацiй приводить до появи фiктивних фазових переходiв, а в
наближеннi Онишкевича вони вiдсутнi), у псевдоспiн-електроннiй моделi, де взаємодiя має непрямий бага-
точастинковий характер, наближення типу Онишкевича не змiнює якiсно результатiв, отриманих у межах
самоузгодженого наближення ґауссових флюктуацiй.

Порiвняння з наближенням УНХФ продемонструвало, що врахування флюктуацiй приводить до певних

змiн у розташуваннi кривої рiвноваги фаз i є найбiльш суттєвим в околi критичної точки (вiдбувається

пониження температури критичної точки i зсув вiдповiдного значення поздовжнього поля; найнижче зна-

чення критичної температури одержано в наближеннi типу Онишкевича). При певних значеннях хемiчного

потенцiялу (в дiлянцi змiни нахилу кривої рiвноваги фаз) флюктуацiї можуть приводити до якiсних змiн

у поведiнцi термодинамiчних функцiй. Так, зокрема, на польовiй залежностi найнижчої гiлки термодина-

мiчного потенцiялу виникають двi точки зламу, у яких iснує стрибок параметра порядку. Така поведiнка

вiдображається у змiнi топологiї фазової дiяграми, що проявляється, зокрема, у появi двох критичних то-

чок.

65


