ВЛАСНА ТА ДОМІШКОВА ЛЮМІНЕСЦЕНЦІЯ ЙОНІВ Ce^{3+} У КРИСТАЛАХ Cs_3LaI_6

М. С. Підзирайло, В. В. Вістовський, Г. Б. Стриганюк Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 8, Львів, 79005, (Отримано 24 березня 2004 р.)

Подано результати досліджень спектрів люмінесценції та збудження люмінесценції чистих й активованих йонами Ce^{3+} монокристалів Cs_3LaI_6 при температурах 9 і 77 К. При 9 К у спектрі власної люмінесценції кристала Cs_3LaI_6 виявлено дублетну смугу випромінювання АЛЕ (максимуми при 2.57 та 2.81 еВ). Оцінено ширину забороненої зони кристала (4.3 еВ) за положенням характерного провалу у спектрі збудження АЛЕ в екситонній ділянці.

Активування кристала йонами Ce³⁺ приводить до появи у спектрах люмінесценції як церієвого дублету (2.57 і 2.81 eB), так і смуги випромінювання екситонів, локалізованих поблизу домішкових центрів (3.60 eB). При збудженні в ділянці власного поглинання церієва люмінесценція характеризується тривалим (>150 нс) часом післясвічення, що вказує на передачу енергії збудження від матриці до домішкових центрів.

Ключові слова: спектри люмінесценції, спектри збудження люмінесценції, церієві центри, кінетика загасання, автолокалізовані екситони.

PACS number(s): 78.55.Hx, 78.40.Ha, 71.35.Cc

I. ВСТУП

Одним із напрямків пошуку нових сцинтиляторів є дослідження кристалів, активованих йонами рідкісноземельних елементів. Привабливість останніх визначається наявністю в них випромінювальних d-f переходів, які характеризуються короткими часами післясвічення та значними величинами квантового виходу люмінесценції. Недавні дослідження [1,2] виявили добрі сцинтиляційні властивості у кристалах LaX₃-Ce (X = Cl, Br, I). Показано, що квантовий вихід люмінесценції йонів Ce³⁺ у цих кристалах зростає в ряді Сl→Br→I. Однак у кристалі LaI₃–Се, який має максимальний світловихід при 9 К, спостерігають початок температурного гасіння люмінесценції йонів Се³⁺ уже при $T \approx 50$ К. Його причиною автори [2] вважають близькість розміщення збудженого стану йона Се³⁺ до зони провідности матриці LaI₃, що створює канал для безвипромінювальної релаксації електронів зі збудженого стану йона Ce³⁺. Тому цікавим є пошук La-вмісних йодидів із більшою шириною забороненої зони як матриць для активування йонами рідкісноземельних елементів. Такими матрицями можуть бути кристали типу $A_n \text{LaI}_{n+3}$ (n = 2, 3), де A — лужний метал.

Серед йонів рідкісноземельних елементів найбільше зацікавлення, з погляду використання як домішки, викликає церій. Смуги домішкового свічення йонів Ce³⁺ розміщені у ближній УФ-ділянці або у фіолетовому діяпазоні видимої ділянки, що дозволяє їх легко реєструвати з допомогою наявних фотоприймачів, які в цих ділянках мають високу чутливість. Тому ми досліджували власну та домішкову люмінесценцію кристалів Cs₃LaI₆.

II. МЕТОДИКА ПІДГОТОВКИ ЗРАЗКІВ ТА ПРОВЕДЕННЯ ЕКСПЕРИМЕНТІВ

Монокристали Cs₃LaI₆ вирощено з розплаву у кварцових ампулах з еквімолярних компонент CsI та LaI₃ методом Бріджмена-Стокбарґера. Для цього використано сіль CsI марки "ОСЧ" та синтезовану сировину LaI₃. Синтез LaI₃ відбувався в запаяній кварцовій ампулі з металевого La марки "Ч" та І2 марки "ОСЧ". Сіль LaI₃ очищали методом зонної плавки. Швидкість росту кристала становила 3 мм/год. Отримані методом Бріджмена-Стокбарґера зразки були полікристалічними з розміром монокристалічних блоків близько 2 мм³. Той факт, що монокристали погано утворюються при вирощуванні з розплаву в запаяній ампулі, може свідчити про наявність у кристалі Cs₃LaI₆ фазових переходів у ділянці температур між кімнатною й температурою плавлення або наявности інварного ефекту, як це є для кристала Cs₂ZnI₄ [3].

Спектрально-кінетичні вимірювання при $9 \le T \le 100 \,\mathrm{K}$ проводили на спектрофотометричній установці, змонтованій на базі двох дифракційних монохроматорів із використанням синхротронного випромінювання (устаткування лабораторії SUPERLUMI станції HASYLAB (DESY, Гамбург)). Зразки для вимірювань поміщали в гелієвий кріостат з реґульованою температурою (з точністю $\pm 0.2 \,\mathrm{K}$). Спектри люмінесценції і збудження люмінесценції вимірювали в часових інтервалах із затримкою щодо збуджувального імпульсу. Для швидкої компоненти післясвічення часове вікно становило 5 нс із затримкою 1.5 нс, а для повільної значення цих величин були 50 нс і 150 нс відповідно. Тривалість імпульсу синхротронного випромінювання становила 0.12 нс, а інтервал між імпульсами —

210 нс. Спектри люмінесценції та її збудження при $77 \le T \le 300$ К вимірювались на спектрофотометричній установці, змонтованій на базі подвійного монохроматора МДР-6. Спектри збудження люмінесценції будували за умови, що на кристал падає однакова кількість збуджувальних квантів по всьому спектру. У спектри люмінесценції вносили поправку на спектральну чутливість монохроматора.

III. ВЛАСНА ТА ДОМІШКОВА ЛЮМІНЕСЦЕНЦІЯ КРИСТАЛІВ Cs₃LaI₆

Під час збудження кристала Cs₃LaI₆ квантами з енергією 3.96 еВ виникає асиметрична смуга люмінесценції в ділянці 2.8–2.0 еВ (рис.1). Спектр збудження для цієї люмінесценції (рис.2) вказує на наявність смуг у ділянці 3.80; 4.30 і 4.92 еВ. Низькоенерґетичний край спектра збудження люмінесценції кристала Cs₃LaI₆ при 77 К є в ділянці 3.4 eB, що значно більше, ніж у кристалах La X_3 [1, 2]. У низькоенерґетичній смузі збудження спостерігаємо характерний провал ($E \simeq 3.85 \text{ eB}$). Він зумовлений положенням при цій енергії екситонного піка відбивання й тому є наслідком приповерхневих утрат випромінювання та втрат збуджувального світла внаслідок відбивання. Ми відносимо свічення в ділянці 2.8-2.0 eB до випромінювання автолокалізованого екситона (АЛЕ) у кристалі Cs₃LaI₆. Форма спектра цієї люмінесценції вказує на наявність у ньому двох смуг із максимумами 2.50 та 2.28 eB. Вони відповідають випромінюванню синглетного $({}^{1}\Sigma_{u}^{+} \rightarrow {}^{1}\Sigma_{g}^{+} (2.50 \text{ eB}))$ та триплетно-го $({}^{3}\Sigma_{u}^{+} \rightarrow {}^{1}\Sigma_{g}^{+} (2.28 \text{ eB}))$ АЛЕ відповідно. Крім того, у спектрі люмінесценції спостерігаємо вузькі піки (які характерні для свічення рідкісноземельних елементів) з максимумами при 2.8; 2.3 та 2.1 еВ. На підставі їхнього енерґетичного положення ми припускаємо, що ці смуги відповідають свіченню неконтрольованих домішок йонів Eu^{3+} та Pr^{3+} [4].

Рис. 1. Спектри люмінесценції кристала Cs_3LaI_6 під час збудження ультрафіолетовими квантами в екситонній смузі поглинання ($E_{36} = 3.96$ eB) при 77 К.

Стоксів зсув люмінесценції АЛЕ в цьому кристалі є 1.35 еВ для випромінювання синґлетних і 1.57 еВ

для триплетних екситонів, тому в кристалах Cs_3LaI_6 маємо центросиметричне розміщення V_k -центрів (які є складовими АЛЕ) у кристалічній ґратці [5,6].

Рис. 2. Спектр збудження люмінесценції автолокалізованих екситонів у кристалі Cs_3LaI_6 при 77 К.

Рис. 3. Спектри люмінесценції кристала Cs_3LaI_6 :Се під час збудження квантами 4.59 еВ (а) та 5.76 еВ (б) при T = 9 К. Криві 1 — інтеґральна, 2 — швидка, 3 — повільна компоненти свічення.

Уведення у кристал домішкових йонів Ce^{3+} приводить до появи асиметричної смуги люмінесценції в ділянці 2.8 eB, на довгохвильовому краю якої спостерігаються сліди смуг люмінесценції АЛЕ (рис. 3а). Ця смуга випромінювання відповідає люмінесценції церієвих центрів і має дублетну структуру (рис. 4), як і у кристалі K₂LaI₅:Ce [5]. Максимуми компонент смуги розміщені при енергіях 2.57 та 2.81. Як бачимо, спінорбітальне розщеплення основного стану йона Ce³⁺ у кристалі Cs₃LaI₆:Ce дорівнює 0.24 eB і близьке до цієї величини у кристалі K₂LaI₅:Ce, а положення самих смуг дещо зміщене в бік менших енергій. Однак у кристалі Cs₃LaI₆:Ce смуги церієвої люмінесценції погано розділені, що є наслідком їхньої значної півширини через велику концентрацію дефектів у ньому.

Ще однією особливістю спектра люмінесценції Ce^{3+} -центрів при збудженні квантами з енергією $E_{36} = 4.59 \text{ eB} (E_{36} > E_g)$ є домінування повільної компоненти післясвічення над швидкою (рис. 3а, криві 2, 3 відповідно), а при прямому збудженні Ce^{3+} -центрів час післясвічення τ повинен становити 15–30 нс. Цей факт указує на непряме збудження Ce^{3+} центрів при поглинанні кристалом квантів з $E > E_g$, а передачу енергії збудження до Ce^{3+} -центрів від матриці кристала.

Рис. 4. Розклад спектра люмінесценції Ce^{3+} -центрів та АЛЕ кристала $Cs_3LaI_6:Ce$ на ґауссові компоненти при T = 9 К.

Під дією збудження кристала Cs₃LaI₆:Се квантами $E_{36} > 5.5$ eB, де вже інтенсивність свічення АЛЕ досить мала (рис.2), у спектрі люмінесценції при 9 К з'являється нова смуга в ділянці 3.6 eB (рис.36 і 4). Це свічення швидко гаситься і вже при температурі рідкого азоту не реєструється. Підсумовуючи ці факти, а також беручи до уваги відсутність такого свічення в неактивованих зразках Cs₃LaI₆, ми відносимо його до випромінювання екситонів, локалізованих поблизу домішкових йонів Ce³⁺.

Спектри збудження люмінесценції Се³⁺-центрів (2.57 і 2.81 еВ) і смуги люмінесценції локалізованих екситонів 3.6 еВ кристала Сs₃LaI₆:Се при 9 К характеризуються складною структурою (рис. 5а,б). У низькоенерґетичній ділянці ($E_{36} < 5.5$ еВ) чітко проявляються смуги збудження Се³⁺-центрів 4.44; 5.03; 5.47 і 5.66 еВ (рис. 5а, табл. III), які слабопомітні під час реєстрації свічення локалізованого екситона (рис. 56). У випадку збудження квантами $E_{36} > 10$ еВ смуги свічення локалізованого екситона проявляються чіткіше (рис. 5). Ці особливості спектрів збудження люмінесценції Се³⁺-центрів і свічення локалізованого поблизу них екситона вказують на складний характер релаксації електронних збуджень у кристалі Сs₃LaI₆:Се, що відбуваються під час глибокого охолодження кристала (T = 9 K).

Рис. 5. Спектри збудження люмінесценції Се³⁺-центрів (а) та локалізованих екситонів (б) у кристалах Cs₃LaI₆:Се при 9 К: 1 — інтеґральна; 2 — швидка; 3 — повільна компоненти люмінесценції.

$E_{\rm люм} = 2.8 \ {\rm eB}$	$E_{\rm люм} = 3.6 \ {\rm eB}$
4.44	
4.66	
5.03	
5.47	
5.66	
5.77	5.77
5.94	
6.04	6.04
6.18	6.25
6.48	6.48
6.92	6.92
7.27	7.18
	7.33
	7.77
	8.12
8.51	8.62
9.22	9.24
9.92	9.59
	10.30
11.30	11.60
12.66	12.66
	13.50
14.20	14.10
15.46	15.41
16.55	16.50
18.47	19.17

Таблиця 1. Положення смуг збудження люмінесценції Ce^{3+} -центрів ($E_{\text{люм}} = 2.8 \text{ eB}$) та локалізованого екситона ($E_{\text{люм}} = 3.6 \text{ eB}$) у кристалі $Cs_3LaI_6:Ce$ при T = 9 К.

IV. ВИСНОВКИ

Отже, у праці вперше вивчено люмінесцентні властивості кристалів Cs_3LaI_6 та Cs_3LaI_6 :Се. Випромінювання автолокалізованих екситонів у кристалі Cs_3LaI_6 проявляється у спектрах люмінесценції як дві смуги (2.5 і 2.8 еВ) та має тривалий (>150 нс) час післясвічення. Відносно малі величини стоксового зсуву та енерґетичної віддалі між смугами випромінювання АЛЕ вказують на центросиметричне розміщення V_k -центрів у ґратках кристала Cs_3LaI_6 . У спектрах збудження люмінесценції АЛЕ виявлено характерний провал, який спричинений розміщенням у цій ділянці екситонного піка відбивання. Свічення церієвих центрів у кристалі Cs_3LaI_6 проявляється у ви-

гляді характерного дублету (2.57 і 2.81), зумовленого випромінювальними переходами зі збудженого 5d на основний 4f-стан, розщеплений спін-орбітальною взаємодією (рівні ${}^{2}F_{7/2}$ та ${}^{2}F_{5/2}$). У спектрах збудження Ce³⁺-центрів і колоактиваторного екситона виявлено ряд смуг, що суттєво відрізняються за енерґетичним положенням. При збудженні кристала Cs₃LaI₆:Се в ділянці фундаментального поглинання свічення церієвих центрів характеризується тривалим часом післясвічення, що вказує на непряме збудження йонів Ce³⁺, а зумовлене екситонними та рекомбінаційними механізмами передачі енерґії збудження. Смуга люмінесценції при 3.6 еВ у кристалі Cs₃LaI₆:Се відповідає свіченню екситонів, локалізованих поблизу домішкових церієвих центрів.

- M. S. Pidzyrailo, O. M. Berdychevsky, V. V. Vistovsky, P. P. Parandiy, I. V. Stefansky, Book of abstract 13th International Symposium on Exoemission and related relaxation phenomena, (Jurmala, Latvia, August 21–26, 2000), p. 25.
- [2] A. Bassiere, Book of abstract of VII International Conference on Inorganic Scintillators and Industrial Applications (SCINT2003), (Valencia, Spain, September 8–12, 2003), p. 13.
- [3] Б. Ш. Багаутдинов, В. Ш. Шехтман, Физ. тверд. тела

41, 1, 137 (1999).

- [4] R. T. Wegh, A. Meijerink, R. J. Lamminmaki, J. Holsa, J. Lumin. 87–89, 1002 (2000).
- [5] E. D. V. Van Loef, Halide Scintillators. PhD Thesis, Delft, Netherlands, ("DUP Science, Delft university Press", 2003), p. 125.
- [6] Ч. Б. Лущик, А. Ч. Лущик, Распад электронных возбуждений с образованием дефектов в твердых телах (Наука, Москва, 1989).

LUMINESCENCE OF THE PURE AND CERIUM-DOPED Cs₃LaI₆ SINGLE CRYSTALS

M. Pydzyrailo, V. Vistovsky, G. Stryhanyuk Ivan Franko National University of Lviv,
8 Kyryla i Mefodiya St., Lviv, UA-79005, Ukraine e-mail: vistovskii@physics.wups.lviv.ua

The studies of luminescence and the luminescence excitation spectra of the pure and Ce³⁺-doped Cs₃LaI₆ single crystals at 9 and 77 K are reported. The doublet band of STE emission (maxima at 2.57 and 2.81 eV) was revealed in the luminescence spectrum of pure Cs₃LaI₆ crystal at 9 K. The band gap value (4.3 eV) has been estimated for the Cs₃LaI₆ crystal taking into account the presence of characteristic dip in the excitation spectrum of STE emission at 3.85 eV caused by the excitonic reflection. The doping of the Cs₃LaI₆ crystal by Ce³⁺-ions results in the appearance of the cerium doublet (peaking at 2.57 and 2.81 eV) as well as the near-impurity localized exciton band (3.60 eV) in the luminescence spectra at 9 K. The slow decay component ($\tau > 150$ ns) dominates in the cerium emission under the excitation in the fundamental absorption range that confirms the excitation energy transfer from the crystalline matrix to the impurity centres.