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This work investigates the two-centre Coulomb problem. The analysis is carried out in the context
of the dimensional influence (D > 3). Asymptotic solutions of the Schrédinger equation with two
Coulomb potentials are obtained in the hyperspheroidal coordinate system. These solutions are
expressed in the form of confluent Heun functions, particular cases being the Coulomb spheroidal
functions. The asymptotic expression for energy for a large intercentre separation of the considered
system are obtained and basic properties of the mentioned expressions are studied.
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I. INTRODUCTION

This work provides a framework to the investigation of
asymptotic eigensolutions of two-centre Coulomb prob-
lem in the hyperspheroidal coordinate system. The anal-
ysis is based on the ideas which picture the physical sys-
tem of interest to be embedded in the space of an inflated
number of spatial dimensions as an interim step. A strong
incentive for this method was provided by its historical
precursors. It was shown by Ehrenfest [1,2] that the gen-
eralization of physical theories in case of space with the
arbitrary dimension D often resulted in a new and un-
expected look on the essence of the examined problem.
In recent years such an approach has been given a con-
siderable impetus it is also widely used in theoretical
physic. 1/D-expansion is based on it as well as a novel
size scaling — calculation method of mechanics and field
theory, which was used, in particular, to research into
the properties of atoms in strong electric and magnet-
ic fields [3—6] and into the three-body problem together
with many other problems. The discussion on the state
of the mentioned method, its different variants and ap-
plication in the theory of atoms, molecules and quantum
chemistry may be found in [6].

This work is devoted to a generalization of the re-
sults of the asymptotic theory for the quantum mechan-
ics two-centre Coulomb problem ZieZ; [7,8] by inflat-
ing the number of spatial dimension. We assume asymp-
totic expansions with the help of the comparison equa-
tion method of the Schrédinger equation for the D-
dimensional two-centre Coulomb problem (briefly the
(Z1eZs)p problem) for a large intercentre separation
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U(r; R) = E¥(r; R) (1.1)

in the hyperspheroidal coordinate system which corre-
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sponds at (D > 3) to the confocal prolate rotational
ellipsoids and two-sheets rotational hyperboloids. Here
r1, ro are distances from an electron to the charges 7
and Zs, respectively, and R is the separation of centres,
h = m. = e = 1. After separating (1.1) in the hyper-
spheroidal coordinates, we may state that the (Z1eZ3)p
problem leads to two-coupled confluent Heun equations
[8,9].

The solution of the Schrédinger equation with two-
centre potential is of considerable interest in various
problems with few-body systems [7]. They describe the
bound states of light particles in the field of two heavy
particles. Usually such a type of system arises in molec-
ular physics. However, in recent years there has been
an interest of other systems modelling by the two-centre
Schrédinger equation, namely baryons containing heavy
quarks (QQg baryons) [10] and heavy flavoured hybrid
mesons (QQg mesons) are now becoming the subject of
extensive investigation. There is a close connection be-
tween the two-centre Coulomb problem (Z1eZ3)p and
SU(2) monopole [11,12]. A five-dimensional bound sys-
tem of “charge-dion” with SU(2) — Yang monopole [13]
is described by equations which we obtain at the separa-
tion of variables of (1.1) in hyperspheroidal coordinates.
Besides, equation (1.1) has a reference to a well known
Teukolsky equation [14].

The outline of the paper is as follows. In section II
hyperspheroidal coordinates are considered in terms of
which the wave function is separated. This serves as a
vehicle for deriving equations for the radial and angu-
lar Coulomb hyperspheroidal functions. Section III treats
asymptotic expansion of Coulomb hyperspheroidal func-
tions for a large parameter p. Section IV turns to a so-
lution of equations (2.16) and (2.17). In section V we
obtain the expansions of energy for large centre separa-
tions R and a quasi-crossing of energetic terms is studied.
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In section VI the rules of correspondences of electronic
terms in the limits of R — 0 and R — oo are considered.

II. SEPARATION OF VARIABLES
IN SCHRODINGER EQUATION
OF THE TWO-CENTRE COULOMB PROBLEM
IN SPACES OF ARBITRARY DIMENSION

We introduce in the D-dimensional Euclidean space
FEp the hyperspheroidal coordinate system with the ori-
gin in the midpoint of the segment R and foci in its
endpoints:

T = %coshucosv7
Tog = % sinh v sinv cos Bp_o,
T3 = gsmhusmvsmﬁp 5 cos Bp_s,

(2.2)

tp_1=2 sinhusinvsinf8p_o...

5 sin (5 cos (1,

zp = Zsinhusinv sin Bp_o .. .sin (s sin (.

2

Here change in the following limits:

2 2 2 2 2 ~ R2
ds® = h2 du® + b3 dv? + ) h3 dBy =
k=1

where scale coefficients

R
hy = hy = 5\/ cosh? u — cos? v,
R D—2
hg, = Esinhusinv H sin 3;, (2.6)
i=k+1
R
hg, , = e} sinh u sin v,

k=1,2,...,D—3 and dsp_» is the line element on the
(D — 2) dimensional unit sphere (at D > 3) or the unit
circle (for D = 3)
ds?_y = dBp_o +sin*Bp_odBhH s+, ...,
+ sin?Bp_s . ..sin?Bs dF3.

| L0 pa 0
sinh _—t —
{ cosh? u — cos? v [sth 2 0u “ou sin

(cosh u — cos?v) (du® + dv?) + RT sinh?u sin®v ds?,_,,

0<wv<om if D=2,

0<v<m if D>2

0<u< oo, (2.3)
Bo = 0, 0< By <2,

0<pr<m,  k=23,...,D—2.

The hyperspheroidal coordinate system (2.2) is the
special case of the polyspheroidal coordinate system [15].
The prolate spheroidal coordinate system [7] is (at D =
3) a special case of the system (2.2).

Surfaces on which v and v are constant for the case
D > 3 represent confocal rotational ellipsoids and hy-
perboloids, respectively,

z? (a3 +...+a3)
(R/2)2cosh®u  (R/2)2sinh®u ’
i G R J”%) ~ 1. (2.4)
(R/2)? cos? v (R/2)2sin?v

In the case of D = 2 these surfaces degenerate in confo-
cal ellipses or hyperboloids, respectively. The arc element
formula in the coordinate system (2.2) is

i (2.5)

Further, it is suitable to link hyperspheroidal coor-
dinates (2) with the distances r; and ro from points
r = (x1,22,...,2p) to the left and right focus, respec-
tively. Both the foci are placed on the z; axis. Then

R
= E(coshu + cosv), (2.8)

R\? & R
2 _
ro = (zl — E) + ;xl = E(COShu —cosv). (2.9)
(2.7)  According to (2.6) equation (1.1) has the form
0
T 9 sin v@v]
(2.10)

0 A o R’E
—_— R U =0
+smh2us1n ng Z loJo ( ) loJo + <coshu+cosv * coshu—cosv> + 2 ’
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where
D-2 D—-2
Hﬁ = H Hgk, Hﬁk = H sinﬁi,
k=1 i=k+1
k=1,2,....D—3, Hg, ,=1. (2.11)

In equation (2.10) the variables are separated by the fol-
lowing substitution

Here \,mi,ms,...,mp_o are the separations con-

stants and
R
p= E\/—QE, a=R(Z, + Z3), b= R(Z> — Z1). (2.18)

In particular, for D = 2 is mg = 0 and equations (2.16),
(2.17) are missing.

In restricting further deductions to the bound states
E < 0 (a discrete spectrum) it is seen that 0 < p < oo.
Solutions of the equations will be referred to as solutions

U(r) = Z(0)(u)F (B, 51, -, Bp-2), (2.12)

D-2
F(B1,B1,--,Bp-2) = H Fr(Br), (2.13)
k=1

and we come to the necessity to solve the following sys-
tem of equations in region (2.3):

[ 1 0 . . p_o O mp_almp_o+D-—3) 5 9

———————sinh — = h h*u—1)—A|II=0 2.14
R sin us il + acoshu + p*(cosh”u — 1) , (2.14)
[ 1 0 . p_g O mp_2(mp_2+ D — 3) 9 9 _

il — b —p“(1 — AM=2=0 2.15

VI sin Cw - + bcosv — p°(1 — cos®v) + , (2.15)
LA Fi(f) =0 (2.16)
-aﬁ% 1 1\M1) — Y, .
1 8 . 0 mpi(mea+k—2)

— S — - + T k-1 F(Br) =0, k=2,3,...,D—2. (217
TR sin? e 210

of the p-type. Otherwise said, E > 0 (a continuous spec-
trum), p = ic and 0 < ¢ < co. These solutions are of the
c-type.

It is expedient now to introduce new variables &, n by
the formulae

& = coshu, 1 <€ < o0,

7 = COs v, _1§77§17
which are valid only in the case D > 3. Equations (2.15)
and (2.14) then yield

1 d, 4 p—1 dIl mez(mpfz + D — 3)
s —(-1)7 —+ |-A—p*( -1 - II=0 2.19
a0 e e e , (219)

1 d p—1 d= mez(mpfz + D — 3) _
_— —(1-1n? — A—p3(1—n? bn — ==0. 2.20
T ) e o= (2:20)

[

Both equations (2.19) and (2.20) are confluent Heun  of p-type 1'[55}3)72 « (D, a;§) as solutions of Sturm-Liouville

equations [8,9].
In the case of a discrete spectrum, Z(n) and II(£) obey
the boundary conditions

()| < o0, [T == 0.
|Z2(£1)] < oo,

we introduce radial Coulomb hyperspheroidal functions

306

problem (2.19), (2.21) on the ray £ € [1,00), where k is
the number of zeros inside [1, 00).

Also let us introduce angular
=(D)

spheroidal functions of p-type E;,_.q(p,b;n) as solu-
tions of Sturm-Liouville problem (2.20), (2.22) on the
interval n € [—1,1], where ¢ is the number of zeros in-
side [—1,1].

Coulomb hyper-

The transformations
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U
(D) L6 =
HmD72q(p7 a; E) - (62 _ 1) D4—1 ’ (2'23)
- Vn)
=(D) -m) =
h‘mD—zq(pabv 77) - (1 . 772)DZ1 ) (224)
change equations (2.19), (2.20) into
d? 5 af— N 1—p?
- _ = 2.2
o ey Ve e
d? 5 b+ N 1—p?
[d_772 —D 1— 1 + 1= 772)2:| Vi(n) =0. (2.26)
Here
N =)+ W, [L=mp_s+ Tf (2.27)

Equations (2.25), (2.26) can be used as the starting point
of a different asymptotic expansion.

III. ASYMPTOTIC EXPANSIONS FOR
COULOMB HYPERSPHEROIDAL FUNCTIONS
AND THE SEPARATION CONSTANT

The procedure form finding an asymptotic solution
of the (Z1eZs)p problem for a large parameter R re-

d*U

quires our knowledge of the asymptotic expression for

') (p,2pa;€) and E)_q(p, 2pB; 1)

) e (p.2p0s€), p— oo, p=0(1),
k=0(1), a=0(1), (3.28)
Egr?p),zq(p72pﬁan)7 pP— 00, U= O(l)7
¢=0(1), p=0(1), (3.29)
where
N b Zy— 7y
V=—, 5 = =Z ,
2p 2p V—2E
a ZQ + Z1
9, . 3.30
“T T ok (3.30)

If conditions (3.28) and (3.29) are satisfied then an esti-
mate v = O(1).

Now we rewrite equations (2.25), (2.26) suing relation
(3.30). Then

{ 2, 2p(a€—v)

de? 21

A2V 2
_+[_2+ P(ﬁﬁt”)
1-nm

In virtue of the normalization of ¥(r,R) as can be
seen from (2.24) and (2.23), it is necessary to satisfy the
boundary conditions

Ule=1=0,  U(§)le—c =0, (3.33)

V(n)lp=+1 = 0.

The normalization of U(€), V (n) result from the normal-
ization of the relating Coulomb hyperspheroidal func-
tions. Then

/1 (€~ 1) Ue)de = 1,

(3.34)

(3.35)

/ (1—n2) 2 V3(n)dy = 1. (3.36)

-1

We further consider equation (3.32). The asymptotic
solution is constructed in two overlapping intervals

Q_ = [_17771]7 Q= [772a 1];

where n_ = =1+ (=3 +v)/p,
turning points.

N-<m2 <m <Ny,
Ny =1—(B8+v)/p are

1—pu?

| v =o (3.31)
1—p?

i nQ)Q} Vi) =0 (3.32)

In the region of Q_ the solution of the equation is
expressed in a sophisticated form (comparison equation
method)

Vo () = N-ul ()] /2 M, [2pu-(n).

where N_ is the normalization constant and function
M, u(z) satisfying Whittaker’s differential equation is
regular at z = 0 ( [16], [17] vol. 1) The index x has
not been determined yet. To satisfy conditions (3.34) at
n = —1 it should be sufficient that u_(n)[,——1 = 0.

We assume that function w_(7n) and the spectral pa-
(n)

(3.37)

rameter )\ ) are expressed as descending series in p,

nq
thus
00 u;
u_(n) =Y —, (3.38)
1=0 p
N (p) = 2pu(p) = 2 i “ (3.39)
uq (P) = 2pv(p) = 2p s :
1=0

Applying the recurrent procedure [7], we find the scaling
transformation
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u_(pﬁ,x;n)=1+”+%{(X+ﬁ)ln (1;—77)}

1 (x(x+6), (1-7\ +B)?2+7 1 2 1
+F{ 147 1n( 2 )_ 2(1—1n) +Z[(X+ﬁ) +T]+§X(X+ﬁ)}
L[ x(x+8)?% 1=\, B+ +8), (1-1\ x[x+05)?>+7]
H?{_ S () e e () -y
BB+ ] B+ T) (X +B)
i P o) (3.40)

1
15 (10X +18x*8 + 9xB” + 278 + 5% + 6x7 + x + ﬁ)} +0 ("),

where 7 = (1 — p?) /4.
From the conditions of the solvability of the recurrent process we obtain the asymptotic expansion for the eigen-

values \ ,(ZL) which correspond to the left centre

N (p, 2p8; ~1,x) = 2p(2x + B) — {2x5 + % (4 +1- NQ)}

1
7%{%( (Ax* — >+ 1) + (12> +1 7u2)ﬂ+4x62} +

— (1= )% = (80> + 20 — 124%) 2xB3 — (96x2 + 8 (1 — %)) 8% — 16Xﬁ3} +0 (z%) :

1 4 2 2 2
- —4 24 A1
64p2{ 80x* —40x” + 24x° (3.41)

Near the right centre, the solution Vi (n) of the an-  On the overlapping interval Q_ Q4 (2 < n < 1) we
gular equation (3.32) is analogical from (3.37) but with ~ demand
another parameter x’ and with a different scale trans-
formation w4 (n). Transition form the left centre to the V_(n) = CVi(n), (C = const). (3.44)
right one in expansions (3.40) and (3.41) is carried out

1 .
by replacements It means is zero of the Wronskian of V_ and V,

n—-n, Bﬂi/Ba X*)X/v
ut(p, B, x'sm) = u—(p, =B, x; =), (3.42) VIV (n) = V_(n)V{(n) = 0. (3.45)

N (p,2pB; 1,x') = N (b, —2p3; —1,X).
Thus, constructed asymptotic expansions for the eigen-

values N7 (p,2pB; 1, ') and X' (p,—2pB; —1,x) de-
pend on x and Y’. Equating these expansions we obtain

Substituting the found expansions of the function
V_(n) and Vi (n) in (3.45) and using an asymptotic ex-
pansions of the Whittaker’s function [7,16] for a large
argument leads to the transcendent equation which con-

X’ =x+p0. (3.43) nects y and X/
|
Fm ( (x—“—“))} [1tan ( (X,_mm
s 2 T 2
B (4p)2(x+x/)e—4p [ o (1)]
TThr st Enr e 5 LB (3.46)

We replace the right of (3.46) by 62. Since 62 expo-  (3.46). Then they are either
nentially tends to zero as p — oo systems (3.43), (3.46)
can be solved by successive approximation. If we neglect
small term 62, then we obtain two series solutions which Xo =n2 + (14 p)/2, Xo = n2 + (14 p)/2+ B,
correspond to the vanishing of one of the tangents in (3.47)
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or The method of the calculation of the first iterations of
(3.43), (3.46) depends on whether § is near the integer
Xo =nh5 + (14 p)/2, Xo=n5+ (1+u)/2 -, (3.48) or not. If the values of 3 are not in the vicinity of the

X = X0 + 60X, X' = xb + X (3.49) integers, then corrections dy and 0x’ can be found in-
dependently. For 3 near small neighborhoods of integers
Here ng, n, are non-negative integers. (8 = nfy — na) we may calculate dy from (3.46):
1 1 o
ox = ~5- tan7Q £ %tanﬂﬁ + 62(n2, nb, p, p), (3.50)
, 1 1 2 )
ox' = Py tan Q3 & Py tanmf | 4+ 62(ne,nb, u,p), (3.51)
where
dpratnatitle—2p { 1 [ : 1—p? 1
S(na,nby, 1, p)= 1— — |x2+ 2 +4xox, + +0(= ). (3.52
(2,5, 1, p) N T ES A EES) 1p | X0 X0 +4x0xo 5 o (3.52)

The asymptotic expansion of the first order with respect to p of 557?372,1(17, 2pB;n), satisfying conditions (3.36) and

(3.44) in the region 2_, has the form:

) M, mpa  poa [2p(1+ 1) +2(x + B) In 152
Einp-2q(Ps20051) = d-N- = i+o/pl, neQ, (3.53)
-
where
2
Lt [DOR 4D (moma+ 252 4 )T (o4 22 - £39)
NZ 2 F<X+1+mD2+D43)
> Llmp—s+j+1) (3.54)

m — . 3—D . ’
J:OFJ—i—lF(X—i-ﬂ—%_j)FQ(—Q n+]+1)

14+mp_ 3—D
D=2 .

2 4
In similar manner (by changing x — x’, N- — N;) for n € Q4 we can deduce that

and n =y —

Mmoo p_a [(2p(1 =) + 2(x' — B) In 132]
— (1—p2) o5 1+0(/p),  nefQy, (3.55)

where we N, obtain from N_ by the replacement y — x’. The coefficients dy and d_ are determined by relations

571[3 2q(p52pﬁ7 )_d+N+

a2 +d* =1, (3.56)
. s [r (23— 1= mp_s + 552)]
T sin[w(QX—lme 2+—)}+SIH[ (2x’—1—mD 2+u)}
— cos [w (X - 71+7712D72 + %)}
% seht (3.57)
sin [ (1 - B2 4 252
sin [ (2x — 1 —mp_ 2+u)}
dr = : 3.58
+ sin [7r (2X*17mD72+¥)} Jrsm[ (2X 71me72+¥)} ( )
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where sgn (x) is the sign function.
A solution U (&) of (3.31) will be searched in the form
analogous to (3.37):

U(©) = N (O] 2 M, o [20(6)]. (359)

It follows from condition (3.33) of decreasing as & — oo

o=k+(1+p)/2, k=0,1,2,..., (3.60)
where k is the number of zeros of the radial hyper-

spheroidal functions. The Whittaker’s function satisfying

5 - =, pP— D a — 757 (361)
then in the neighborhood ¢ = 1 with conditions U(1) = 0
equation (3.31) transforms into equation (3.32) with
V(—1) = 0 in the vicinity n = —1. Further, from (3.40)
and (3.41) follows expansion for the scale transforma-

tions w(€) and the eigenvalue \'(€), respectively

pt1

N (p, 2pa) = NG (—p,—Qp —1,k+ T) . (3.62)

(3.60) may be expressed by Laguerre polynomial [16]. The desired asymptotic expansion of HffD)fzk(p, 2pai; €)
If we change for which condition (3.35) holds, id:
|
. M, wps, b [2p(§ - 1)]
) (p,2pa;&) = N2 T L {1+O< ﬂ +1<€< o0 (3.63)
o (& —-1)77
whereupon
_ 2
L_pDQd F(3_D+1)F(mD 2+—+1 zk:mp 2+j 1 (364)
N2 2 L(k+mp_+ 253 +1) e NP T2 —k+j+1) '

IV. SOLUTION OF EQUATIONS (2.16), (2.17)

Constants mp_s(mp_s + D — 3) in equations (2.16)
and (2.17) represent eigenvalues of the Laplace operator
on the (D — 2) dimensional unit sphere SP=2 (D >
3) or the unit circle (D = 3). If my,ma,...,mp_o are
non-negative integer and m; < mo <,...,mp_o then
solutions of equations (2.16) and (2.17) are continuous
and single-valued, and have the form [15]

where CI™"(cos 3;) are Gegenbauer polynomials ( [17] vol.
1,2), and A; are normalized constants. From the normal-
ization condition

/lF(ﬁlaﬁQa"'7ﬁD—2|2dQ: 17 (467)

where df2 is the surface element of the unit sphere, we
can find A;:

F(oy) = EREmB) o (4.65) 2 /1 Q-2 eprw] =1 (@46)
V2 -1
exp(=+i
F(B1,...,0p-2) = % where ¢ = cos 3; and
D—2 w j—1
X H A sin™i-1 6 ij 1+.721 (cosﬂj), D > 3, B =mj_1+ 0 g=m; —m;_1. (4.69)
j=2
(4.66)  After integration we obtain
Y \/g!(w +29)T2(w/2) \/(mj —my_)!2m; 4§ — DI2(my_y + 151 (4.10)
i= = :

22—wrl (g + w)
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V. ASYMPTOTIC EXPANSION OF ENERGETIC
TERMS. QUASI-CROSSING OF ENERGETIC
TERMS

In such a limiting case as R — oo, the hyperspheroidal
coordinates near £ = 1 and n = +1 go to the D-
dimensional parabolic coordinates [18]. Then the prob-
lem (Z1eZ5) p decays into two one-centre Coulomb prob-
lems with Z; and Zs charges. Each of the atoms eZ;
and eZs is characterized by a set of quantum numbers
[n,n1,n2, m] and [0/, n},n,, m], which are linked in the
following manner:

B0

/ / /
n =n;+ny,+mp_o+1,

(5.71)

n=mn1+ny+mp_o+1,

where m = [mq,ma,...,mp_s].
The expansion of the energy in powers R™! is derived
by equating \'€) and \'(7)
NP (0,208) = X (p. 2p). (5.72)
Taking into account (3.30), (3.41) and (3.62) and car-

rying out algebraic calculations (the details are omitted
because of lack space) one obtain, the desired energy

nnino I

200+ 2y R
Zg (n + %)3
16Z{R*

D-3

D -3
(o0 25) (i 25

where A = ni; — ns. Some important details for D = 3
are given in [7] and [19].

Formula (5.73) is the multipole expansion for the elec-
tronic term of the electrostatic interaction of the atom
eZy with the remote point charge Zs (eZ;-terms). The
series of terms which correspond to the atoms eZs is ob-
tained from (5.73) by replacements

Zl - Z2; A— A/v

ng — nb.

(5.74)

/
n—n,

(m)

The adjacent eigenvalues X',/

cide at

with respect to ¢ coin-

B=n,—no (5.75)
if we do not take into account additional terms dy and
0x’. Otherwais said, the adjacent eigenvalues are shift-
ed by an exponentially small value. Therefore the points
defined by (5.75) are named the quasi-crossing points. If
(5.75) holds, the quasi-crossing of the eigenvalues \’ EZZ])
and XEZZ])H with quantum number n; = n} occurs. This
leads to a quasi-crossing of the energy terms

B=(Zy— Z1)(—2E)"Y? = n}y — ny. (5.76)

Thus, the energies of the quasi-crossing form the
Coulomb series corresponding to the charge Zs — Z; and
the principal quantum number nf, — na.

Two series of power expansion for eZ; and eZ5 -terms
correspond to the predominant localizations of the elec-
tron of one of the two charges only. The accounts of expo-

nentially small terms with respect to R for E (D) (R)

nnino I

27, R?

2R3 72

i Zy 3Z D=8\A 7 D—3)2 D_3\?
o= L Sl )8 Bl e ) (g (ne 220)
D —3\? D—3\?
ZlA<109A2—39 (n—i—T) —9(mD_2+—2 ) +59> (5.73)

2 2
Df
) 3A29<mD2+ 5 3) +19>

+O(R™),

[
and Effn);n;m
However, exponential corrections play an important role
in the quasi-crossing points. The states of the system are
energetic indistinguishable

(R) represent an improvement in accuracy.

E1 = E’V(lfl)ZTLQm(RC)’

By =E),  m(Re), (5.77)

(Z2— 2,)°
Ei=FE;=FR.) = ———", 5.78
RSB S e O
in free-form  exponential small terms. Here
Ef) s B are delimited by (5.73) and (5.74),

R, is the coordinate of the quasi-crossing following
straight from (5.75). The inclusion of exponential terms
leads to the splitting of F; and Fs into a states in
which the electron moves in both wells simultaneous-
ly. In this case the minimal distance between energetic
terms AFE(R,) (splitting) is explained by the sub-barrier
resonance interaction. It is estimated by formula

AE(R.) =6F1(R.) + 0E2(R.) = Té(R.), (5.79)
where §(R.) is defined by (51). Following [20] and [21]
we obtain

T — 8E1/8n2 + 8E2/8n’2
N 98 0F, o8 0B,
\/1 + aEﬁl ono \/1 ~ 9E, Bng

All the data which are included in (5.80) can be calcu-
lated by (5.73) and (5.74). Then we obtain the splitting
of Fy and E»

(5.80)
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—1/2
o= {21, @
c/) _3\3 —3\3
(n+252) (n+ 252)" (-2E)*>
—1/2
- % [1 - 24— 2)) Oe. (5.81)
(e 22 [ (e 2 (2m
VI. RULES OF CORRESPONDENCES (6.83)

OF TERMS AS R— 0 AND R —

Under the limit of the united atom (R — 0)

ER/2 —r, 1 — cos . (6.82)

Then the hyperspheroidal coordinates &, 7, 81, B2, .. .,
Bp—2 are reduced to hyperspherical ( [17] vol. 2) ones

95 517625 ce 56D72- Thus
r1 =rcosf,
r9 = rsinfcos Bp_o,

r3 = rsinfsin Bp_s cos Bp_3,

Uy (73 0) = T2

mD‘Z

where

}/lg’?l)(evﬂlaﬁba R 75D72) =

C is a normalization constant and [N,[,m] is a set of
hyperspherical quantum numbers.

It is clear from the physical consideration that in the
limit of the united atom the terms of the (Z1eZ3)p prob-
lem change to the energy levels of the D-dimensional hy-
drogen atom with the charge (Z1 + Z2). Then

2(Z1 + Z9)?
(2N + D —3)?’

where N = k + [ + 1 is the principal quantum number,
l=q+m.

As R — oo the hyperspheroidal coordinates pass to
the D- d1mens10na1 parabolic coordinates and the func-
e zk(§ R), ”ffD) ,x(m; R) change to solutions
of the one-centre problem in the D-dimensional parabolic
coordinates fpymp_»(¢) and frnom,_,(7) [18], respective-
ly. Let the pole of the D-dimensional parabolic coordi-
nates system coincide with the left of the hyperspheroidal
system. Then we pass by means of limit relations

R(¢ —1) =0,

B (21, 22,0) = — (6.86)

tions H

R—

R(1+4+n) —/ T, (6.87)

312

k(& 0) mD zq(n’ 0)F(B1, B2, . ..

rp_1 =rsinfsin Bp_s...sin Gy cos fy,

rp =rsinfsin Bp_s...sin Gy sin Fy,

where 0 < r < oo, 0<60<m,
B <m, k=23,...,D—-2.

In this case the radial HffD)izk(g,R) and angular
=(D)

part Ewmp_.q(n, R) of the wavefunction of (ZieZs)p

0§61<2ﬂ-7 OS

system changes to the radial Rgfl))(r) and angular

Yl(rﬁ) (0,51, B2, . .., Bp—2) parts of the solutions of the D-
dimensional one-centre problem in the hyperspheroidal
coordinates with the charge Z; + Z5

75D 2) (D)( ) lg’g)(evﬂlvﬂQa"';ﬂD72)v (684)
C(sin§)™P-2C, 2mD+’”D 2(cos0)F (1, Ba, ..., Bp—2), (6.85)

to the D-dimensional parabolic coordinates system [18]

z1 = (C—7)/2,

s = /(7 cos Bp s,

w3 = /(T sin Bp_s cos Bp_3,

: (6.88)
Tp-1= \/§_Tsin/6’D,2 ...sin By cos f1,

2p =+\/(TsinBp_s...sin By sin By,

where 0 < (<00, 0<7<00,0< [ <2, 0< B <,
k=2,3,...,D—2.

For R — oo all terms of the system (Z1eZ2)p
two classes: eZ;-terms and eZs-terms.

fall into

For eZ;-terms pass to the electron levels in the field of
the isolated charge as R — oo (with the corresponding
wave function which are concentrated in neighborhood
&~ 1,n=1), and for eZ;-terms we have
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\I/k;qm(T; OO) = ngLDD),Qk(é-? Oo)EgnDD),Qq(n? OO)F(ﬂlv 525 e 55D72) ==
= fnlmez (C)fnzmp,g (T)F(ﬁlz 62; CIE )ﬁD—2)7 (689)
ED) (00) = ED) _ 27} (6.90) sets of the D-dimensional parabolic quantum numbers
kqImy nnanzlil (2n+ D — 3)%’ ' [n,n1,n9, m], [n/,n},n,, m], differ from the sets of hy-

where n =ny +n9 +mp_o + 1 is the principal quantum
number.

For (eZs)-terms equation (6.89) remains but the lim-
ited transition (6.87) changes to

R—o0

Re-—1)"=2¢,  RO-n =21 (6.91)
and (6.90) will have the following form
(D) (D) B 273
Ekqm(oo) = En’n’ln;m = *m, (6.92)

where n’ =nf +nh+mp_o + 1.

For eZ;-terms the quantum numbers ni, no represent
the number of zeros of the radial function fn,m,_,(¢)
and the angular function f,,m,_,(7), respectively. Anal-
ogous n}, n have the same meaning for (eZ2)-terms. The

[ ome+ (n+ 252) 2252,

and for the eZs-terms

nh,
7= n’2+1+Ent(n’2—(n’+%)M), it nh> (0

Here Ent (x) is the greatest integer < x.

There is a connection of the hyperspherical quantum
number [N, [, m] with the D-dimensional parabolic quan-
tum numbers [n, nq, ne, m, [0/, n}, n,, m] if the electron
is found at the nuclei Z; (Zy > Z3)

D-3\ Z2—2
2no + |mD—2| + (n+ 2 ) 221 L,
if (n + %) 222;121 = integer,
ng + |mp—a| + 1+ Ent (n2 + (n+ %) ZZZ;IZI) ,
if (n+ —DQ_S) —Z2§1Z1 = integer,
(6.96)

7’)/2 + |mD*2|a

2n2+1+Ent((n+ %)ZQZ;F

perspherical quantum numbers [N, [/, m] and the initial
of the hyperspheroidal quantum numbers [k, ¢, m]. How-
ever, they are linked with them by unambiguous rules
of the correspondence, sometimes named the correlation
diagrams of terms.

For the radial numbers to be valid

k=mny =nj, (6.93)
that is a consequence of a theorem for the Shturm-
Liouville problem on the conservation of the number of
zeros of a solution which depends continuously on the
parameter.

The relation for angular quantum numbers ¢, ns and
n’ is more complicated, in particular for Zy > Z;. We
present it without the proof (just as for [7]).

For eZ:-terms

if (n + —Dgg) ZZZ_1Z1 = integer, (6.94)
) , if (n + T_S) Zzglzl = integer, .
it ny < (0 +£253) 224 (6.95)
-3\ Zo—Z .
n+mns+ (n+ 252 ZzZ—1Z1,
if (n + T’S 225121 = integer,

)
no + 1+ Ent <n2+ n+ %) _ZzZ—1Z1)7
i )

and similarly for the electron which is found at the nuclei
ZQ (ZQ > Zl)

i ny < (0 4 D58) L=t

Zy

nh + |mp_o| + 1+ Ent (nlg + (0 + 52 —ZZZ_lzl) ; (6.98)

if nb> (n’ + %) Za—Zy

n',
N =
{n'—l—l—&—Ent(n'Q—l—(n'—i—%)Z?Z;lZl), if nb>(n

Zy

if ng < (n’

(6.99)
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For Zy = Z, the separation of the eigenvalues
Epnyn,m(R) does not exist for eZ;-terms and eZs-terms,
as R — oo. The angular function 557?372,1(77; 00) is of the
same order at both centres, and near each of them is con-

centrated on the equal number of zeros, i.e., no = nj.

VII. CONCLUSION

We obtained asymptotic expansion for eigenfunctions
and eigenvalues of the energy of the Schrédinger equa-
tions for the (Z1eZ5)p problem at large intercenter dis-
tances.

o0

01 +

1 e

| P

- e

05 4

0,7

Fig. 1. Dependence Ej, for the ground state of Hy at the
value of the intercentral distance R = 10 a.u. on the dimen-
sion of space D.

oo

2t e

04 4

05 4

0.8 1

Fig. 2. Dependence Ej for the ground state of H; at the
value of the intercentral distance R = 5 a.u. on the dimension
of space D.

Figures 1 and 2 show the dependence of different Ej,
for the ground state of a molecular ion of hydrogen H,
(Zy = Zy =1, ngy = n2 = mp_2 = 0) on the dimen-
sion of the space D, at the values of the centre separa-
tion R = 10 and R = 5 a.u., respectively. Here Fy, is
the energy for the ground state of H, with the accu-
racy to O(R™%) which follows from (5.73). It is clearly
visible from the figures that in the energy series (5.73)
divergence begins from the value of D = O(1) that is
conditioned by relation (3.28) for p.
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3ATAYA JIBOX KYJIOHIBCBKUX IIEHTPIB ¥ KBAHTOBIN MEXAHIIIIL.
BIIJINB POBMIPHOCTHA

. 1. Borumap', B. IO. Jlazyp!, I. M. IlIsa6’, C. Xamymka?
L @isunnuts axysvmem Yorczopodcvkozo HaIONAABHOZ0 YHisEPCUMEMY,
6ys. Boaowuna, 54, Yowceopod, 88000, Yxpaina
2 Inemumym gisuxu, Ywieepcumem im. IT. . Hlapapuxa,
eya. Hcewna, 5, 041 54 Kowiue, Crosauyvka Pecnybaixa

PosrisiHyTo 3aja4y JBOX KyJIOHIBCBKHX IeHTDIiB. IIpoanasnizoBaHo BB posmiprHocru npocropy (D > 3).
IlobynoBano acumororryani po3s’s3ku piBusaaasa [pequnrepa 3 1BoMa KyJIOHIBCAKAME IOTEHITSJIAME B riepcde-
poinanbHiit cucreMi koopauuat. [lo6ymoBaHi po3B’sI3KM BUpaxKaOThCA depe3 KoudaoenTHi dyHkIil [oiina, gact-
KOBHM BHIIaJIKOM SIKMX € KYJIOHOBCBKI cdepolmanbai GyHKIHI. PO3risgHyTO acCHMITOTHYIHUN PO3KJIA) JJIsi eHepril
i€l CUCTEeMU TPU BEJIMKUX MIiXKIIEHTPOBUX BiJICTAHsIX 1 BUBYEHO 1XHI OCHOBHI BJIACTUBOCTI.

315



