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The isobaric thermal conductivity of solid CH2Cl2 was investigated by the linear-flow method
under saturated vapor pressures in the temperature range from 80 K to the corresponding melting
temperature and then recalculated for a constant density of the samples. The temperature depen-
dence of isochoric thermal conductivity of solid CH2Cl2 is explained within a model in which the
heat is transferred by phonons and above the phonon mobility edge by “diffusive” modes migrating
randomly from site to site. The pressure dependence of the thermal conductivity of solid CH2Cl2
has been obtained.
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I. INTRODUCTION

The results of the research of the high-temperature (at
the temperatures close to or above the Debye tempera-
ture T ≥ ΘD) thermal conductivity of molecular crystals
[1–3] point to some features which go beyond the frame-
work of traditional ideas about heat transfer processes
in dielectric crystals. According to the theoretical pre-
dictions [4–6], at T ≥ ΘD the lattice thermal conductiv-
ity should be inversely proportional to the temperature
Λ ∝ 1/T . It is usually admitted that in dielectric crys-
tals the heat is transferred by phonons, which are quan-
ta of energy of every vibrational mode. In the quantum
picture, such transferring processes could be described
through the destruction of some quanta of elastic energy,
and the creation of new ones. The most likely process-
es is three-quantum scattering in which two quanta are
destroyed and one created or vice versa.

To obey the 1/T law, the volume of crystals should
remain invariable, because the modes would otherwise
change and so would the temperature dependence of the
thermal conductivity. However, the experimental results
for isochoric thermal conductivity Λv of molecular crys-
tals show considerable deviations from the 1/T depen-
dence [1–3,7,8.] Essentially all of the basic concepts of
heat transfer were created mainly on the basis of stud-
ies of the simplest crystalline structure: atomic crystals.
Therefore, features typical of molecular crystals were
not taken into account in them. One of these features
that can affect the temperature dependence of the ther-
mal conductivity is the translation-rotation coupling. It
should be noted that the additional factor which can de-
termine the temperature dependence of the thermal con-
ductivity at T ≥ ΘD also causes thermal conductivity to
approach its lower limit.

As temperature increases, the phonon–phonon scat-
tering processes enhance and the phonon mean-free path
decreases, but it cannot become smaller than half the
phonon wavelength λ/2 [9]. If all vibrational modes scat-
ter for a distance of λ/2, the thermal conductivity reach-
es its lower limit Λmin:
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The summation is over three (one longitudinal and two
transverse) sound modes with the sound velocities υi,
Θi is the Debye cut-off frequency for each polarization

in Kelvins: (Θi = υi (~/kB)
(

6π2n
)1/3

), n = 1/a3 is the
number of atoms per unit volume, a is the lattice pa-
rameter. The calculated values of Λmin (1) were as a rule
considerably smaller than experimental ones [2,8,10,11].
The most obvious reason for this difference is that the
site to site transfer of the rotational energy was not tak-
en into account. In molecular crystals the heat is trans-
ferred by mixed translation-rotation modes, whose heat
capacity is saturated in proportion to the total molec-
ular degrees of freedom [12]. Taking into account this
feature of molecular crystals, lower limit of the thermal
conductivity can be represented as [10]
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where υ` and υt are the longitudinal and transversal
sound velocitie, respectively, z is the number of rota-
tional degrees of freedom.

The purpose of this paper was to study basic features
of high-temperature heat transfer in solid CH2Cl2.

II. THE OBJECT

The solid CH2Cl2 under the pressure of its own satu-
rated vapor has only one crystallographic modification.
It has orthorhombic spatial symmetry Pbcn with four
molecules per unit cell [13–15]. It is known from the
Raman spectrums and IR absorption (20 K and 77 K)
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data [16,17] that the translational modes take the fre-
quency band up to 80 cm−1 and partially overlap the
librational modes in the 70-150 cm−1 (100–210K). The
dipole moment of the CH2Cl2 molecule is 1.6D. The low-
er intramolecular mode corresponds to the frequency of
285 cm−1 (410 K). Nuclear quadrupole resonance (NQR)
on the 35Cl nuclei has been observed in CH2Cl2 up to
melting temperature Tm = 176.3 K [18]. These data al-
so indicate that there are no molecular reorientations at
frequencies above 104 sec−1.

To date, the thermal conductivity of solid CH2Cl2 has
been measured at premelting temperatures on several
isochores [19].

III. ISOBARIC THERMAL CONDUCTIVITY

AND EXPERIMENTAL TECHNIQUE

The isobaric thermal conductivity Λp of solid CH2Cl2
was investigated by the linear-flow method [8] under sat-
urated vapor pressure in the temperature range from
80 K to the corresponding melting temperature. The
measurement ampoule, in which the sample was grown,
was a tube of Kh18N9T stainless steel with the length of
70 mm and an inner diameter of 7.2 mm. The temper-
ature sensors were germanium resistance thermometers
and a Copper–Constantan thermocouple, which were
mounted on copper rings attached to the cell. The mea-
surements were made by a modified heat potentiome-
ter [20], which made it possible to minimize the error in
determination of the thermal conductivity. Uncontrolled
heat fluxes due to thermal radiation were reduced consid-
erably with a radiation shield, on which a system of ther-
mocouples and a precision heat controller reproduced the
temperature field of the measuring cell. The polycrys-
talline samples were grown from the gas phase at the
pressure of around 1.6 bar, with the temperature of the
bottom of the measuring ampoule maintained close to
the temperature of liquid nitrogen. The growth proce-
dure took around 6 hours. The samples had a granular
structure. Most of the grains were of 1.5 to 3 mm in the
linear size. The measurements were conducted on two
samples of 99.8% purity. The accuracy of the thermal
conductivity measurement is 5%.

The results of the measurements are presented in
Fig. 1. The different symbols correspond to the two dif-
ferent samples. The solid line shows smoothed values for
isobaric thermal conductivity. The dashed line in the low-
er part of Fig. 1 is the lower limit of the thermal conduc-
tivity Λmin (1) calculated for the isobaric case according
to Cahill and Pohl, in the framework of the Einstein mod-
el of diffusional heat transfer directly from atom to atom
[9]. From Fig. 1 it can also be noted that at premelt-
ing temperatures the experimental thermal conductivi-
ty approaches its lower limit, being no more than twice
that values Λmin (1). The isobaric thermal conductivity
of solid CH2Cl2 decreases with an increase in the tem-
perature as Λp ∝ T−1.21. Such a dependence of isobaric
thermal conductivity is typical for simple molecular crys-
tals [1,8]. It can be related to two major reasons. Firstly,

the isobaric thermal conductivity also depends upon a
thermal expansion of samples [12]. The second reason re-
lated to nearing thermal conductivity to its lower limit.
The temperature dependence of isobaric thermal conduc-
tivity can be described in the framework of Leibfried&
Schlömann formula [4] taking into account thermal ex-
pansion of samples.
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Fig. 1. Isobaric thermal conductivity Λp of solid CH2Cl2.
The solid lines are the fitting curves for isobaric thermal con-
ductivity. The lower limit of thermal conductivity Λmin (1) is
calculated for the isobaric case, in the framework of the Ein-
stein model of diffusional heat transfer directly from atom to
atom [9].

IV. ISOCHORIC THERMAL CONDUCTIVITY

To compare correctly experimental results of thermal
conductivity with theory it is necessary to use data at
constant density to exclude the effect of thermal expan-
sion. In accordance with this assertion, the experimental
results were recalculated to a constant volume of sam-
ples Vmol = 47.1 cm3/mole [19], which are occupied by
the samples at the growth temperature (80 K). The cal-
culations were performed according to the formula [12]:

Λv = Λp

(

V (T )

V0

)g

, (3)

where Λv is the isochoric thermal conductivity, V (T )
is the current molar volume of the free sample [21],
V0 is the molar volume for which the recalculation is
carried out, and g = − (∂ ln Λ/∂ ln V )T is the Bridg-
man coefficient (Tab. 1) [21]. Figure 2 shows the iso-
choric thermal conductivity recalculated to the corre-
sponding molar volume (black squares). Recalculation
results are in good agreement with isochoric data cited in
[19] for the same conditions (P ,T ,V ). The isochoric ther-
mal conductivity of solid CH2Cl2 decreases with increas-
ing temperature slower than suggested by the Λ ∝1/T
(ΛCH2Cl2

v ∝ T−0.85). The last one, qualitatively conforms
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to the case of strong phonon scattering, when mean free
path of vibrational modes are substantially limited and
approaches to phonon wavelength. In this respect, to elu-
cidate the reasons for such deviations isochoric thermal
conductivity from the dependence 1/T , we used Debye
model of the heat transfer [4] and assumption of Roufosse
and Klemens [21] about lower limit of the phonon scatter-
ing length. According to the Debye formalism, the lattice
thermal conductivity can be expressed as

Λ =
kB

2π2υ2

ωD
∫

0

l(ω)ω2 dω, (4)

where ωD is the Debye frequency (ωD = (6π2)1/3υ/a),
l(ω) is the phonon mean free path, and ω is the angu-
lar frequency. At T ≥ ΘD the phonon mean free path
is mainly determined by the U -processes and for perfect
crystal can be written as

lu (ω) = υ
/

ATω2, (5)

A =
18π3

√
2

kBγ2

ma2ω3
D

, (6)

where the Grüneisen parameter γ = − (∂ ln ΘD/∂ ln V )T ,
m is the average atomic (molecular) weight.

Expression (6) is not applicable if l(ω) becomes of
the order or smaller than half the phonon wavelength
λ/2 = πυ/ω. A similar situation was considered previ-
ously for the case of U -processes alone [21]. Let us assume
that in the general case

l (ω) =

{

υ/Aω2T , 0 ≤ ω ≤ ω0,
απυ/ω, ω0 < ω ≤ ωD,

(7)

where α is the numerical coefficient of the order of unity.
The frequency ω0 can be found from the condition

υ

ATω2
0

=
απυ

ω0
, (8)

It equals

ω0 = 1/απAT, (9)

Condition (8) is a well-known Ioffe–Regel criterion which
implies localization. We can therefore assume that the
excitations whose frequencies are above the phonon mo-
bility edge ω0 are “localized” or “diffusive”. Since com-
pletely localized modes do not contribute to thermal con-
ductivity, we supposed that the localization is weak and
the excitations can hop from site to site diffusively, as
was suggested by Cahill and Pohl [9].

If ω0 > ωD the mean free path of all modes exceeds λ/2

and the thermal conductivity is determined exceptional-
ly by the processes of phonon scattering. Substituting (5)
in (4) we have the known 1/T law:

Λph =
kBωD

2π2υAT
, (10)

At ω0 ≤ ωD the integral of thermal conductivity (4)
is subdivided into two parts describing the contributions
to the heat transfer from the low-frequency phonons and
high-frequency “diffusive” modes:

Λ = Λph + Λdif , (11)

In the high-temperature limit (T ≥ ΘD) these contribu-
tions are:

Λph =
kBω0

2π2υAT
, (12)

Λdif =
αkB

4πυ

(

ω2
D − ω2

0

)

, (13)
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Fig. 2. Isochoric thermal conductivity Λv of solid CH2Cl2
(squares). The solid line is the fitting curve for isochoric ther-
mal conductivity. Λph and Λdif are relative contributions of
phonons and ”diffusive” modes, calculated according to Eqs.
(12), (13). The lower limit of thermal conductivity Λ∗

min (2)
is calculated taking into account the possibility of the site to
site rotational energy transfer.

a, 10−10 m υ, m/s γ α A, 10−16 s/K g

4.2 1770 2.9 1.7 1.33 4.6

Table 1. Debye model parameters of thermal conductivity

used in fitting and other quantities which were used for the

calculation.
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To our knowledge, no information at all is available on
the velocity of sound in solid CH2Cl2. In this respect, the
phonon velocity (Table 1) was calculated by the method
described in [22,23]. The Debye temperature was deter-
mined by using the boundary frequency of translational
modes from the Raman and IR absorption data at 20 K.
The necessary initial data were taken from [16,17].

The computer fitting of the thermal conductivity using
Eqs. (11–13) was performed by the least square method,
varying the coefficients A and α. The parameters of the
Debye model for thermal conductivity used in the fitting
(a, υ), and the fitted values A and α are listed in Table
1 along with the Bridgman coefficient obtained in the
experiment [19].

The fitting results for isochoric thermal conductivity
are shown in Fig. 2 (solid line). The same figure shows
the contributions (dot-and-dash lines) to the heat trans-
fer from the low-frequency phonons Λph and the high-
frequency ”diffusive” modes Λdif (calculated by Eqs. (12),
(13)). The dotted line shows the lower limit of thermal
conductivity Λ∗

min (2) calculated of taking into account
the possibility of site to site rotational energy transfer.
It is seen (Fig. 2) that in solid CH2Cl2 the “diffusive”
behavior of the oscillatory modes starts above 90K. As
temperature rises the amount of heat transferred by the
“diffusive” modes increases. Above 150 K most of the heat
is transported by “diffusive” modes. It can be seen from
Fig. 2 that the results obtained by using the above mod-
el fit the experimental results well and maximum differ-
ences do not exceed 5%. The minimal values of thermal
conductivity Λv (Fig. 2) is 1.04 times higher than Λ∗

min

calculated by Eq. (2), and 1.5 times higher than Λmin

calculated by Eq. (1). The discussion of the lower limit
of thermal conductivity of molecular crystals brings up
the inevitable question: should the site-to-site transport
of the rotational energy of the molecules be taken into
account? The above correlation between the Λmin and
Λ∗

min suggests the positive answer.

V. PRESSURE DEPENDENCE OF A THERMAL

CONDUCTIVITY

Molecular crystals are characterized by a large coef-
ficient of thermal expansion. Therefore, in the course
of isochoric investigations [3,4,6], a crystal sample upon
heating experiences an increasing pressure produced by a
measuring cell that is only slightly susceptible to thermal
expansion. This process is similar to uniform compression
with the negative sign, because the thermal pressure P is
associated with thermal expansion of the studied sample.
Upon uniform compression, the same pressure directed
normally to the surface acts on each unit area of a crys-
tal. This completely corresponds to the conditions arising
in isochoric experiment. The temperature dependence of
the thermal pressure (Fig. 3) in CH2Cl2 solid samples
with the given constant molar volumes were calculated
according to the assumption that the lattice heat capac-
ity in the given temperature range (T ≥ ΘD) obeys the
Dulong–Petit law, and from relationship [21]

(

∂P

∂T

)

V

=
γCV

Vmol
, (14)

The necessary initial data were taken from [19]. As is seen
from Fig. 3, the thermal pressure in the isochoric sample
(Vmol=47.1 cm3/mole) changes by more than two orders
of magnitude in the temperature range under investiga-
tion. The molar volume of the samples depend on their
growth temperature. The results of calculations are in
good agreement with the data obtained from direct mea-
surement of the thermal pressure in solid CH2Cl2 [19] at
premelting temperatures.
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Fig. 3. Temperature dependence of thermal pressure for
samples of solid CH2Cl2 with various molar volumes. Line 1
corresponds to experimental data [21].
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Fig. 4. Temperature dependence of isochoric thermal con-
ductivity of solid CH2Cl2 with various molar volumes. Line
1 corresponds to the data of direct measurements of the iso-
choric thermal conductivity [21] at premelting temperatures.

The temperature dependences of the isochoric thermal
conductivity Λv (Fig. 4) for the samples of solid CH2Cl2
with various molar volumes (these dependences are need-
ed afterwards to obtain the pressure dependence of ther-
mal conductivity ΛT (P )) were calculated according to
formula (3). Using the temperature dependences of the
thermal pressure P (T ) (Fig. 3) and the isochoric ther-
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mal conductivity (Fig. 4), were constructed the depen-
dences ΛT (P ) of the thermal conductivity on the pres-
sure that arises in the studied samples as their volume
changes. The results are displayed in Fig. 5. Using the
methods of computer simulation, the thermal conductiv-
ity of CH2Cl2 was revealed to vary, as the pressure grows,
according to the dependence

ΛT = B(T ) + C(T )P + D(T )P 2, (15)

where B, C, and D are numerical coefficients, the values
of which are listed in Table 2. With the increase in pres-
sure at constant temperature, the thermal conductivity
also increases (Fig. 5). The coefficient B is nothing else
but the value of isobaric thermal conductivity. In equa-
tion (15) the coefficients C and D determine the influence
of pressure on the thermal conductivity. By matching the
units of the C and D coefficients with those of thermal
conductivity it is not difficult to notice that the coeffi-
cients C and D can be determined as partial derivatives

(∂Λ/∂P )T and
(

∂2Λ
/

∂P
2
)

T
, respectively. Then depen-

dence (15) can be written as

ΛT = ΛP +

(

∂Λ

∂P

)

T

P +

(

∂2Λ

∂P 2

)

T

P 2 (16)

The verification of this dependence, on the example of
the C6H6 and CCl4 solids, gives good accordance with
the direct research results of the pressure dependences of
thermal conductivity [24,25] (in the pressure range from
0.1 GPa to 1.8 the GPa distinctions between calculation
(16) and experimental values do not exceed 7%).

çéè ê
çéè ë
çéè ì
çéè í
çéè î
çéè ï

ç ílç ð
çjç ð�ílç ê�çlç ê�ílç ëlçjç
ñuò0óôñöõ

ΛΛ

÷ ø
ùú û
ü üý

þ ÿ

��� � ��� � ���

	 
���
 ������� ����� � �������  !#"%$'&(
( !#)%$'&

( !#*%$'&
!+!,$'&( - $.&(

Fig. 5. Pressure dependence of thermal conductivity of sol-
id CH2Cl2. P0 corresponds to the values of thermal conduc-
tivity under saturated vapor pressure.

T , K B, W/(m·K) C, W/(m·K·Pa) D, W/(m·K·Pa2) P , MPa

110 0.443 0.0006 −8·10−7 0.0÷92.1

130 0.363 0.0004 −3·10−7 0.0÷153.5

150 0.306 0.0003 1·10−8 0.0÷214.9

170 0.263 0.0003 3·10−8 0.0÷276.3

Table 2. Isotermal pressure dependence of thermal conductivity of CH2Cl2 fitted to equations of the form of

ΛT = B(T ) + C(T )P + D(T )P 2.

VI. CONCLUSIONS

The current study presents some results of the investi-
gation of high-temperature thermal conductivity in the
orientationally ordered phases of molecular crystals, with
solid CH2Cl2 as an example. The isobaric thermal con-
ductivity of solid CH2Cl2 has been investigated in the
temperature interval from 80 K to the melting tempera-
ture and then recalculated for a constant density of sam-
ples. The obtained experimental data was used in the
calculation mechanism, which was suggested to deter-
mine the pressure dependence of thermal conductivity.

It is shown that the temperature dependence of the
isochoric thermal conductivity of CH2Cl2 can be de-

scribed within a model in which the heat is transferred
by phonons and above the phonon mobility edge by “dif-
fusive” modes migrating randomly from site to site. The
phonon mobility edge ωo is determined from the condi-
tion that the phonon mean free path restricted by the
Umklapp processes cannot become smaller than half the
phonon wavelength. It should be noted that the present
model can be applied to the simulation of the isochoric
thermal conductivity only in the orientationally ordered
phases of molecular crystals, since thermal conductivi-
ty in the orientationally disordered phases of molecular
crystals depends essentially on the character of the ori-
entational molecular motion as well.
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ТЕПЛОПРОВIДНIСТЬ ТВЕРДОГО CH2Cl2

О. I. Пурський
Черкаський державний технологiчний унiверситет,

вул. Шевченка, 460, Черкаси, 18006, Україна

Iзобарну теплопровiднiсть твердого CH2Cl2 дослiджено плоским стацiонарним методом пiд тиском влас-
них насичених парiв у дiяпазонi температур вiд 80 К до температури плавлення. Результати експерименту
перераховано до постiйної густини зразкiв. Температурну залежнiсть iзохорної теплопровiдности твердого
CH2Cl2 пояснено в межах моделi, у якiй тепло переноситься фононами, а вище вiд межi рухливости фононiв
— “дифузними” модами, що мiґрують випадково з вузла на вузол. Отримано залежнiсть теплопровiдности
твердого CH2Cl2 вiд тиску.
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