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Methods for estimating of different reference times which appear in the description of transition
of a strong adiabatic shock into the radiative era are reviewed. The need for consideration of
an additional transition subphase in between the end of the adiabatic era and the beginning of
the radiative “pressure-driven snowplow” stage for a shock running in the uniform or nonuniform
medium is emphasized. This could be of importance in particular for studying the interaction of
supernova remnants (SNRs) with molecular clouds and therefore for understanding the processes
of the cosmic ray production in such systems. The duration of this subphase — about 70% of the
SNR age at its beginning — is almost independent on the density gradient for media with increasing
density and is longer for higher supernova explosion energy and for smaller density in the place
of explosion. It is shown as well that if the density of the ambient medium decreases then the
cooling processes could differ from the commonly accepted scenario of the “thin dense radiative
shell” formation. This property should be studied in the future because it is important for models
of nonspherical SNRs which could be only partially radiative.
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I. INTRODUCTION

Physical processes accompanying the evolution of su-
pernova remnants (SNRs) is a complex system. It is al-
most impossible to account for all of them in a single
model of SNR. Therefore, the whole evolution of SNR
from a supernova explosion until the mixing of a very old
object with the interstellar matter is divided on a number
of the model phases (e. g. [1–3]): the free-expansion, adi-
abatic, radiative and dissipation stages. There are some
physical processes important during a given stage, some
others could be neglected. Such an approach allows for
a rather simple analytical description of SNR evolution
during each phase.

The role of radiative losses, which is negligible in the
adiabatic phase of SNR evolution, becomes more and
more promiment with time. They are so important in old
SNRs that they essentially modify the dynamics of such
SNRs. Theoretical systematization of timescales and the
role of different physical processes in the cooling of adia-
batic SNR was first reviewed in [4]. In general, the tran-
sition to the radiative stage can be studied numerically
by following the history of the shocked flow as it is done
e. g. by [5–10]. The analytical treatments are of great
importance as well, e. g. [11–16].

The physical processes in the radiative blast wave,
namely, quick cooling of an incoming flow and forma-
tion of the thin dense cold shell which moves due to the
pressure of internal gas makes the so called “pressure-
driven snowplow” (PDS) model within the “thin-layer”
approximation to be adequate for the description of this
stage of SNR evolution [15, 17, 18].

The PDS model was introduced by McKee & Ostriker;

their analytical solution [12, 15] widely used for the de-
scription of evolution of the radiative shell gives a power-
law dependence R ∝ tm (where t is age and R is the po-
sition of the shock) with the constant m (which equals
2/7 for the uniform medium). However, the numerical
studies cited above give somewhat different values of the
deceleration parameter m (defined as m = d ln R/d ln t),
namely ≈ 0.33 [5,10]. We have shown analytically in [16]
that the evolution of the radiative shell is given by vari-
able m and that the discrepancy between the analyti-
cal and numerical results is only apparent. In fact, the
usage of McKee & Ostriker analytical solution assumes
that SNR has already reached the asymptotic power-law
regime with the constant value of m = 2/7. The time
needed to reach this asymptotic regime is, however, long
in comparison with to the SNR age.

It is common for an approximate theoretical descrip-
tion of SNR evolution to simply switch from the adia-
batic solution to the PDS radiative one at some moment
of time. However, we stress in this paper the result visi-
ble also in previous calculations, namely, the need for an
intermediate transition subphase between the adiabatic
and radiative stages, with the duration of more than a
half of SNR age it has at the time when radiative losses
of gas passing through the shock begins to be promi-
nent. Thus the radiative era which begin after the end
of the adiabatic one, has to be divided into two phases:
the transition subphase, when the radiative losses begin
to modify their dynamics and their lead to the forma-
tion of the thin radiative shell, and the PDS stage when
one can apply the PDS analytic solution. In the present
paper the role of nonuniform interstellar medium on the
duration of the transition subphase is considered.
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II. TRANSITION TO THE RADIATIVE PHASE

A. Definitions of different reference times

Let us consider the spherical shock motion in the medi-
um with the power-law density “o” and “s” refer hereafter
to the pre- and post-shock values. The dynamics of the
adiabatic shock in such a medium is given by Sedov so-
lutions [19] where the shock velocity D ∝ R−(3−ω)/2 and
R ∝ t2/(5−ω).

Moving through the medium, the shock decelerates
if the ambient density distribution increases or does
not quickly decrease (ω < 3). The shock temperature
Ts ∝ D2 decreases with time as well. Starting from
some age tlow when Ts = Tlow ∼ 3 × 107 K, which cor-
responds to the minimum of the cooling function Λ(T ),
the radiative losses of shocked plasma are more and more
prominent with the falling of T (Fig. 1). The maximum
in the energy losses arises when the shock temperature
Ts = Thi ∼ 2×105 K, the corresponding Sedov time (i. e.
calculated under the assumption that the shock is adia-
batic up to this time) is thi.

There is a number of reference times in between tlow
and thi [4, 10, 20]. Once a parcel of gas is shocked its

temperature changes due to expansion and cooling Ṫa =
Ṫa,exp + Ṫa,rad, where the dot marks the time derivative.
One may define the “dynamics-affected” time tdyn by the
equation

Ṫa,exp(tdyn) = Ṫa,rad(tdyn). (1)

If a fluid element is shocked after this time, its temper-
ature decreases faster due to radiation than as a conse-
quence of expansion. At another time tsag, the radiative
cooling begins to affect the temperature distribution in-
side the shock. When the rate of change of the shock
temperature Ṫs begins to be less than Ṫa, the tempera-
ture downstream of the shock will sag rather than rise.
Thus the equation for tsag is

Ṫs(tsag) = Ṫa(tsag). (2)

Radiative losses cause a faster, in comparison with
the adiabatic phase, deceleration of the forward shock.
This faster deceleration begins to be prominent around
the “transition age” ttr when the shock pressure decrease
due to the radiative losses coming into effect. Then, the
shocked gas radiates away its energy rather quickly, cools
till the temperature T ∼ 104 K and forms a dense shell.
The formation of shell is completed around the “time of
shell formation” tsf which is larger than ttr; the latter
marks the end of the adiabatic era. After tsf the thermal
energy of all the swept-up gas is rapidly radiated and
the thin dense shell expansion is caused by the thermal
pressure of the interior.

The time tlow is given by the equation

Ts(tlow) = Tlow. (3)

A similar equation defines the time thi

Ts(thi) = Thi, (4)

which was suggested to be a measure of ttr [13,14]. How-
ever, as we will demonstrate later, the post-shock tem-
perature of plasma at ttr is of the order 106 K > Thi and
thi is larger than ttr by about 3.5 times (Sect. III A).
Therefore it is not correct to calculate the “highest-
losses” of SNR age with the shock motion law valid dur-
ing the adiabatic era.

A simple approach to locate ttr bases on the compari-
son of the radiative losses with the initial thermal energy
of the shocked fluid [10]. A shocked fluid element cools
during the cooling time ∆tcool ∝ ε(Ts, ρs)/Λ(Ts, ρs),
where ε = (γ − 1)−1ρskBTs/µmp is its initial thermal
energy density, γ is the adiabatic index, kB is the Boltz-
man constant, mp is the proton mass. During the adi-
abatic phase the cooling time is larger than SNR age
t. The radiative losses may be expected to modify their
dynamics when the cooling time ∆tcool ≤ t. In such an
approach the transition time is a solution of the equation

ttr = ∆tcool(ttr). (5)

Let us assume that the cooling function Λ ∝ n2T−β

with β > 0 and n is the hydrogen number density. Then
∆tcool ∝ n−1

o T 1+β
s ∝ t−6(1+β)/5 with the use of Sedov

solutions for uniform medium. For the shock running in
the power-law density distribution, the upstream hydro-
gen number density and the post-shock temperature at
time t is

no ∝ t−2ω/(5−ω), Ts ∝ t−2(3−ω)/(5−ω). (6)

Therefore ∆tcool ∝ t−η with η =
(

2(3 − ω)(1 + β) −

2ω)/(5 − ω)
)

for such a distribution of density. For
β = 1/2 the index η is the same as found in [9].

A way of estimating the time of the shell formation
tsf was suggested in [20, 21]. If an element of gas was
shocked at the time ts then the age of SNR will be
tc = ts + ∆tcool(ts) when it cools down. The minimum
of the function tc(ts) has the meaning of SNR age when
the first element of gas cools and is called “SNR cool-
ing time” tcool. Let t1 be the time when the shock en-
countered the fluid element which cools first. If so, tc =
t1(ts/t1) + ∆tcool(t1)(ts/t1)

−η . Setting dtc/dts|ts=t1 = 0
one obtain

tcool = (1 + η)∆tcool(t1), (7)

tcool

t1
=

1 + η

η
, (8)

The cooling time tcool > t1 by definition, therefore, the
condition η > 0 must fulfil. This is the case for
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ω < 3(1 + β)/(2 + β); (9)

that is ω < 2 (9/5) for β = 1 (1/2). The equation

t1 = η∆tcool(t1) (10)

is more suitable for practical use than (7). If the medi-
um is uniform then tcool = 17t1/12 for β = 1 and
tcool = 14t1/9 for β = 1/2.

The “SNR cooling time” tcool = min(tc) was initially
suggested to be taken as the time of the shell formation.
Numerical experiments for shock in the uniform medi-
um suggest that tsf is a bit higher (of the order of 10%)
than tcool [22] and the reason for this could be that the
compression of the shell is also effective after cooling the
first element that takes additional time.

Another point is that the solution for adiabatic shock
used in (6) might not formally be applicable there be-
cause t1 > ttr (see Eq. (39)). We believe, however, that
the level of accuracy in the estimation of ttr, the small
difference between ttr and t1 (about 30% in the case of
uniform medium, Sect. III A) as well as close values of
tcool and tsf allow one to use the Sedov solution in (6)
and to assume tsf ≈ tcool.

We would like to note once more that the transition
time ttr is an approximate estimation on the end of the
adiabatic stage and beginning of the radiative era, while
the time of the shell formation tsf marks the time when
one can start to use the PDS model where hot gas push-
es the cold dense shell1. The structure of the flow re-
structurises and the shell forms during the transition sub-
phase given by the time interval (ttr, tsf). We will demon-
strate later that the ratio tsf/ttr with ttr given by (5) and
tsf by (8) is always larger than unity (see Eq. (38)) and
that the transition subphase is not short as it is generally
assumed.

One more time, namely the “intersection time” ti ∈
(ttr, tsf) was introduced in [16], as a time when two func-
tions — the adiabatic dependence R = R(t) (valid be-
fore ttr) and the PDS dependence Rsh = Rsh(t) (valid
after tsf) — intersect being extrapolated into the transi-
tion subphase. This intersection time could be useful in
some tasks when the level of accuracy is such that one
may sharply switch from the adiabatic solution to the
radiative one without the consideration of the transition
subphase.

B. Cooling time

The expression

∆tcool =
ε(Ts, ρs)

Λ(Ts, ρs)
(11)

used in [10] to calculate the cooling time, equates the en-
ergy losses Λ∆tcool with initial thermal energy density εs

of a fluid element on condition that the density and tem-
perature of this element are constant. A more detailed
model should account for the density and temperature
history during ∆tcool. In feet, the above equation should
be replaced with a differential one:

dε/dt = −Λ(T, ρ). (12)

The total internal energy U = εV of gas within the vol-
ume V changes as dU = TdS − PdV where S is entropy
and P is pressure. The evolution of the thermal energy
per unit mass E = ε/ρ is therefore

∂E

∂t
−

P

ρ2

(

∂ρ

∂t

)

= T
∂s

∂t
(13)

where s = (3kB/2mpµ) ln (P/ργ) is the entropy per unit
mass (mp is the mass of proton, µ is the mean particle
weight). So, Eq. (12) becomes

T
∂s

∂t
= −

Λ(T, ρ)

ρ
, (14)

here the temperature T , density ρ, pressure P , energy E
are functions of the Lagrangian coordinate a and time t.

Following from (14) and the definition of s, the time
∆tcool may be also defined as a time taken for the adiabat
P/ργ to fall to zero. Kahn [23] has found an interesting
result. Namely, if

β =
2 − γ

γ − 1
(15)

(that is β = 1/2 for γ = 5/3), then one can derive ∆tcool

from (14) independently of the density and temperature
history:

∆tKahn
cool =

ε(Ts, ρs)

(β + 1)Λ(Ts, ρs)
. (16)

It can be checked that the same solution may be ob-
tained from (13)–(14) for any β if one assume that the
gas is not doing work during ∆tcool that is equivalent
to putting ∂ρ/∂t = 0 in (13). However, the density of
fluid is not expected to be constant. In such a situation
one should solve the full set of the hydrodynamic equa-
tions which can be performed only numerically, while we
are interested in a rather simple analytical estimation of
cooling time for β generally. Therefore it is more suitable

1The PDS analytical solutions which describe the evolution of SNR after the shell formation time are presented in [13,14,16]
for uniform ISM and in [14] for ISM with power-law density variation.
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to use estimation (11) for the cooling time which follows
just from the comparison of the radiative losses with the
initial energy. We shall see later that such an approach
describes the shock dynamics rather well (Fig. 2).

C. Equations for the reference times

Let us write equations for ttr and tsf for the shock in
a nonuniform medium. We assume hereafter β = 1. Note
that all the remaining formulae can easily be modified if
one uses β which coincides with the value given by (15);
namely, following from the comparison of (16) and (11),
T in (17) has to be simply divided by β + 1.

If the cooling function for a fluid is approximately
Λ = CT−βnenH, where C is a constant, then (11) yields

∆tcool = T
T 1+β

s

no(R)
where T =

kBµe

Cµ(γ + 1)
, (17)

µe is the mean mass of particle per one electron in terms
of the proton mass (i. e., ρ = µenemp = µnmp). The
transition time ttr is a solution of equation (5):

ttr = T
Ts(ttr)

1+β

no(R(ttr))
, (18)

where the dependencies Ts(t), R(t) are those valid on the
adiabatic phase. The time t1 can be estimated from (10):

t1 = ηT
Ts (t1)

1+β

no (R(t1))
. (19)

Now the SNR cooling time tcool and the time of the shell
formation tsf ≈ tcool is given by (8). The estimations for
the transition and the shell formation times are some-
what different in the literature because of different ways
used to find the cooling time ∆tcool and to approximate
the cooling function Λ(T ).

For the adiabatic shock the rate of change of the shock
temperature is

Ṫs = −
2(3− ω)

5 − ω

Ts

t
. (20)

Close to the shock, the fluid temperature in Sedov solu-
tion [19] is approximately

T (a)

Ts
≈

( a

R

)−κ(γ,ω)

, (21)

where a is the Lagrangian coordinate. The value of κ is
given by

κ =

(

−
a

T (a)

∂T (a)

∂a

)

a=R

. (22)

where T (a) is the profile from Sedov solutions. It is
κ = 1 − 3ω/4 for γ = 5/3 (see Appendix 1). Now we
may find that the temperature in a given fluid element
a changes due to expansion as

Ṫa,exp ≈ −
2(3− ω − κ)

5 − ω

T (a)

t
. (23)

The rate Ṫa,rad due to cooling follows from dE/dt =
−Λ/ρ:

Ṫa,rad = −
γ − 1

γ + 1
T −1nH(a)T (a)−β. (24)

Now we have to compare the above rates at the time ts,
i. e. at the time when the parcel of fluid was shocked.
The coordinate a = R(ts) by definition. Thus Eq. (1) is
rewritten:

tdyn =
2(3− ω − κ)

5 − ω
∆tcool(tdyn). (25)

Similarly, the equation for tsag follows from (2):

tsag =
2κ

5 − ω
∆tcool(tsag). (26)

As one can see, the most of reference times are given
by the equations of the form

t∗ = K∆tcool(t∗), (27)

where t∗ is a given reference time and K is the corre-
sponding constant. It may be shown that the solution of
such an equation may be found as

t∗ = K1/(1+η)ttr. (28)

The Sedov radius of the shock at this time is R∗ =
K2/((5−ω)(1+η))Rtr.

D. The cooling function

There are two choices of β in the literature, namely 1
and 1/2. The first case is used for non-equilibrium cool-
ing model [24] where the cooling function for plasma with
solar abundance may be approximated as [10]

Λ = 10−16nenHT−1 erg cm−3 s−1. (29)

This approximation is valid for the range of temperatures
T = (0.2−5)×106 K which important for the description
of transition into the radiative phase. Another possibil-
ity lies in using the equilibrium cooling model as it was
done in [9, 20, 22, 23, 25]. In this case the approximate
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proportionality Λ ∝ T−1/2 is a reasonable one, e. g. for
the results on the cooling of the collisional equilibrium
plasma from [26,27]; the actual approximation

Λ = 1.3 × 10−19nenHT−1/2 erg cm−3 s−1 (30)

is written for plasma with almost the same abundance
as above and is valid for T = (0.05÷ 50) × 106 K [23].

Different cooling functions are compared with their
approximations on Fig. 1. At lower temperatures, the
nonequilibrium cooling is less effective in energy losses
than the equilibrium one (compare lines 2 and 5). This
is because the cooling rate for temperatures higher than
∼ 3× 107 K is mostly due to free–free emission while be-
low this temperature the cooling is mostly due to the line
emission from heavy elements (most heavy elements are
completely ionized above ∼ 3 × 107 K). Under nonequi-
librium ionization conditions the ions are underionized
because electrons are much cooler than ions and thus
there is less emission from ions [9, 28] (see also Fig. 18
in [24]).

T, K

Λ
/n

en
H

, e
rg

 c
m

3  s
-1

1
2
3
4
5

10-22

10-23

104 105 106

10-21

107 108

Fig. 1. Equilibrium (line 1) [26] and nonequilibrium (line
2) [24] cooling functions, used in the literature to study the
transition of SNRs into the radiative phase, and approxima-
tions (30) (line 3) and (29) (line 4). The equilibrium cooling
function from [24] is also shown for comparison (line 5).

III. REFERENCE TIMES AND TRANSITION
SUBPHASE

A. Shock in a uniform ISM

Let us compare the sequence of different reference
times with numerical calculations [10] of transition of
the adiabatic shock into the radiative era, for exempli-
fied by the shock motion in the uniform ambient medium.
Let us consider the same parameters as in [10], name-
ly γ = 5/3, β = 1, the same abundance (µ = 0.619,

µe = 1.18, µH = 1.43) as well as assume tsf = tcool and
use (11) for the calculation of ∆tcool.

If the shock wave moves in the uniform medium, then
— with the use of Eq. (18) – the transition time is

ttr = 2.84× 104E
4/17
51 n−9/17

o yr (31)

where E51 = ESN/(1051 erg). The gas element which at
first cools (at tcool) was then shocked at t1 which follows
from Eq. (19):

t1 = 3.67× 104E
4/17
51 n−9/17

o yr. (32)

1 10
τ

0.1

0.2

0.3

0.4

m

τtr

τi

τsf τmax

τhi
τ1

τdyn

τsag

Fig. 2. The evolution of the deceleration parameter m and
different reference times for the shock motion in the uniform
medium. Solid line — numerical calculations [10], thick dashed
lines — Sedov solution (till τtr) and analytical solution [16]
(after τsf ). The dimensionless reference times are τsag = 0.654,
τdyn = 0.802, τtr = 0.855, τi = 1.01, τ1 = 1.10, τsf = 1.57,
τlow = 0.047, τhi = 3.03. The function m(τ ) reaches its max-
imum at radiative phase at τmax = 6.18 [16].

The time of the shell formation is given by Eq. (8):

tsf = 5.20× 104E
4/17
51 n−9/17

o yr, (33)

so that tsf/ttr = 1.83. The time when the radiative losses
of the shocked gas reach their minimum is (3):

tlow = 1.60× 103T
−5/6
3e7 E

1/3
51 n−1/3

o yr (34)

where T3e7 = Tlow/(3 × 107 K). Under the assumption
that radiative losses does not change the shock dynam-
ics till thi, with the use of Sedov solutions for the shock
motion one has from Eq. (4) that

thi = 1.04× 105T
−5/6
2e5 E

1/3
51 n−1/3

o yr (35)

where T2e5 = Thi/(2 × 105 K). The fluid temperature
drops faster due to cooling than due to expansion from
the time
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tdyn = 2.66× 104E
4/17
51 n−9/17

o yr. (36)

The time when one may expect to have the temperature
decrease downstream close to the shock is

tsag = 2.17× 104E
4/17
51 n−9/17

o yr. (37)

The Sedov solutions give at the time ttr the shock ra-

dius Rtr = 19E
5/17
51 n

−7/17
o pc, the shock velocity Dtr =

260 E
1/17
51 n

2/17
o km/s, the post-shock temperature Ttr =

0.95·106 E
2/17
51 n

4/17
o K and the swept up mass Mtot(ttr) =

103 E
15/17
51 n

−4/17
o M�.

The above reference times are shown on Fig. 2 togeth-
er with the evolution of the deceleration parameter m(τ)
calculated numerically [10]. The analytical solutions for
the adiabatic [19] and the radiative shock [16] are also
shown. Numerical result is found for supernova energy
ESN = 1051 erg and interstellar hydrogen number den-
sity no = 0.84 cm−3. With these values, the times are
tsag = 2.4× 104 yr, tdyn = 2.9× 104 yr, ttr = 3.1× 104 yr,
t1 = 4.0 × 104 yr, tsf = 5.7 × 104 yr, tlow = 1.7 × 103 yr,
thi = 1.1×105 yr; the intersection time is ti = 3.6×104 yr
[16]. The function m(τ) reaches its maximum during the
radiative stage at tmax = 2.3×105 yr [16]. The results on
Fig. 2 are presented in terms of the dimensionless time
τ = t/t̃ because the analytical solutions allow for scaling
(numerical results for various input parameters differ by
oscillation transient only; see e. g. Fig. 8 in [10]). The
dimensional scale for time determined from fitting ana-
lytical and numerical results is t̃ = 3.6× 104 yr [16].

It is apparent from Fig. 2 that the transition time ttr is
a reasonable estimation for the end of the adiabatic stage
while tsf could be the time when one can start to use the
radiative solutions [16] coming from the PDS model of
McKee & Ostriker [12]. The duration of the intermediate
transition subphase is (τsf −τtr)/τtr = 0.83 times the age
of SNR at the end of the adiabatic stage, i. e., almost
the same as duration of the adiabatic stage itself. This
means that there is a strong need for a theoretical model
which describes the evolution of SNR in this subphase.

For the estimation of reference times, a number of au-
thors [6,9,20–22] keep a bit different approach from that
used above, namely they use the approximation of the
equilibrium cooling function with β = 1/2 and the Kahn
solution for cooling time (16). Let us compare the re-
sults of this approach with those obtained above. The
evolution of the deceleration parameter in the refereed
approach is presented in [6]. There is also the same defi-
nition of the time of the shell formation tsf = tcool. The

estimation is tsf,C = 4.31 × 104E
3/14
51 n

−4/7
o yr for their

abundance and the cooling function (30). For the param-
eters used in the numerical calculations E51 = 0.931 and
no = 0.1 cm−3 the time is tsf,C = 1.58×105 yr while with
the use of our Eq. (33) we obtain tsf = 1.73×105 yr. Both
estimations are close. Analytical solutions show that, be-
fore ttr and after tsf , the evolution of dynamic parameters
of the shock can be expressed in a dimensionless form,
i. e., independently of E51 and no. The behaviour of the

shock velocity depends, however, on these parameters
during the transition subphase; the difference is in the
frequency of oscillations (Fig. 8 in [10]). Nevertheless, as
one can see from this figure, the strong deceleration of the
shock right after ttr up to the first minimum is almost the
same for different parameters, i. e. it can also be scaled.
We use this property in order to find the scale factor t̃
for calculations be done in [6]. Namely, the fit of curve
m(τ) from [6] to that of [10] (within the time interval
from ttr to the first minimum) gives t̃C = 1.05× 105 yr.

1 2 4 60.80.6
τ

0.3

0.4

m
τtr

τsf

τtr
C

τsf
C

Fig. 3. Numerical calculation of evolution of the deceler-
ation parameter m from [10] (thin black line) and from [6]
(thick gray line). The transition and shell formation times
from [6] are marked by “C”.

Both calculations of the transition to the radiative stage
agree rather well as it may be seen on Fig. 3. The dimen-
sionless times for results in [6] are: the shell formation
time τsf,C = tsf,C/t̃C = 1.51 and the transition time (as
it follows from (38)) τtr,C = τsf,C/1.92 = 0.785. Fig. 3
shows that both approaches for the localization of the
limits of the transition subphase — with the use of the
nonequilibrium-ionization cooling function (29) and the
simple estimation for ∆tcool (11) [10] or with the equilib-
rium cooling function (30) together with Kahn solution
for ∆tcool (16) [6] give almost the same estimations.

B. The shock in a medium with power-law density
variation

Let us now consider the shock motion in the ambient
medium with the power-law density variation ρo(R) =
AR−ω. With the use of (18), (19), (8), (6) and the defi-
nition tsf = tcool one can show that the duration of the
transition subphase is given by

tsf
ttr

=
tcool

ttr
=

1 + η

ηη/(1+η)
. (38)

The shell formation time is always larger than the tran-
sition time ttr, provided by the fact that η > 0. The
ratio
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t1
ttr

= η1/(1+η) (39)

is also always larger than unity. Note that these rela-
tions do not depend on the abundance and γ. The ratios
between all other times may be found from (28).

The consequence of times is tdyn < ttr < t1 < tsf
(Fig. 4) in nonuniform medium with increasing density.
The time t1 may be smaller than ttr and tdyn for the
decreasing density medium. The sag time tsag < ttr for
ω > −6 only.

-10 -8 -6 -4 -2 0 2
ω

0.5

1

1.5

2

tsf/ttr

t1/ttr

tdyn/ttr

Fig. 4. The ratios of times for β = 1 (thick lines) and
β = 1/2 (thin lines) as it is obtained from (38) and (39).

Fig. 4 shows the two ratios (38) and (39) as a functions
of ω for two values of β. Namely, the ratios t1/ttr ≈ 1.3
and tsf/ttr ≈ 1.6 ÷ 1.8 are almost the same for shock
in the medium with increasing density (ω ≤ 0). There-
fore, in case of a uniform medium and a medium with
increasing density, there is a need of introduction of tran-

sition subphase with the duration of more than a half

of the SNR age at the beginning of this subphase, ttr.
The transition time ttr and therefore the transition sub-
phase tsf − ttr ∝ ttr are less for higher density and

lower initial energy: ttr ∝ E
(2+2β+ω)/δ
51 A−(7+2β)/δ where

δ = 11 + 6β − ω(5 + 2β). Such a dependence on density
is also visible in numerical calculations (Fig. 8 in [10]).

1. Medium with decreasing density

It seems that the formulae (38) and (39) suggest for the
case of decreasing density that the PDS radiative stage
can even begin right after the end of adiabatic stage:
tsf/ttr → 0 with ω → 3(1 + β)/(2 + β). Another result,
already stated in [9], also follows: there will be no radia-
tive shell formation for ω ≥ 3(1+β)/(2+β). In order to
understand the reasons of such behavior let us consider
more details.

What is the coordinate a1 of the element which cools
first? This element was shocked at t1 = η1/(1+η)ttr.
The Sedov radius at this time is R(t1) = a1 =
η2/((5−ω)(1+η))Rtr, thus the coordinate a1 > Rtr if ω <
1.4 (β = 1) as it is shown on Fig. 5. The ratio a1/Rtr

is close to unity and is almost the same for such ω, i. e.

the fluid we are interested in will be shocked soon af-
ter ttr. However, if ω > 1.4 then a1 → 0 quickly with
the increasing of ω from 1.4 to 2, i. e. the element which
cools first is already inside the shock and may be in a
very deep interior. It looks that there could not be any
“radiative shell” in a common sense.

It is clear that the trend tsf/ttr → 0 does not mean
that radiative processes in the shock develop quickly
for ω > 1.4. The transition and the shell formation
times correspond to different processes: ttr comes from
a comparison of the initial thermal energy density of the
shocked fluid with radiative losses though tsf = tcool is
a time when the first cooled element appears. The two
mentioned processes place in the vicinity of the shock
if ambient medium is uniform or with increasing densi-
ty. Numerical results suggest that they may be used for
approximate estimates of the limits of the transition sub-
phase in such media. However, these two processes are
separated in space for media with decreasing density. It
could be that one (or both) of the times ttr and tsf may
not be suitable to mark stages of SNR in medium with
decreasing density.

-10 -8 -6 -4 -2 0 2
ω

0

0.5

1

a 1
/R

tr

Fig. 5. The ratio a1/Rtr for β = 1 (thick lines) and β = 1/2
(thin lines).

The cooling of shock moving in the medium with de-
creasing density differs from a commonly accepted sce-
nario of the “thin dense shell” formation and should be
studied in more details in the future.

IV. CONCLUSIONS

The common approximate scenario of SNR evolution
consists of the free expansion stage, the adiabatic phase
and the PDS radiative era. It is shown that it is neces-
sary to consider also an additional subphase between the
adiabatic and the radiative stages because this subphase
lasts more than half of the SNR age it has at the end of
the adiabatic stage.

The analytical estimations on the ratios between the
reference times which characterize the transition of adia-
batic SNR into the PDS radiative stage — ttr, tsf and t1
— do not depend on the initial parameters of SNR and
IMS (energy of explosion, number density in the place
of explosion, γ etc.) except of the density gradient (i. e.
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ω) and assumed β which causes rather small effect. This
result is also visible in the numerical calculations for the
case of the uniform medium (Fig. 8 in [10]): except for
the oscillations (which is indeed different for different no)
the durations of the transition subphase in terms of the
transition time are almost the same for different values
of ISM density.

The ratio tsf/ttr ≈ 1.6 for shock running in me-
dia with constant or increasing densities. The transi-
tion time, however, depends on the energy of explosion,
the density of the medium and the density gradient:

ttr ∝ E
a(ω)
SN A−b(ω) with a > 0 and b > 0 for shock in

a medium with ρo ∝ R−ω. This means that the transi-
tion subphase is longer for higher explosion energy and
smaller density. The dependence of ttr on this parame-

ters are stronger for higher ω because the functions a(ω)
and b(ω) increase with ω.

The hydrodynamical properties of the shock in media
with ω > 0 seem to cause a trend to absence of the radia-
tive phase in a common sense. The cooling of such shocks
differs from a commonly accepted scenario of the “thin
dense radiative shell” formation and should be studied in
more details because it is important for models of non-
spherical SNRs which could be only partially radiative.
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APPENDIX 1. APPROXIMATION OF THE TEMPERATURE EVOLUTION IN A GIVEN FLUID
ELEMENT DOWNSTREAM CLOSE TO THE STRONG ADIABATIC SHOCK

In order to simplify the estimation of tsag and tdyn, let us approximate the distribution T̄ (ā) = T (a, t)/Ts(t)
downstream close to the strong adiabatic shock; here a is Lagrangian coordinate, T̄ = T/Ts and ā = a/R. Note that
hereafter in this Appendix we use the normalized parameters, i. e. divided on their values on the shock front; thus
we skip the overlines in the notations. We are interested in the approximation in the form

T (a) ≈ a−κ(γ,ω). (40)

The value of κ is given by

κ =

(

−
∂ ln T (a)

∂ ln a

)

a=1

(41)

where T (a) is the profile from Sedov [19] solutions. The equation of the mass conservation and the equation of the
adiabaticity applied for the case of the shock motion in the medium with the power-law density distribution give the
distribution of temperature T (a) = P (a)/ρ(a) [29]

T (a) =

(

γ − 1

γ + 1

)γ−1

a2γ−5+ω
(

r(a)2ra(a)
)−γ+1

(42)

where r is Eulier coordinate and ra = ∂r/∂a. Instead of Sedov profiles for r(a) — which is quite complex — we use
the approximation

r(a) = a(γ−1)/γ exp
(

α(aβ − 1)
)

(43)

where α, β are constants; this approximation gives correct values of r and its derivatives in respect to a up to the
second order on the shock [29]. Substitution (41) with (42), (43) and with expressions for α, β from [29] yields

κ =
2
(

8 − (γ + ω)(γ + 1)
)

(γ + 1)2
. (44)

For γ = 5/3, κ = 1 − 3ω/4.
The approximation (40) underestimates Sedov temperature. The smaller a the larger difference. It is about 20%

at a ≈ 0.5 (that corresponds to r ≈ 0.8).
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APPENDIX 2. LIST OF TIMES

tsag “sag” time [4], radiative cooling begins to affect the temperature distribution downstream of the shock;
tdyn “dynamics-affected” time [4], the temperature of a fluid element shocked after this time decreases faster

due to radiation than due to expansion;
ttr “transition” time [10], estimation of the time when the deviations from Sedov solutions are prominent;

Sedov solution may be approximately used till this time;
∆tcool “cooling” time [20, 21, 23], a shocked fluid element cools during this time;
ts “shock” time [20, 21], moment when the shock encountered a given fluid element;
t1 moment when the shock encountered the fluid element which cools first [20, 21];
tc sum of ts + ∆tcool;
tcool “SNR cooling” time [20–22], the minimum of ts, i. e. the age of SNR when the first cooled element appears;
tsf “shell-formation” time [20–22], approximately after this time the shock may be described

by the radiative PDS model;
tlow moment during the adiabatic stage when the radiative losses of the decelerating shock wave

reach their minimum value;
thi moment when the radiative losses of the decelerating shock wave reach their maximum value [13, 14];
ti “intersection” time [16], moment when two functions — adiabatic R(t) and radiative Rsh(t) intersect;
tmax moment during the radiative stage when the function m(τ) reaches its maximum [16];
t̃ timescale;
τ dimensionless time, τ = t/t̃.
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ДО ПЕРЕХОДУ АДIЯБАТИЧНИХ ЗАЛИШКIВ НАДНОВИХ ЗIР
НА РАДIЯЦIЙНУ СТАДIЮ В НЕОДНОРIДНОМУ МIЖЗОРЯНОМУ СЕРЕДОВИЩI

О. Петрук
Iнститут прикладних проблем механiки та математики НАНУ,

вул. Наукова, 3-б, 79053, Львiв

Дано огляд методiв оцiнки низки часових масштабiв, якi з’являються в описi переходу сильної адiяба-

тичної ударної хвилi на радiяцiйну стадiю еволюцiї. Пiдкреслено потребу видiлення додаткової перехiдної

пiдфази мiж кiнцем адiябатичної стадiї та початком т. зв. радiяцiйної стадiї “тискового снiгозгрiбача” для

ударних хвиль як в однорiдному, так i неоднорiдному середовищi. Це важливо, зокрема, для вивчення та

моделювання взаємодiї залишкiв наднових зiр з молекулярними хмарами та розумiння процесiв ґенерацiї

космiчних променiв у таких системах. Тривалiсть такої пiдфази — близько 70% вiку залишку на момент її

початку — слабо залежить вiд ґрадiєнта густини в середовищах зi зростаючою густиною i є бiльшою для

вищої енерґiї спалаху зорi та меншої густини в околi вибуху. Показано також, що коли густина зовнiшнього

середовища спадає, то процеси охолодження вiдрiзняються вiд загальноприйнятого сценарiю формування

“тонкої щiльної радiяцiйної оболонки”. Вони повиннi бути дослiдженi в майбутньому, оскiльки це суттєво

для моделювання залишкiв наднових зiр, якi можуть бути лише частково радiяцiйними.
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