
ЖУРНАЛ ФIЗИЧНИХ ДОСЛIДЖЕНЬ

т. 10, № 1 (2006) с. 66–73

JOURNAL OF PHYSICAL STUDIES

v. 10, No. 1 (2006) p. 66–73

INFLUENCE OF THERMALISATION ON ELECTRON INJECTION IN

SUPERNOVA REMNANT SHOCKS

O. Petruk1, R. Bandiera2

1Institute for Applied Problems in Mechanics and Mathematics,

3-b Naukova St., Lviv 79000, Ukraine

petruk@astro.franko.lviv.ua
2Osservatorio Astrofisico di Arcetri,

Largo E. Fermi 5, Firenze 50125, Italy

bandiera@arcetri.astro.it

(Received January 22, 2006; in final form — April 4, 2006)

Within a test-particle description of the acceleration process in parallel nonrelativistic shocks,
we present an analytic treatment of the electron injection. We estimate the velocity distribution
of the injected electrons as the product of the post-shock thermal distribution of electrons times,
the probability for electrons with a given velocity to be accelerated; the injection efficiency is then
evaluated as the integral of this velocity distribution. We estimate the probability of a particle
to be injected as that of going back to the upstream region at least once. This is the product
of the probability of returning to the shock from downstream times, that of recrossing the shock
from downstream to upstream. The latter probability is expected to be sensitive to details of the
process of electron thermalisation within the (collisionless) shock, a process that is poorly known.
In order to include this effect, for our treatment we use results of a numeric, fully kinetic study,
by Bykov & Uvarov (1999). According to them, the probability of recrossing depends on physics
of thermalisation through a single free parameter (Γ), which can be expressed as a function of the
Mach number of the shock, of the level of electron-ion equilibration, as well as of the spectrum
of turbulence. It becomes apparent, from our analysis, that the injection efficiency is related to
the post-shock electron temperature, and that it results from the balance between two competing
effects: the higher the electron temperature, the higher the fraction of downstream electrons with
enough velocity to return to the shock and thus to be ready to cross the shock from downstream to
upstream; at the same time, however, the higher the turbulence, which would hinder the crossing.
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I. INTRODUCTION

Strong collisionless shocks are present in various as-
trophysical objects, and under a wide range of condi-
tions. These shocks effectively heat the gas and are also
believed to accelerate a fraction of particles up to very
high energies. Analyses based on multi-frequency obser-
vations allow one to determine properties of both ther-
mal and nonthermal component. In the case of superno-
va remnants (hereafter SNRs), optical and UV emission
are typically thermal, radio is nonthermal, while thermal
and nonthermal emission may coexist in X-rays. The mo-
mentum distribution of the accelerated particles is locally
well approximated by a power law; this can be inferred
from the power-law synchrotron spectra, in the case of
electrons; while in the case of ions it can be measured
directly in the energy distribution of cosmic rays (if one
accepts the “SNR Paradigm” for the origin of galactic
cosmic rays).

Diffusive acceleration (Fermi acceleration) is believed
to be the dominant process that allows particles to gain
energies in excess of typically thermal values. The stan-
dard theory of diffusive acceleration, in test-particle ap-
proximation (see, e. g., the review of Jones & Ellison
[12]), shows that a power-law distribution develops at
high energies. The spectral index of this high-energy pop-

ulation depends on the shock compression ratio, while it
does not depend at all on the original energy distribu-
tion of the injected particles. In fact, a simplified way to
describe the overall particle evolution, from nearly ther-
mal to very high velocities, is to treat particle injection

and acceleration as two separate problems. The injec-

tion problem consists in finding out the initial momen-
tum distribution of that fraction of (originally thermal)
particles that can enter the acceleration process, i. e. to
make at least one acceleration cycle. The acceleration

problem, instead, consists in following the evolution of
the distribution of these particles along all the susequent
acceleration cycles.

In order to keep the number of free parameters low,
while modelling more effectively the emission in all the
observed spectral ranges, one needs to introduce a phys-
ically self-consistent scenario for the thermal and non-
thermal populations. For instance, the standard model
of particle acceleration constrains the slope of the elec-
tron distribution at high velocities, but does not predict
its normalization: in other terms, the injection efficiency
(i. e., the fraction of particles that enter the acceleration
process) is poorly known, because this process is sensitive
to physical details not included in the standard model of
Fermi acceleration. The level of electron–ion equilibra-
tion or, alternatively, the electron temperature is another
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key quantity hard to determine “a priori” in collisionless
shocks. While in models of SNR shocks injection and
equilibration efficiencies are taken as independent free
parameters, in reality both depend on the physical con-
ditions within the shock transition, and therefore they
are not independent. The goal of this paper is in fact
to investigate, in nonrelativistic SNR shocks, a possible
connection between electron injection and thermal equi-
libration.

A self-consistent treatment of injection and accelera-
tion must include a microphysical model of particle-wave
interactions in the plasma. A few physical processes have
been proposed to account for the electron injection (see
Malkov & Drury [19] for a review). The scattering of elec-
trons is suggested to be due to some ion-generated insta-
bilities (Bykov & Uvarov [4]; hereafter BU99), whistler
waves [17] and lower-hybrid waves from ions [16]. These
models mainly address the plasma microphysics; while
only BU99, to our knowledge, are able to model the for-
mation of the post-shock electron distribution.

In this paper, we approach the problem in a simplified
way. We assume the presence of scattering centres, with-
out concentrating on their nature, but simply assuming
that they match the following requirements: i) the in-
teraction with these scattering centres generates a near-
ly isotropic, Maxwellian velocity distribution of particles
on timescales not longer than one collision time; ii) the
timescales for (wave-mediated) isotropization and ener-
gy exchange between electrons are both smaller than the
(wave-mediated) electron–ion equilibration time; iii) the
scattering centres play at the same time the role of ther-
malising, within the shock, the incoming particle popu-
lation to the post-shock temperature and that of driving
the process of diffusive acceleration. When we need to
use more specific properties of the wave-particle interac-
tion (in Sect. III B), we will refer to the results of BU99
on the electron kinetics.

There are in general three ways to calculate the post-
shock momentum distribution of particles: either by solv-
ing the kinetic equations, or by making a hybrid simula-
tion (which, however, cannot model the momentum dis-
tribution of electrons because electrons are treated as a
fluid), or finally by extending the individual particle ap-
proach of Bell [1]. He has estimated the probability for
a particle to return to the shock from downstream and
has shown that in this way one obtains a power-law dis-
tribution for the accelerated particles with the velocities
v � Vs (where Vs is the shock velocity).

In the present paper we propose to extend the Bell
approach to the problem of injection by introducing the
probability to recross the shock from downstream to up-
stream. This probability is connected with the process
of thermalisation of the incoming flow within the shock.
This fact has been shown by Malkov [18] in the case of
protons. Namely, the idea that ions are prevented from
backstreaming by the self-generated waves (which also
participate in the thermalisation of ions) has allowed
Malkov to obtain an analytic solution of the injection
problem for protons. The main point in his thermal leak-
age theory is that only those protons that can “leak” up-

stream are injected into the Fermi process.
We use the same idea in our approach to electrons,

even though we are not tight to any specific kind of in-
teraction. We consider only the case of parallel shocks,
namely when the ambient magnetic field is parallel to
the shock normal.

The outline of the present paper is as follows. In
Sect. II we deal with the injection problem by devel-
oping an analytic treatment for calculating the injection
efficiency as well as for determining the distribution of
particles which can be accelerated. Sect. III deals with
the process of thermalisation and its influence on injec-
tion and, using results from BU99 model, gives quan-
titative estimations of the injection efficiency. Sect. IV
concludes our study.

II. INJECTION EFFICIENCY AND INITIAL
DISTRIBUTION

A. Efficiency of electron injection

Let us assume that all electrons are injected into the
acceleration process from the downstream thermal pop-
ulation, i. e., we do not invoke seed particles with the ve-
locities already much higher than thermal velocity. Their
distribution is then well approximated by nesfM, where

fM(y) =
4√
π

y2 exp(−y2) (2.1)

is a normalized Maxwellian, isotropic in the fluid comov-
ing frame. We have introduced the reduced momentum
y = p/pth, which is also equal to the reduced velocity
v/vth, as long as non-relativistic particles are considered,
as is the case at injection. Thermal momentum and ve-
locity are defined by pth = mevth =

√
2mekTes, where

Tes is the post-shock electron temperature. We consider
a fully ionized H+He gas (with nHe = 0.1nH, for a mean
mass per particle µ = 0.609), and a strong, unmodified
shock. For an adiabatic index γ = 5/3, the shock com-
pression ratio is σ = 4 but, for the sake of generality,
in the following formulae we shall allow for a general σ.
Therefore, the ratio of the electron thermal velocity, vth,
to Vs is

vth

Vs

=

√

2(σ − 1)

σ2

χs

χo

, (2.2)

where χo = me/(µmp) ' 8.94 × 10−4. The factor
χs = Tes/Ts, where Ts is the mean shock temperature,
accounts for the thermal equilibration level between elec-
trons and ions immediately after the shock, and ranges
from χo (no equilibration) to 1 (full equilibration).

Introducing the simple-minded assumption that only
particles in the high-velocity tail of the Maxwellian dis-
tribution can be accelerated, it is easy to link the min-
imum momentum of this tail, ptail = ytailpth, to the in-
jection efficiency ς (i. e. the fraction of accelerated parti-
cles). One has just to solve the equation

∫ ∞

ytail

fM(y) = ς ,

which gives for instance ytail = 2.85 for ς = 10−3 and
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ytail = 3.91 for ς = 10−6. It is worth noticing that, for
reasonable values of ς , this integral is dominated by par-
ticles with y ∼ ytail, with ytail of order of unity: it is ap-
parent from this example that injection involves mostly
particles with velocities of the order of the thermal one,
and not only those with v � Vs.

In the above estimation, we have assumed that all par-
ticles with y > ytail, and only them, are accelerated. In
order to find out the injection efficiency in a more gen-
eral case, we introduce the probability P(y) for a par-
ticle with velocity v = yvth to be accelerated, i. e., to
recross the shock from downstream to upstream at least
once. This probability yields the fraction of particles,
with a given velocity, which can be accelerated; while the
Maxwellian distribution in turn gives the number densi-
ty of particles with that velocity. Thus, for an isotropic
velocity distribution, the fraction of accelerated particles
(injection efficiency) is given by the integral

ς =

∞
∫

0

P(y)fM(y) dy. (2.3)

In other terms, the distribution of particles injected into
the acceleration process is

finj(y) = P(y)fM(y). (2.4)

The probability P(y) in turn can be estimated as the
product of probability, Pr, that a particle returns to the
shock from downstream, times the probability, Pc, that
this particle crosses the shock moving upstream. The
next two subsections will be concerned with estimating
estimate these two probabilities.

We wish to point out that a common misconception
lies underneath the Fermi acceleration approach, name-
ly that the electrons must enter this process having al-
ready a velocity much higher than Vs. This is usually
obtained, by requiring either i) that the electron temper-
ature is close to equipartition, or ii) that only electrons
in the high-energy tail of the Maxwellian distribution en-
ter into the acceleration process, or finally iii) that some
unknown pre-acceleration mechanism takes place to ac-
celerate electrons to the required velocity regime. The
condition v � Vs is in fact very useful to simplify the
mathematical treatment of the process, but in our be-
lief is not strictly required by physical arguments. In the
present paper we will show instead i) that electrons may
be injected efficiently also when their temperatures is far
from equipartition, ii) that, in order to have reasonably
high injection efficiencies, χs has to be considerably less
than unity; in other words, the velocities of the majority
of the injected electrons must not be not too far from the
thermal velocity and the minimum injection momentum
can even be much smaller than the thermal one, and fi-
nally iii) that there is no physical need for an independent
pre-acceleration process, if the treatment of the acceler-
ation is modified in order to account also for relatively
low particle velocities (this can be done by introducing
the probability of crossing the shock, Sect. II C).

B. Probability of returning to the shock

In the case of isotropic velocity distribution in the
downstream flow, the probability for particles with ve-
locity v to return to the shock from downstream is given
by the ratio of the upstream and downstream fluxes [12]:

Pr(v) =

∣

∣

∣

∣

∣

−u2
∫

−v

(u2 + vx) dvx

∣

∣

∣

∣

∣

v
∫

−u2

(u2 + vx) dvx

= H(v − u2)

(

1 − u2/v

1 + u2/v

)2

,

(2.5)

where: u2 = Vs/σ is the velocity of the downstream flow,
in the shock reference frame; v is the velocity, in the
downstream flow reference frame, of the particle that has
just reached the shock; H(v − u2) is the Heaviside step
function (meaning that u2 is the minimum value of v that
allows a particle to return to the shock). In general, in
the paper we label quantities refering to upstream with
“1” and quantities refering to downstream with “2”. Co-
ordinates are defined in such a way that, in the reference
frame of the shock, the flow moves along the x-axis in
the positive direction.

It is useful to re-write Eq. (2.2) to fix a lower boundary
to the reduced momenta of the injected particles

ymin =
u2

vth

=

(

χo

2(σ − 1)χs

)1/2

. (2.6)

The quantity ymin is always less than (2(σ−1))−1/2 (i. e.
pmin < 0.4pth for σ = 4) and can be much smaller than
that if χs ∼ 1 (which means vth � Vs). This means
that, the higher the level of electron-ion equilibration,
the higher the electron thermal velocity compared to Vs,
and thus the higher the fraction of electrons able to re-

turn to the shock from downstream.

C. Probability of crossing the shock

The standard theory of diffusive acceleration [1] im-
plicitely assumes Pc ' 1, which means that the particle
mean free path λ is longer than the thickness, ∆x, of the
shock transition region. This condition applies only for
particles with sufficiently high velocity (v � Vs).

On the contrary, the evolution of particles with lower
velocities is affected by scatterings within the shock tran-
sition. In fact, the mere existence of a shock implies that
the incoming ambient plasma must be thermalised, with-
in the shock transition region, by some kind of scatterings
centres. Also particles that enter the shock transition re-
gion from downstream, as long as they have velocities
similar to thermal particles, must experience a similar
rate of scatterings. Thus, also for them λ < ∆x.

In the presence of scatterings, only a fraction of these
particles will succeed crossing the shock and finally
reaching the upstream region. In general, modelling this
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process is very complex. Here we will present a simpli-
fied treatment, based on some approximations. The first
of them is diffusive approximation, which requires that
mean free paths are smaller than the shock thickness,
and that the velocity distribution is nearly isotropic.

However, this assumption is invalid near the down-
stream boundary of the shock layer. In fact, the orig-
inal distribution of downstream particles which return
to the shock is highly anisotropic, since all particles en-
tering the shock have, in the shock reference frame, an
x-component opposite to the flow velocity. The above as-
sumption is anyway valid over most of the volume, pro-
vided that isotropization processes within the shock are
very efficient. Namely, we require that the length scale for
isotropization is of the order of one mean free path (sim-
ilarly to what happens for Coulomb collisions between
similar particles).

The estimation of Pc(v) is generally very complex.
Here we use a crude approximation (based on the so-
called “modulation” equation, see e. g. [12]) and write

Pc = exp(−〈u〉∆x/κ). (2.7)

where 〈u〉 ≈ (u1 + u2)/2 = u2(σ + 1)/2 and κ is the
diffusion coefficient.

We want to point out that probability of crossing is
closely related to the thermalization level χs. The thick-
ness ∆x may be derived from the condition that the tem-
perature of the incoming fluid increases to the post-shock
value Tes = χsTs while the fluid moves through the shock
transition from upstream to downstream. In this way, the
two problems — injection and thermalisation — become
closely connected. This can be seen by rewriting

∆x = 〈u〉∆t12 = 〈u〉
χs
∫

0

(

dχ

dt

)−1

dχ (2.8)

where ∆t12 is the time it takes for a fluid element to
cross the shock, moving from its upstream boundary to
the downstream one. In general, it is necessary to intro-
duce a microphysical model of thermalisation in order to
obtain explicitely the functional dependence of the rate
of thermalization dχ/dt.

For the diffusion coefficient we use the standard for-
mula κ = λ′v′/3, where v′ is the velocity of a particle in
the local reference frame of the flow and λ′ is the par-
ticle mean free path with respect to scatterings within
the shock transition. A further assumption behind this
formula is that the scattering centres are frozen into the
fluid. This is, for instance, the case in the BU99 model for
the electron kinetics in a strong shock. In this model, par-
ticles are scattered by the ion-generated Alfvénic waves,
and the Alfvénic speed is much lower than the shock
velocity. In case of electron diffusion in the presence of
magnetic field turbulence, it is common to parametrize
the mean free path as λ′ = ηrg, where rg = p′c/eB
is the gyroradius and η accounts for the level of turbu-
lence. We concentrate here on the particles with veloci-
ties not much larger than Vs, and therefore we will use
the nonrelativistic formula for λ′. For such a parame-
terization of the mean free path, λ′ may be written as

λ′ = τDv′ where τD is the average deflection time defined
as τD = ηmec(eB)−1.

In order to compute probability Pc(v) for particles
having a given velocity v in the downstream reference
frame, we need to average over all v′ velocities corre-
sponding to a given v downstream. In the reference frame
of the average flow within the shock transition, velocities
v′ corresponding to the same v are different in different

directions, namely ~v′ = ~v−( ~〈u〉− ~u2). The angle-averaged

value of v′2 for these particles is given by

v′2 =

−u2
∫

−v

(

(vx − u2(σ − 1)/2)2 + v2
⊥

)

dvx

/

−u2
∫

−v

dvx

= v2 +
σ − 1

2
vu2 +

σ2 − 1

4
u2

2. (2.9)

Let us assume that, on average, electrons in the in-
coming flow are thermalised to the level χs in Nc colli-
sionless interactions. For the sake of illustration, let us
calculate the number of scatterings, Nc, which yield a
given injection efficiency. The involved time is approxi-
mately ∆t12 = NcτD and therefore

〈u〉∆x

κ
=

3〈u〉2
v′2

∆t12
τD

=
3〈u〉2
v′2

Nc, (2.10)

so that probability (2.7) becomes

Pc(v
′) = exp

(

−3(σ + 1)2

4

(u2

v′

)2

Nc

)

. (2.11)

Eq. (2.3), together with probabilities (2.5), (2.11) and
Eqs. (2.6), (2.9), shows that, in order to get injection ef-
ficiency ς = 10−3, Nc must equal 9 for χs = 0.001, and
770 for χs = 0.1.

It is interesting to note that our expression for Pc be-
haves like the “leakage probability” νesc of Malkov [18],
calculated for protons. Namely, the probability for pro-
tons to leak across the shock from downstream is approx-

imately νesc(y) ∝ exp
(

−const (y′)
−2

)

[7].

Finally, we want to stress that the introduction of
probability Pc does not affect the slope of the accelerat-
ed spectrum at relativistic energies. Following the stan-
dard test-particle approach to Fermi acceleration [1], a
power-law momentum distribution of relativistic parti-
cles is generated, with an index α = −(2−σ)/(σ−1) that
depends only on the shock compression ratio. This index
is obtained by combining the term for the momentum
increment per cycle (∆p/p) with that for the difference
(1−Pr) per cycle, in the high-velocity limit. The asymp-
totic behaviour of both terms is ∝ v−1; while Eq. (2.7) is
such that (1−Pc) ∝ v−2. Therefore, in the high velocity
limit Pc gives a negligible contribution to the formation
of the particle spectrum in comparison with Pr, and does
not affect the formula for α.
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III. THERMALISATION OF ELECTRONS
AND INJECTION

In the shock-front reference frame, if upstream elec-
trons and ions enter the leading edge of the shock tran-
sition with the same velocity then the electron ener-
gy is lower than that of protons by a factor me/mp.
Therefore, if the velocities of electrons and ions are ran-
domized independently within the shock front, we ob-
tain Tes = (me/µmp)Ts � Ts (i. e., χs = χo � 1 in
our notation), while the ionic temperatures are about
(ne + ni)Ts/ni (where “i” denotes ions), namely much
closer to Ts.

The temperatures of electrons and ions may get clos-
er, if there is a process within the shock which allows
energy exchanges between the two species. In collisional
shocks, the equilibration process is Coulomb scattering
between ions and electrons, while, in the collisionless case
(like it generally occurs in SNRs), turbulence plays the
dominant role.

A. Results from observations

Since a long time ago, it has been suggested that plas-
ma instabilities could lead to prominent heating of elec-
trons within the shock (e. g. [20]). Some observations and
theoretical results put forward the possibility that colli-
sionless processes within the shock of SNRs could heat
electrons up to the level χs ' 0.4 ([2] and references
therein). Results on SNR DEM L71 in LMC [24] and on
RCW86 [8] also suggest χs ∼ 0.3. The analysis of Chan-
dra data on Tycho SNR indicates that χs ≤ 0.1 [8, 11].
Other recent observations (SN1006, Tycho, 1E 0102.2–
7219) favour a considerably lower thermalisation level,
namely χs ≤ 0.03÷ 0.07 [9, 10, 13–15,26]).

It is important to know how the level of χs depends on
the properties of the shock. Observational estimations of
the shocks with Mach number M up to ∼ 400 suggest
that stronger shocks (namely with higher Vs) could equi-
librate species less effectively. Namely, Schwartz et al.
([25]) present the results of measurements of Tes/Ts for in-
terplanetary shocks and planetary bow shocks (M ≤ 25)
and find strong evidence that this ratio depends on the
Mach number as M−1. Ghavamian et al. [8] estima-
tions for a number of SNRs seem to extend this trend
to stronger shocks, with 25 ≤ M ≤ 200. Rakowski [23]
summarises the observational methods and estimations
of χs in SNRs shocks and confirms the inverse depen-
dence in the range 25 ≤ M ≤ 400.

B. Results from Bykov and Uvarov (1999)

Interactions of electrons with ion- or self-generated
waves could be responsible for both the accelerating and
heating of electrons (see [3, 19] for a review).

BU99 have considered the interactions of electrons
with ion-generated electro-magnetic fluctuations and
have developed a kinetic model that accounts at the same

time for electron injection, acceleration and thermalisa-
tion in quasiparallel shocks. Their model is applicable for
shocks with local Mach number M less than ∼

√

mp/me.
They have introduced the effective electron temperature
Teff (measured in units of the upstream temperature To),
which may be related to our χs by

χs = Teff

To

Ts

= Teff

σ2

(σ + 1)M2
, (3.12)

and have shown that it depends on the Mach number.
This dependence can be approximately described by a
power law: Teff ∝ Ma, with index 0 < a ≤ 2 depending
on which model of wave-particle interaction is consid-
ered. Therefore, the level of thermalisation depends on
the velocity of the shock: χs ∝ Ma−2 for strong shocks,
namely the higher the velocity the smaller the thermali-
sation level.
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Fig. 1. Injection efficiency ς versus post-shock ratio χs for
a model of BU99 for Bohm-like diffusion and diffusion bound-
ary conditions. Curves are labelled by their respective Mach
number. The approximation ς = 2 × 10

5
`

M
2χs

´

−5
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by dashed lines.

If λ′ is momentum independent (transport of electrons
is due to large-scale magnetic field fluctuations that pro-
vide effective heating) then a ≈ 2, and the level of equi-
libration χs does not depend on the Mach number. This
means that Tes ∝ V 2

s , but with a factor that may be
higher than that inferred from Rankine–Hugoniot equa-
tions for the electron population [21]. The opposite case
is when electron heating in the shock transition region
is effectively suppressed by a developed small-scale vor-
tex turbulence, giving a ≈ 0. In such a situation the
postshock electron temperature is Tes ≈ To, indepen-
dently of the Mach number. Another interesting model
of wave-particle interactions is Bohm-like diffusion, for
which λ′ ∝ p and a = 1. In the present paper we consid-
er only the Bohm-like diffusion case since it seems to be
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in agreement with observations (namely χs ∝ M−1, see
Sect. III A).

BU99 also introduce the dimensionless parameter Γ =
u1∆x/v′λ′ (calculated for electrons with v = vth), and in
their Fig. 4 they show its dependence on Teff , for different

models of wave-particle interactions (Fig. 4a for diffusion
boundary conditions and Fig. 4b for free escape bound-
ary conditions). In particular, their curve 4 represents
results for Bohm-like diffusion.
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y
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5
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Fig. 2. Electron distribution functions and probabilities calculated for two different values of χs. 1 — Maxwellian distribution,
2 — probability to return to the shock Pr, 3 — probability to cross the shock Pc, 4 — initial distribution finj of electrons injected
into acceleration process, 5 — final hybrid electron distribution (α = 2). Plots are calculated for the model of electron–wave
interaction developed by BU99 (case of Bohm-like diffusion with diffusive boundary conditions), M = 40. a) χs = 0.01, in this
case ymin = 0.12, yb = 2.6, ς = 0.048, Nc = 20; b) χs = 0.06, in this case ymin = 0.05, yb = 3.9, ς = 3.1 × 10

−5, Nc = 930.

C. Application of BU99 results to our model

In our paper we have approximated BU99 numerical

results by using Γ = T
1/a
eff /ξ − 1 where ξ is a constant.

This, together with (3.12), gives

Γ =

(

(σ + 1)M2χs

σ2

)1/a
1

ξ
− 1. (3.13)

In a Bohm-like case, i. e., with a = 1, ξ = 1.25 corre-
sponds to the diffusive boundary conditions and ξ = 0.75
to free escape boundary conditions. The parameter Γ is
proportional to the combination 〈u〉∆x/κ in the expo-
nent of the transition probability. This allows us to write

Pc(y, χs,M) = exp

(

−3(σ + 1)

2σ

Γ(χs,M)

y′2

)

(3.14)

for nonrelativistic electrons and λ′ ∝ p.
By using (3.13) for Γ in (3.14), the dependence of the

fraction of injected particles ς on the level of electron
thermalisation χs may be obtained (Fig. 1). By compar-
ing (3.14) with (2.11), using (2.6) for ymin, we finally
obtain a relation between Γ and Nc:

Nc =
4(σ − 1)χsΓ(χs)

(σ + 1)σχo

. (3.15)

The calculated dependence of the injection efficiency
on the Mach number and on the thermalisation level is
shown in Fig. 1 for the Bohm-like diffusion. The range of
values plotted in this figure corresponds to a range from 2
to 20 for Γ in Fig. 4 of BU99, with the minimum Γ corre-
sponding to the maximum ς . The curves in Fig. 1 are es-
sentially the same curve, with different horizontal offsets.
Namely, the formula for the injection efficiency ς(M, χs)
is very well approximated by a function of M2χs. The
reason of this can be found in Eq. (2.3), together with the
explicit definitions of Pr and Pc (respectively, Eqs. (2.5)
and (2.7)): for standard parameter ranges, the most ef-
fective term is the argument in the exponential of Pc,
which is proportional to Γ. In its turn, Eq. (3.13) shows
that the dependence of Γ from M and χs is only through
the combination M2χs. In this sense, we may say that
Γ is a function of a single parameter (not considering,
of course, the dependence on the assumed diffusion type
and on the boundary conditions, which can be account-
ed for by using parameters a and ξ). For instance, in a
Bohm-like case a power-law approximation of the curves
shown in Fig. 1 is ς ' 2×105M−10χ−5

s (this approxima-
tion is represented in the figure by dashed lines). Since
in this case χs ∝ M−1, the overall dependence of the
injection efficiency on the Mach number in a Bohm-like
case is as strong as ς ∝ M−5.
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In order to allow for different types of diffusion, as
well as for different electron-wave interactions, one could
consider a more general case, in which: i) χs ∝ M−m;
and, ii) ς ∝ M−2qχ−q

s (where we expect q to be always
positive). We then obtain ς ∝ M−b with b = q(2 − m).
In other words, in the case of a decelerating SNR shock
χs always increases, while ς increases if m < 2, and de-
creases if m > 2.

IV. DISCUSSIONS AND CONCLUSIONS

The electron injection and thermalisation are not in-
dependent processes. This is clearly outlined by Fig. 2
where the probabilities Pr and Pc as a function of re-
duced momentum are shown for two values of χs togeth-
er with the initial distribution (2.4) of injected particles.
The hybrid electron distribution nesfH(y)dy, Maxwellian
up to yb and power-law above [22], is also shown on the
figure to see the differences. The break momentum yb is
given by the assumption that all the injected particles
obtain momenta higher than yb after acceleration, i. e.,
is defined by ς =

∫ ∞

yb

fH(y)dy.

It is a common beliefe that only particles from the
energetic tail of Maxwellian distribution are capable of
getting accelerated. On the contrary, the distribution finj

shows that thermal particles with velocities v > vmin

have a possibility to participate in the acceleration pro-
cess, although with a different probability. The minimum

velocity vmin = 0.07 (χs/0.03)
−1/2

vth may be consider-
ably less than the thermal velocity (see Eq. (2.6)). The
most probable velocity v∗ at which the maximum of the
distribution finj occurs is v∗ ≈ (2 ÷ 3)vth for a wide
range of injection fractions ς = 10−3 ÷ 10−6 (of Fig. 3
and Fig. 1). In other words, most of the electrons are

injected with the velocities v∗ ' 50χ
1/2
s Vs.

0.01 0.1
χs

1

2

3

4

y *

40

30

20

Fig. 3. Velocity corresponding to the maximum of the dis-
tribution function finj versus χs for a few choices of the shock
Mach number (see curve labels). Model of electron kinetics is
the same as in the previous figure.

The injection efficiency ς of electrons in a collisionless
shock is associated with the process of electron heating
within the shock through the competition of two effects.
On the one side, the higher the post-shock electron tem-

perature, the higher the energy of thermal electrons and
the higher the fraction of those which are ready to cross
the shock from downstream to upstream (this is given
by the probability Pr, lines 2 in Fig 2a,b). On the oth-
er hand however, the higher the temperature, the higher
the number of scattering centers. Electrons traversing
the shock from downstream to upstream also interact
with these sites and the more such interactions the fewer
electrons are able to cross the shock and to enter into
the Fermi acceleration loop (see probability Pc, lines 3
in Fig 2a,b). In this paper we show that, for a given M,
the combined effect of these two processes is that the
quantity ς decreases with increasing of χs (Fig. 1).

Both injection and thermalisation are sensitive to the
Mach number. It is shown (see Sect. III B) that, for a
standard range of parameters, that ς(χs,M) is a decreas-
ing function of a single argument ς = ς(M2χs). Theo-
retical models show that in high-velocity shocks the en-
ergy of the shock is transferred to the thermal electrons
less efficiently, so that χs ∝ M−m with 0 ≤ m ≤ 2
(BU99). Observations favour a dependence χs ∝ M−1,
suggesting a Bohm-like type of diffusion. Our calcula-
tions show that the level of electron-ion equilibration is
expected to depend on the injection fraction as well, so
that the approximate relation between these three pa-
rameters is χs ∝ M−2ς−1/q (Sect. III B). The smaller
the Mach number, the higher the level of electron-ion
equilibration for a given injection efficiency. On the oth-
er hand, for a given thermalisation level, the stronger the
shock the less particles can be injected.

To conclude, we would like to review the assumptions
used in the present paper.

Our approach is in test-particle approximation. Ac-
tually, it is known that, in young SNRs, shocks could
be strongly modified; and the inclusion of nonlinear ef-
fects could change our results significantly. The usage of
a test-particle approach in the present paper, is however,
consistent with what done by BU99, and the results of
their analysis are valid at least for shocks with Alfvén
Mach number less than ' 43. Thus our results should be
applicable at least to SNRs either in the late adiabatic
phase or beyond. Our opinion is that, together with using
nonlinear treatments, it is valuable investigating what
happens in the linear (test-particle) approximation, also
in consideration that a nonlinear theory has anyway to
give, as a limiting case, the linear results.

Eqs. (2.1) and (2.5) assume a nearly isotropic distri-
bution of particles. In general, this is not fully true of
the thermal population right after the shock. In order to
overcome this difficulty, in numerical calculations these
formulae are assumed to apply a few mean free paths
downstream, in order to insure that the distribution is
isotropic in the local frame (e. g. [6]). Within our ap-
proach, this implies some restrictions on the underly-
ing physics. Our assumptions about the properties of
the scattering centers in our model (see Introduction)
require that the timescale for isotropisation is not larg-
er than the timescale for one interaction. This means
that, in order to assume isotropy of particles velocities,
we would in principle need to increase the number of
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interactions Nc at least by one (see Eq. (2.11)). Since al-
ready Nc � 1 for, say, χs > 10−3 (see estimations after
Eq. (2.11)), this increment would not change our results
considerably, in the case of shocks producing an electron
population thermalised up to the level χs higher than
10−3. Since χs ∝ M−1, our models are limited again to
the shocks with moderate Mach numbers.
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ВПЛИВ ПРОЦЕСУ ТЕРМАЛIЗАЦIЇ НА IНЖЕКЦIЮ ЕЛЕКТРОНIВ
В УДАРНИХ ХВИЛЯХ ЗАЛИШКIВ НАДНОВИХ ЗIР

О. Петрук1, Р. Бандiєра2

1Iнститут прикладних проблем механiки та математики НАНУ,

вул. Наукова, 3-б, Львiв, 79060, Україна
2Астрофiзична обсерваторiя Арчетрi, вул. Фермi, 5, 50125, Флоренцiя, Iталiя

У межах наближення пробної частинки аналiтично описано iнжекцiю електронiв прискорення Фермi

першого роду на нерелятивiстських ударних хвилях (УХ). Розподiл за швидкостями електронiв, якi розпоч-

нуть прискорення, тобто будуть iнжектованi, визначаємо як добуток теплового розподiлу всiх електронiв,

якi пройшли через фронт УХ, та ймовiрности для них бути прискореними; ефективнiсть iнжекцiї знахо-

димо в такому випадку як iнтеґрал вiд указаного розподiлу. Iмовiрнiсть бути прискореним означується як

можливiсть перетнути УХ у зворотному напрямку принаймнi один раз. Вона, своєю чергою, є добутком

iмовiрности для частинки поверутися до фронту з дiлянки вниз за течiєю та iмовiрности перетнути УХ

й увiйти в дiлянку вверх за течiєю. Остання ймовiрнiсть є чутливою до деталей нагрiву електронiв при

першому перетинi (беззiткнювального) УХ в прямому напрямку. Проте ця термалiзацiя електронiв є мало

вивченою. З метою виявлення її впливу на iнжекцiю використано результати чисельних розрахункiв кiнети-

ки електронiв в околi УХ, якi здiснили Биков та Уваров (1999). Згiдно з ними, iмовiрнiсть перетину фронту

в зворотному напрямку залежить вiд властивостей термалiзацiї через один параметр (Γ), який є функцiєю

числа Маха, рiвня електронно-протонної рiвноваги в плазмi та спектра турбулентности. З нашого аналiзу

випливає, що ефективнiсть iнжекцiї прямо пов’язана з електронною температурою одразу за фронтом УХ,

що є наслiдком двох конкуруючих процесiв: чим вища електронна температура, тим вища частка елект-

ронiв з високими енерґiями, необхiдними для повернення до фронту УХ; проте водночас вищим є рiвень

турбулентности в плазмi, яка перешкоджає електронам перетнути фронт УХ та розпочати прискорення.
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