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To give a common theoretical description of liquid phases of the charged pion matter in a wide
temperature interval, the relativistic quantum ¢° type model is considered. The liquid states of
pion condensate and hot pion matter are investigated.
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I. INTRODUCTION

The possibility to observe the pion condensate in
heavy-ion collisions had served as a subject of theo-
retical and experimental investigations during the last
decades. This condensed state is often imaged like mul-
tipion droplets or/and pion liquid. The pion condensate
is also a necessary component of neutron stars. The the-
oretical description of pion condensate is usually given
within the framework of phenomenological models lead-
ing to the p* type self-interaction between pionic degrees
of freedom (see, for example, [1-3]).

Since the pions are the Goldstone bosons for sponta-
neously broken chiral symmetry, a realistic description
of pion subsystem can only be achieved on the basis of a
model respecting chiral symmetry. However, if the pion
matter is at the temperature much lower than the tem-
perature of the chiral phase transion (7, ~ 150 MeV),
a chiral perturbation theory is applicable. Using per-
turbation scheme, we would like to point out the gen-
eral property of the chiral models, namely, in third-
order approximation they result in an attractive two-
body interaction (associated with ¢* term) and three-
body repulsive interaction (associated with ¢°® term). To
demonstrate it, we appeal to the Skyrme [4] and Wein-
berg [5] models, where interactions can be presented as
Vakyrme (V) = —f2m2Tr(U + UT — 2)/4 = f2m?(v? /2! —
vA/4 +05/60 — ...) and Waveinberg (V) = f2m*v?/(2 +
v2/2) = f2m?(v?/2 — v*/8 + 1%/32 — ...), respectively.
Here we use notations for U = exp (i7 - 7/ fr) € SU(2),
v? = @2/ f2; fr and m are pion decay constant and pi-
on mass, respectively. Note that these interactions are
the limited functions of v. Also note that the theo-
retical Gasser—Leutwyler interaction [6] of the order of
p* is attractive, and the experimental data justify the
existence of three-pion correlations in heavy-ion colli-
sions [7]. Therefore, if we limit ourselves by consideration
of the third-order approximation (leading to the relativis-
tic quantum ¢° type model), we can expect to observe
first-order phase transitions (PTs) in pion subsystem.

Indeed, it is already known from molecular physics
that the non-relativistic ¢ model, in contrast to the ¢*
one, allows us to observe not only second-order PT into

condensate state but also its gaseous and liquid phases. It
is reached by means of solving the corresponding Gross—
Pitaevskii equation [8,9]. Remark that the ¢° model has
been already used in nuclear hydrodynamics and quan-
tum field theory [10]. Here we are trying to obtain similar
results (without degrees of freedom of 7° mesons) in the
context of the physics of superdense ions and neutron
stars, where pion condensate plays an important role in
the softening of nucleonic equation of state [1]. Clearly, in
this problem, we should take into account the essentially
different nature of interactions in molecular physics and
pion subsystem. Moreover, we would like to investigate
the conditions of existence of liquid phase at high tem-
peratures (at the temperatures higher than the tempera-
ture Tiong of the second-order PT into condensate state)
with the use of the same model. It is possible that the hot
m 7~ liquid can be created in relativistic heavy-ion col-
lisions, where the pions play a dominant role at the final
stage of the reaction. Note that collective phenomena in
particle-nucleus and nucleus-nucleus collisions are well-
established and play significant role. An existence of the
hot pion liquid has been already predicted in Ref. [11].

Since the liquid condensate of 77~ mesons thermo-
dynamically differs from gaseous condensate, then such
a difference should be taken into account, when attempts
to register the appearance of a condensate in heavy-ion
collisions are performed. On the other hand, the system
of the large number of pions at high temperatures, as we
shall see below, can also be in a liquid phase which can
essentially affect on nucleonic dynamics. We say “liquid”,
when we deal with a dense phase in thermodynamics.
However, the same “liquid” is a state with a high mag-
nitude of pionic field from the field-theoretical point of
view. As a consequence, amplification of pionic field can
result in the creation of a proton-antiproton pair.

1I. THE PHASES OF PION CONDENSATE

The Lagrangian density £(7f, 7) of the model is

L =0, otr —minTr + ;(wa -
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where the normal ordering of operator fields is assumed.
We deal with the case, when electromagnetic interaction
is neglected. Here it is also supposed that A = m?/g?,
B = 3m?)\/2g*, m = 140 MeV, g and A\ are model pa-
rameters which should be fitted.

Constant g plays a role of pion decay constant f
redefined in the medium. Model parameter A is intro-
duced to account effectively the higher-order terms of
chiral interaction expansion. To analyze the range of
A, let us present chiral interactions (considered above,
for example) as V(v) = agrv? — aqv* + agrv®A(v), where
an, = |[V™(0)|/n! and v? = 27T7/g%. It turns out that
A(v) is a smooth function, which is decreased from 1 to
0, when v runs from 0 to co. Thus, if even |v| > 1, the
constant A introduced instead of function A(v) should
be less than 1 in order to relate our phenomenological
approach with the chiral theory.

Our approach to this model is based on ansatz on ap-
plicability of the mean-field approximation (MFA) in a
wide temperature interval. Moreover, we are limiting our-
selves by two cases: i) T = 0, when the operator field
m can be replaced by a classical complex field ¢, also
called as the order parameter, describing a condensate;
i) T > Ttond, when there are no anomalous expectation
values and the field 7 coincides with quantum fluctua-
tions y. Our aim is to investigate the liquid-like states of
777~ matter in these two regimes.

It is appropriate for us to begin from the investigation
of different phases of the non-uniform pion condensate at
T = 0, which appears in the neutron stars and the nuclei
with density higher than the saturation one. This situa-
tion is modeled by Lagrangian density £(¢*, ¢). In fact
the replacement of 7w by ¢ is analogous to the transition
from quantum electrodynamics to the classical descrip-
tion of electromagnetism, when a big number of photons
are in approximately the same state. In our case, the
presence of a big number of pions in a single state (Bose—
Einstein condensate) permits us to introduce the classi-
cal function ¢. In a contrast to Maxwell theory, £(¢*, ¢)
contains the quantum constant % explicitly (A = 1 in
our units). On the other hand, the quantum meaning of
classical fields is reviewed in Ref. [12].

From the variational derivative of the corresponding
classical action functional, one obtains the following evo-
lution equation:

2
(7~ 72) o+ mPo - alePo+ Flol's =0,
which serves as a relativistic generalization of the cor-
responding Gross—Pitaevskii equation without external
trap potential [8].

An applicability of Eq. (2) demands that the following
conditions should be satisfied. First, the total number
of pions (multiplicity) must be large enough because on-
ly in this case we are authorized to use the concept of
Bose—Einstein condensation. Second, in order to replace
the field operator by the classical field we have to assume
both diluteness and the fact that the temperature is low
enough. This allows us to ignore both the quantum and
thermal depletion of the condensate.
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The solution of Eq. (2) essentially depends on physical
parameters and boundary conditions. Here we shall deal
with exact static quasi one-dimensional solution (“bub-
ble”) which can be presented as:

o(t,2) = np(2) exp (—imt 1- k2>, (3)

where 7 (z) is a real function.

The time dependence is in a phase, corresponding to
the non-vanishing charge ). Such a substitution results
in a very large class of solutions 7 (2) in terms of elemen-
tary and elliptic functions [13,14]. However, we are in-
terested in stable solutions arising from ordinary charge
conservation.

For the boundary conditions

lim 7 (2) =0,

z—+o0

z—Foo
there is a solitary wave solution of the form [13]:
2gk
m(2) = :
\/\/ 1 — 4X\k? cosh(2kmz) + 1

(4)

The result obtained describes a narrow layer of the dense
phase trapped between dilute phase and leads to a lo-
calized energy density. This model solution can describe
a region of dense pion matter with respect to the of
nucleus-nucleus collision.

One can simply prove that solution (3) is pseudoscalar:
it is necessary to replace the coordinate z and the
(quasi)momentum k by —z and —k, respectively. As it
must be, this operation changes a sign of ¢(t, z).

An order parameter in this system is the scalar density
n(z) = |p(t, 2)|?. To determine the phase of pion matter
in dense region, we introduce the charge @ (difference
between the numbers of particles and antiparticles) and
the total energy E per unit area:

Vv1-—k?2 1—+1—4)\k?
Vo artanhy | Y224 (5)

VA 1+ V1 —40k2’
2
E=myi_f2q Ik

Q =8¢

A
2 / 2
g m 9 1—+v1—-4Xk
— — (1 — 4 k*)artanh————F———. 6
o Jartanh—— "~ (©)

These quantities are parameterized by k as independent
variable. Also, it is not hard to see that, varying k, the
behavior of functions @), F is mainly determined by pa-
rameter A. At this time, the model parameter g influences
only the magnitude of these characteristics.

Since the charge @ is conserved in time, there exists a
non-vanishing chemical potential p = 0FE/0Q, which is
calculated by the formula: © = (0F/0k)/(0Q/0k). The
dependence of 1 on k can be explicitly found. Howev-
er, we do not adduce it here because of its cumbersome
form. Note only that p > 0. It is in accordance with the
result of [2], where multipion droplets are considered at
low temperature.
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As shown in Fig. 1, the central density v = n(0)/g?
and the chemical potential p present backbendings typ-
ical for the first-order PT. The transition point, given
by the crossing point in ¢ = E/mg? versus ¢ = Q/g?,
corresponds to a Maxwell construction in the diagram
of pu versus g. However, the system should never ex-
plore the backbending part of the diagram because it
is a metastable state. It is clear that dense phase is asso-
ciated with a liquid while dilute phase is a gas. We want
to stress that both branches are quantum fluids.

Fig. 1. Central density v, total energy e, chemical poten-
tial ¢ per mass m, in dimensionless units, as functions of the
reduced charge q.

We see in Fig. 1 that the first-order PT in pion con-
densate takes place at 0.25 < A < 0.268 and A < 1 as
is argued above. Note that, at A ~ 0.268, the stable and
metastable solutions coincide. It defines a critical point
associated with a second-order PT: at this point the
derivative of v as a function of ¢ diverges. For A = 0.25
the attractive two-body interaction prevails and the sys-
tem tends to collapse. In this case the maximum charge
is limited by ¢ =~ 5.3. Assuming an existence of the first-
order phase transition, we put A\ = 0.26 in this paper.
The value of constant g will be discussed in the case of
hot pion matter.

III. THE HOT PION LIQUID

Now we focus on the description of the 777~ matter at
high temperatures in MFA, when the field 7 is described
completely by quantum fluctuations y. We represent op-
erator field x in finite volume V as

x(z) =) [apup() + bhup(@)] (7)

P

up(x) = exp (—iEpt + ipx). (8)

2B,V

The dispersion law is E, = /p? + m2, where m, is effec-
tive mass which should be found; aL, pr (ap, bp) are cre-
ation (annihilation) operators of particles and antipar-
ticles, respectively. The commutation relations between
operators are standard: [ap, am = 0p.q, |bp; b];] =0p.q-
The Hamiltonian operator, H = [(Ho+W)d3z, based

on L(xT,x), is determined by the following terms:

Ho = dix'0ix + Vx'Vx + mixTx, 9)
W = (m® —mi)x"x - %(x*x)2 + g(xTx)3~ (10)
One has
H = ZEp(np+ﬁp)+/Wd3x, (11)
P

where np = aLap and np = bpr are the number opera-
tors of particles and antiparticles, respectively.

Assuming that the interaction term is the perturba-
tion, thermodynamic potential can be written as

0= TZ In {1 — POr=Ep) | L VW pa, (12)

7P

where p is the chemical potential, 5 = 1/T is inverse
temperature, v = £1.

In our approximation, the interaction term is as fol-
lows

Wiira = (m? —m?)o + m?(bo® — 2a0?), (13)

where ¢ = (x'x) is the order parameter, a = 1/2¢2,
b=3)\/2g".

We find thermodynamically conjugate variables ¢ and
m, from the extremizing conditions 02/0m. = 0,
090 /00 = 0, which result in the gap equation,

1 1 1
=V Z 2F, eB(Ep—v1) — 1’
v,P

(14)

and the mass ratio, s2 = m?/m? = 1 — 4ao + 3bo?.

Further investigation of the thermodynamic properties
of hot pion matter is carried out in the thermodynamic
limit, when the replacement of summation by integration
over momentum takes place. Here we neglect a contribu-
tion of the surface.
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It turns out that, to solve correctly the constraint, it
is helpful to operate with dimensionless variable s in-
stead of 0. It leads at once to the splitting of the val-
ue interval of o into two branches: o = (2¢%/9\)[1 &
V1= (9/2)A(1 — s2)]. Such a representation of o gives
us two equations Fiy(s, T, u) = 0, where

9 A 3 2
% 27 dk k2
— ) 1+ 2 H(msVIFR—m) _ ¢
0

(15)

The solution of these equations is the function s(T, p)
which is calculated numerically.

One can say that this splitting reflects the existence of
two phases of hot pion matter. If s = 1, we find that a sin-
gle phase, corresponding to ideal gas, survives. Switching
on an interaction (s # 1), a new phase, called hot pion
liquid, can arise. The appearance of this phase is possible
due to the sixth-order term.

In order to compute thermodynamic functions, one
needs to know the values of two parameters of our model,
namely, g and A\. We have already assumed that A = 0.26
to achieve liquid-gas phase transition in condensate. To
fit constant g, we try to appeal to experimental data
obtained by DLS Collaboration in Berkeley and extract
necessary information from dilepton spectra produced in
proton—nucleus reaction [15]. If we believe that the main
contribution to the spectrum comes from hot 77~ an-
nihilation, one can conclude that the pion annihilation
threshold is not equal to twice free pion mass (2m) but
smaller and approximately is 2ms = 260 MeV. Our fit
to the spectra [15], which depends on the dielectron in-
variant mass, gives us the temperature of the fireball,
formed in this collision, equal to T = 75 MeV. There-
fore, to find ¢ at chemical equilibrium (u = 0), we need
to substitute these data in our equations. One obtains
that ¢ & 8 MeV from equation F,(s,7,0) = 0. Using
the equation F_(s,T,0) = 0, another value of g is de-
rived. However, the liquid-gas PT is not observed in this
case.

Assuming chemical equilibrium, there is the only pos-
sibility to observe the transition into liquid phase with
changing temperature. Indeed, the dense “liquid” phase

appears with increasing temperature (see Fig. 2) that
is in contrast to molecular physics, where the number
of particles is conserved. This phenomenon has been al-
ready pointed out in [11]. The critical temperature of
the PT in our model is about 42.3 MeV and less than
136 MeV as it was predicted in [11]. However, we should
conclude that, at T' = 75 MeV of fireball, the pions are
in the liquid phase, if the scenario, when g ~ 8 MeV,
is realized in nature. This outcome demands additional
theoretical and experimental verifications.

41.6 41.8 42.0 42.2 42.4
T [MeV]

Fig. 2. The dependence of the scalar density o (in MeV?)
and the reduced effective mass s = m./m on temperature.

Note that the calculations with the non-vanishing
chemical potential can be carried out and will be pub-
lished elsewhere.
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PIAMHHO-IIOOIBHI ®A3U 777~ MATEPII

JI. Anuimkin, A. Hazapenko
Inemumym meopemunnoi disuku imeni Bozoaobosa,
syna. Memponoziuna, 14-6, Kuis, 03143, Vkpaina

o6 matu y mupoKoMy TeMIepaTypHOMY iHTEPBaJI €IUHUN TEOPETHIHAN ONUC PinKkux (a3 mMarepil, 1o CKia-
JIA€THCS 13 3apSIZKEHUX TOHIB, PO3IISHYTO PEISATHBICTCHKY KBAHTOBY Moaems Tumy ¢°. Jlocmimxkeno pinki cranm
IMIOHHOIO KOHJIEHCATY Ta “rapsadol’ MOHHOI MaTepil.

97



