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Classic and recent results for gauge effects on the properties of the normal-to-superconducting
phase transition in bulk and thin film superconductors are reviewed. Similar problems in the de-
scription of other natural systems (liquid crystals, quantum field theory, early Universe) are also
discussed. The relatively strong gauge effects on the fluctuations of the ordering field at low spatial
dimensionality D and, in particular, in thin (quasi-2D) films are considered in detail. Special at-
tention is paid to the fluctuations of the gauge field. It is shown that the mechanism in which these
gauge fluctuations affect the order of the phase transition and other phase transition properties
varies with the variation of the spatial dimensionality D. The problem for the experimental confir-
mation of the theoretical predictions about the order of the phase transitions in gauge systems is
discussed.
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I. INTRODUCTION

A. Superconductivity and gauge effects

A remarkable example of gauge theory in condensed
matter physics is the Ginzburg–Landau (GL) function-
al of superconductivity [1, 2]. The latter is invariant to-
wards both global U(1) rotations of the order parameter
field ψ(x) and local gauge transformations (rotations)
of the same field and the vector potential A(x) of the
magnetic induction B. These two properties of gauge in-
variance define the global and local U(1) symmetries of
the GL theory. In both cases the gauge group is a one-
dimensional Abelian continuous group U(1). The spon-
taneous breaking of these global and local symmetries
below the phase transition point allows for the appear-
ance of the superconducting phases: the uniform Meiss-
ner phase and, under certain circumstances, the mixed
(Abrikosov vortex [3]) phase. While the Meissner phase
[〈ψ〉 6= 0, 〈B〉 = 0] is a mere product of the breaking of
the global U(1) symmetry, the vortex phase [〈ψ(x)〉 6= 0,
〈B(x)〉 6= 0] , where the equilibrium field configurations
of both the order parameter field ψ(x) and magnetic in-
duction B(x) are spatially nonuniform, is a result of the
spontaneous breaking of local U(1) symmetry. The local
gauge is important also for the description of the magnet-
ic field penetration in both Meissner and vortex phases.
This penetration is described by an additional character-
istic length, the London penetration length [1, 2], which
is different from zero only when the symmetry is broken,
i. e., in the ordered phases, where the equilibrium value
of ψ is different from zero. The local U(1) symmetry is
present when the superconductor is an external magnet-
ic field, or, when this field is equal to zero but magnetic

fluctuations exist and give sense of the vector potential
A(x) as a purely fluctuating field.

The fluctuations of the relevant fields, ψ(x) and A(x)
in usual superconductors are small and can be neglect-
ed. This means that the GL functional can be investi-
gated in the lowest order mean field (MF) approxima-
tion (alias, “tree approximation” [4,5]). This is the usual
way of treatment of the GL free energy, in particular,
the investigation of the GL equations [1–3]. Within the
tree approximation, the phase transition from normal to
superconducting state in zero magnetic field is of the sec-
ond order [1, 2, 4]. For a long time this phase transition
has been considered as one of the best examples of the
second order phase transitions, which has an excellent
description within MF. But in 1974 Halperin, Lubensky
and Ma (HLM) [6] showed that the magnetic fluctuations
change the order of the superconducting phase transition
in a zero external magnetic field (H0 = |H0| = 0)), i. e.,
the order of the phase transition from normal-to-uniform
(Meissner) superconducting state at Tc0 = Tc(H0 = 0)
(see, also Ref. [7]). Since then this fluctuation change of
the order of normal-to-superconducting phase transition
(HLM effect) has been under debate. After 1974 an over-
whelming amount of theoretical research on this topic
has been performed but up to now there is no complete
consensus about the order of this phase transition. In
this review we shall consider some aspects of this prob-
lem but we shall not be able to discuss or mention all
relevant contributions. However, it is important to em-
phasize that the investigation of the properties of the
superconducting phase transition is important for other
areas of physics, too. Here we shall briefly enumerate and
discuss several examples.
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B. Quantum field theory and other problems

In elementary particle physics the gauge invariant the-
ory similar to the GL theory of superconductivity is
called the the Abelian Higgs Model [8–13]. The same
global U(1) and local U(1) gauge symmetries are present
but the phenomenon of spontaneous breaking of symme-
try occurs only for imaginary mass of the Higgs (ψ)-
field, which is an analog of the field ψ describing the
Cooper pair in a superconductor. In the absence of spon-
taneous symmetry breaking this model would describe
an ordinary electrodynamics of charged scalars, but the
situation becomes more interesting when the mentioned
mass is imaginary and the breaking of symmetry occurs.
Now the symmetry breaking phenomena receive other
names and another physical interpretation. The break-
ing of both global and local gauge symmetries ensures
a mechanism of transformation of the two initial scalar
fields — analogs of the components ψ′ and ψ′′ of the
complex field ψ = ψ′ + iψ′′, and two massless photon
fields — analogs of the two independent components Aj
of the vector potential A = {Aj ; j = 1, 2, 3; ∇ · A = 0}
in a superconductor, to four massive particle fields: the
so-called Higgs boson, which is an analog of the spon-
taneous order |ψ| > 0 in a superconductor, and three
massive vector field components, i. e. a massive three di-
mensional vector field. The mass of this new vector field
is proportional to the electric charge |q| and magnitude
|ψ| of the Higgs field and, as a matter of fact, this is ex-
actly the way, in which the London penetration length
in a superconductor depends on the electron charge |e|
and the modulus |ψ| of the superconducting order pa-
rameter ψ. Thus the spontaneous breaking of the local
gauge symmetry leads to the formation of massive parti-
cles without spoiling the gauge invariance of the theory.
This is called “the Higgs mechanism”. The latter plays a
fundamental role in the unified theory of electromagnet-
ic, weak, and strong interactions (see, e. g., Refs. [12,13]).

It is easy to see that there is something quite com-
mon between the phenomena of spontaneous breaking
of the continuous symmetries in superconductivity the-
ory and in quantum field theory. The superconducting
phase |ψ| > 0 is the exact analog of the Higgs boson in
the Abelian–Higgs model, whereas the appearance of a
massive vector field has its analog in the finite London
penetration length mentioned above. Of course, there are
no obstacles in interpreting the phenomena of sponta-
neous symmetry breaking in quantum field theory as
phase transitions by taking the Higgs mode mass as a
tuning parameter. The phase transition will occur at ze-
ro mass of the Higgs boson.

A similar phenomenon of spontaneous breaking of
both global U(1) and local gauge symmetries is possi-
ble also within the scalar electrodynamics due to mass
insertions from the radiation corrections, as shown in
Ref. [14]. The radiation corrections, analogs of the mag-
netic fluctuations in a superconductor, generate an imag-
inary mass to the initially massless scalar field in this the-
ory and the latter becomes very like the Abelian–Higgs
model. Here the symmetry breaking leads to the appear-

ance of massive scalar and vector fields describing neutral
scalar meson and vector meson, respectively [14]. The
radiation corrections to the Lagrangian of the massless
scalar electrodynamics [14] resembles very much, in par-
ticular, in their mathematical form at D = 4, the mag-
netic fluctuation corrections to the GL free energy of 4D
superconductors [7]. The interrelationships between the
superconductivity theory and the gauge theories of ele-
mentary particles has been comprehensively discussed in
Ref. [15]. Note also the interrelationship between the GL
functional of superconductivity and the CPN−1 confine-
ment model (see Ref. [16]) and extensions to non-Abelian
theories [17].

The gauge theories, mentioned so far, and their exten-
sions have a wide application in the description of the
Early Universe [15, 18]. Another interesting gauge theo-
ry is that of the nematic-to-smectic A phase transition in
liquid crystals. According to the Kobayashi-McMillan-de
Gennes theory [19–21] the smectic-A order is described
by two order parameters: the nematic director vector and
the complex scalar describing the center of masses of the
long molecules. When a description, quite analogous to
that of superconductors, is introduced, as suggested by
de Gennes [21], the director vector is substituted with
a gauge vector field, which is quite similar to the vec-
tor potential A in the GL functional. Apart from some
specific features intended to take into account the liquid
crystal anisotropy, the effective free energy of the smec-
tic A looks very like the GL free energy of superconduc-
tors (see, also, Refs. [22–24]). Another gauge theory in
condensed matter physics that has some (but not very
close) similarity with the GL free energy of supercon-
ductors is the Chern–Simons–Ginzburg–Landau (CSGL)
effective functional of the quantum Hall liquid state, in
particular, in the description of the phase transitions be-
tween the plateaus in the quantum Hall effect [25–28].
Let us mention also the liquid metallic hydrogen, where
the problem of the superconducting-to-superfluid phase
transition [29] is also related to the topics discussed in
this review.

C. About the investigation of the fluctuation-driven

first order phase transition in superconductors

Now we shall focus on the fluctuation effects for the
properties of the normal-to-superconducting phase tran-
sition in the zero external magnetic field, which is the
subject of the present review and in particular cases we
shall refer to related topics in other natural systems. We
shall consider in more detail the HLM effect in 2D and
quasi-2D superconductors with a special emphasis on the
problem of the theoretical predictions reliability. Follow-
ing Ref. [6] we shall use two theoretical methods.

In Sec. II we use the MF like approximation of Ref. [6]
where the spatial fluctuations of superconducting order
parameter ψ are neglected, and the magnetic fluctua-
tions are taken into consideration. This treatment was
justified for the well established type I superconductors,
where the London penetration length λ is much smaller
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than the coherence (correlation) length ξ. Due to the ne-
glecting of spatial fluctuations of ψ, the results of such
MF treatment should be valid outside the Ginzburg crit-
ical region [4]. A weakly first order phase transition oc-
curs as a result of a new small |ψ|3-term, which appears
in the effective free energy of 3D superconductors within
the framework of the MF like approximation [6]. But this
HLM effect was found to be very small and experimental-
ly unobservable even for the well established type I bulk
(3D-) superconductors, such as Al, where the GL number
κ = λ/ξ = 10−2 � 1. It has been recently shown [30–36]
that the HLM effect is much stronger in quasi-2D super-
conductors than in the bulk (3D) samples. Moreover, as
shown in this series of papers, the effect appears by a
term of type |ψ|2ln|ψ| in the effective free energy, and
essentially depends on the thickness L0 of quasi-2D su-
perconducting films. These circumstances provide a real
opportunity for an experimental verification of the effect
— a topic of discussion throughout the present review,
and in particular, in Sec. II.

We must emphasize that MF results are not valid
for thermodynamic states in the Ginzburg critical re-
gion (δT )G = |TG − Tc0|/Tc0 around the equilibrium
phase transition point Tc0. In certain classes of high-
temperature superconductors the Ginzburg region ex-
ceeds 0.1K whereas in usual low-temperature supercon-
ductors it is very narrow, (δT )G ∼ 10−12−10−16 K, and
the respective critical states are experimentally unacces-
sible (see, e. g., [4]). If the metastability states, which
go along with the weakly first order phase transition
predicted by MF, extend over the temperature intervals
larger than the size of the Ginzburg region, one may
conclude that the MF prediction of the HLM effect is
reliable. In Sec. II we justify the MF analysis reliabil-
ity for such element superconductors as Al, W, In. We
will show that the condition for sufficient wideness of the
metastability regions is quite strong and, perhaps, irrel-
evant in experiments. We will also demonstrate that the
magnitude of the critical magnetic field is crucial for the
observability of the HLM effect in thin superconducting
films (see also the discussion in Sec. II.I).

In Sec. III we review some results for the HLM ef-
fect obtained with the help of the renormalization group
(RG) method [4,5]. The latter allows simultaneous treat-
ment of both superconducting and magnetic fluctuations
in the asymptotically close vicinity of the phase transi-
tion point. The lack of fixed point of the one-loop RG
equations for conventional superconductors in zero ex-
ternal magnetic field was interpreted as a signal for a
fluctuation-driven first order phase transition [6]. This
result shows that the local gauge magnetic fluctuations
are relevant also in the Ginzburg region of strong ψ-
fluctuations and under certain circumstances they can
change the order of the phase transition to a weakly
first order, as is outside the critical region. The RG in-
vestigations of the superconducting phase transition or-
der in zero magnetic field has been recently reviewed in
Ref. [37]. While the latter review emphasizes the investi-
gation of the HLM effect in high orders of the loop expan-
sion [4,5], here we lay stress on RG results for the effects

of anisotropy, quenched disorder and extended symme-
tries of the Higgs ψ-field on the phase transition prop-
erties. The RG study of unconventional superconductors
will also be discussed. In the remainder of this paper
we shall consider mainly the phase transition to the su-
perconducting state but some results for other systems
and related topics will also be mentioned in brief; see
Sec. III.C–III.E.

II. MF STUDIES

A. General GL functional

The GL free energy [2] of D-dimensional superconduc-
tor of volume VD = (L1 . . . LD) is given in the form

F (ψ,A) =

∫

dDx

[

a|ψ|2 +
b
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In Eq. (1) the first Landau parameter a = α0(T −Tc0) is
expressed by the critical temperature Tc0 = Tc(H = 0)
in zero external magnetic field (H = |H|), b > 0 is
the second Landau parameter and e ≡ |e| is the elec-
tron charge. The square B2 of the magnetic induc-
tion B = (H + 4πM), is given by the vector potential
A(x) = {Aj(x), j = 1, . . . , D} in the form

B2 =
1

2

D
∑

i, j = 1

(

∂Aj
∂xi

− ∂Ai
∂xj

)2

, (2)

here the vector potential A(x) obeys the Coulomb gauge
∇ · A(x) = 0. For 3D superconductor the relation
B = ∇ × A(x) can be used and when B = B0 is
uniform along the z- axis, the Landau gauge A0(x) =
B0(−y/2,−x/2, 0) can be applied. This representation
can be generalized for the (D > 2)-dimensional systems,
where the magnetic induction B0 is second rank ten-
sor [38]:

B0ij = B0(δi1δj2 − δj2δi1). (3)

If we use the notation x = (x1, x2, r), where r is a
(D − 2)-dimensional vector, perpendicular to the plane
(x1, x2), in the 3D case we will have r = (0, 0, z), and

Bj =
1

2
εjklB0kl = B0δj3 , (4)

where εjkl is the antisymmetric Levi–Civita symbol. The
Landau gauge and Eqs. (3)–(4) can be used for uni-
form B = B0 when δB-fluctuations are neglected. In
the prevailing part of our study we shall apply the gen-
eral Coulomb gauge of the field A(x), which does not
exclude spatial dependent magnetic fluctuations δB(x).

In nonmagnetic superconductors, where the mean val-
ue 〈M〉 = (M − δM) of magnetization M is equal to
zero in the normal state in zero external magnetic field,
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the magnetic induction in the presence of the external
magnetic field takes the form:

B = H0 + δH(x) + 4πδM(x) , (5)

where H0 is the (uniform) regular part of the external
magnetic field and δH is an irregular part of H created
by uncontrollable effects. We neglect the irregular part
δH and set H0 = 0, then B contains only a fluctua-
tion part B ≡ δB(x) = 4πδM(x) that describes the
diamagnetic variations of M(x) around the zero value
〈M〉 = 0 due to fluctuations δψ(x) of the ordering field
ψ(x) above (T > Tc0) and below (T < Tc0) the normal-
to-superconducting transition at Tc0. Note that the non-
fluctuation part A0 = [A(x)−δA(x)] corresponds to the
regular part B0 = (H0 + 〈M〉) = 0 of B in nonmagnet-
ic superconductors (〈M〉 = 0) in zero external magnetic
field (H0 = 0). Then we can set A0(x) = 0 and, hence,
δA(x) = A(x), so we have an entirely fluctuation vector
potential A(x), which interacts with the order parame-
ter ψ(x). This interaction can be of the type |ψ|2A and
|ψ|2A2 and generates all the effects discussed in the pa-
per.

We accept periodic boundary conditions for the super-
conductor surface. This means to ignore the surface en-
ergy including the additional energy due to the magnetic
field penetration in the surface layer of thickness equal to
the London penetration depth λ(T ) = λ0|t0|−1/2, t0 =
|T − Tc0|/Tc0; λ0 = (mc2b/8πe2α0Tc0)

1/2 is the “zero-
temperature” value of λ. This approximation is ade-
quate for superconductors of thickness L0 � λ(T ) � a0,
where a0 is the lattice constant and L0 = min{Li, i =
1, . . . , D}. As we suppose the external magnetic field to
be zero (H0 = 0) or very small in real experiments, the
requirement L0 � λ(T ) can be ignored and we have the
simple condition L0 � a0.

In microscopic models of periodic structures the peri-
odic boundary conditions confine the wave vectors ki =
{ki = (2πni/Li); i = 1, . . . , D} in the first Brillouin zone
[−(π/a0) ≤ ki < (π/a0)] and the expansion of their val-
ues beyond this zone can be made either by neglecting
the periodicity of the crystal structure or on the basis of
the assumption that large wave numbers k = |k| have a
negligible contribution to the calculated quantities. The
last argument is widely accepted in the phase transition
theory, where the long-wavelength limit (ka0 � 1) can be
used. In particular, this argument is valid in the continu-
um limit (VD/a

D
0 → ∞). Therefore, for both crystal and

nonperiodic structures we can use the cutoff Λ ∼ (π/a0)
and afterwards extend this cutoff to infinity, provided
the main contributions in the summations over k come
from the relatively small wavenumbers (k � Λ). This is
in fact a quasimacroscopic description based on the GL
functional (1), which means that the microscopic phe-
nomena are excluded from our consideration.

The GL free energy functional takes into account phe-
nomena with characteristic lengths ξ0 and λ0 or larg-
er (ξ and λ), where λ(T ) is the London penetration
length mentioned above and ξ(T ) = ξ0|t|−1/2 is the co-
herence length [2]; here ξ0 = (~2/4mα0Tc0)

1/2 is the
zero-temperature coherence length. In low-temperature

superconductors ξ0 and λ0 are much bigger than the lat-
tice constant a0. Having in mind this argument we will
assume in our investigation that Λ � (π/a0). Whether
the upper cutoff Λ is chosen to be either Λ ∼ 1/ξ0 or
Λ ∼ 1/λ0 is a problem that has to be solved by addi-
tional considerations. According to arguments presented
in Ref. [30] and Sec. II.F, we will often make the choice
λ ∼ ξ−1

0 .
We will use the Fourier expansion

Aj(x) =
1

V
1/2
D

∑

k

Aj(k)eik.x (6)

and

ψ(x) =
1

V
1/2
D

∑

k

ψ(k)eik.x , (7)

where the Fourier amplitudes Aj(k) obey the relation
A∗
j (k) = Aj(−k) and k · A(k) = 0. The Fourier ampli-

tude ψ(k) is not equal to ψ∗(−k) because ψ(x) is com-
plex function. For the same reason ψ(0) ≡ ψ(k = 0) a
complex number.

Functional (1) is invariant under global U(1) rotations
defined by ψ(x) → ψ(x)exp(iα), where the angle α does
not depend on the spatial vector x, and under the lo-
cal U(1) gauge transformations ψ(x) → ψ(x)exp[iα(x)],
A(x) → A(x) + (~c/2e)∇α(x). According to the discus-
sion in Sec. I, we have to investigate the spontaneous
breaking of these symmetries, that is, the ordered phas-
es and the phase transitions in the superconductor. The
HLM effect,on which we are going to focus our attention,
is one of the results of the local U(1) symmetry breaking.

B. Notes about the MF like approximation

While the effect of the superconducting fluctuations
δψ(x) on the phase transition properties is very weak, as
in usual superconductors, and is restricted in a negligi-
bly small vicinity (|t0| ∼ 10−12 ÷ 10−16) of temperature
Tc0, we will assume that δψ(x) = 0, i. e., ψ ≈ 〈ψ(x)〉;
from now on we will denote 〈ψ(x)〉 by ψ. So we apply
the mean-field approximation with respect to the order
parameter ψ(x). Within this approximation we will take
into account the δA(x)-fluctuations for B0 = 0, i. e.,
A(x) = δA(x). Furthermore, the A(x)-fluctuations can
be integrated out from the partition function, defined by:

Z(ψ) =

∫

DAe−F (ψ,A)/kBT , (8)

where the functional integral
∫

DA is given by

∫ ∞

−∞

D
∏

j=1

∏

x∈VD

dAj(x)δ[divA(x)] . (9)

The integration is over all possible configurations of
the field A(x); the δ-function takes into account the
Coulomb gauge.
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The partition function Z(ψ) corresponds to an effec-
tive free energy FD of the D-dimensional system:

FD = −kBT lnZ(ψ). (10)

The magnetic fluctuations will be completely taken into
account, if only we are able to solve exactly integral (8).
The exact solution can be done for a uniform order pa-
rameter ψ. The uniform value of ψ is different from the
mean-field value of ψ, because the uniform fluctuations
of ψ(x) always exist, so we should choose one of these
two possibilities [30,35]. The problem of this choice aris-
es after calculating the integral (8) at the next stage of
consideration when effective free energy FD is analyzed
and the properties of the superconducting phase (ψ > 0)
are investigated. The effective free energy is a particu-
lar case of the effective thermodynamic potential in the
phase transition theory [4,5] and we must treat the uni-
form ψ in the way prescribed in the field theory of phase
transitions. It will become obvious from the next discus-
sion that we will use a loop-like expansion, which can be
exactly summed up to give a logarithmic dependence on
|ψ|.

Due to the spontaneous symmetry breaking of the
global U(1) continuous symmetry of the ground state
ψ 6= 0, the effective free energies discussed in this Sec-
tion depend on the modulus |ψ| of the complex number
ψ = |ψ|eiθ but not on the phase angle θ, which remains
arbitrary. That is why we will consider the modulus |ψ|
as an “effective order parameter” as the angle θ does not
play any role in the phenomena investigated in this Sec-
tion. The quantity |ψ| remains undetermined up to the
stage when we define the equilibrium order parameter
|ψ0| by the equation of state [∂FD(ψ)/∂ψ] = 0. This
equation gives the equilibrium value ψ0 of ψ and the dif-
ference δψ0 = (ψ0 - ψ) can be treated as the uniform
(zero dimensional) fluctuation of the field ψ(x). The x-
dependent fluctuations δψ(x) have been neglected be-
cause of the uniformity of ψ. The solution ψ0 will be
stable towards the uniform fluctuation δψ, provided the
same solution ψ0 = |ψ0|eiθ0 corresponds to a stable (nor-
mal or superconducting) phase; the phase angle θ0 re-
mains unspecified. We begin our investigation by setting
ψ uniform but at some stage we will also ignore the uni-
form fluctuation δψ and deal only with the equilibrium
value ψ0 of ψ. The equilibrium value will be calculat-
ed after taking into account magnetic fluctuations, so it
will be different from the usual result |ψ0| = (|a|/b)1/2 [2]
where both magnetic and superconducting fluctuations
are ignored. This simplest approximation for the equilib-
rium value of ψ is obtained from the GL free energy (1),
provided e = 0 and the gradient term is neglected. Here-
after we will keep the symbol |ψ0| for the equilibrium
order parameter in the more general case when the mag-
netic fluctuations are not neglected and will denote the
same quantity for e = 0 by η ≡ |ψ0(e = 0)| = (|a|/b)1/2.

The above described approximation neglects the sad-
dle point solutions of GL equations, where 〈ψ(x)〉 is x-
dependent. Therefore, the vortex state that is stable in
type II superconductors cannot be achieved. This is con-
sistent with setting the external magnetic field to ze-

ro, so the vortex state cannot occur in any type super-
conductor. These arguments can be easily verified with
the help of GL equations [2] for zero external magnetic
field; the only nonzero solution for ψ in this case is giv-
en by η = (|a|/b)1/2 although the magnetic fluctuations
A(x) = δA(x) are properly considered.

In conclusion we can argue that the described method
will be convenient for both type I and type II super-
conductors in zero external magnetic field, if the ψ-
fluctuations have a negligibly small effect on phase tran-
sition properties Tc0 = Tc(H0 = 0), where Tc denotes
the phase transition line for any H0 ≥ 0. For type
II superconductors in H0 > 0, two lines Tc1(H0) and
Tc2(H0) should be defined, usually given by Hc1(T ) and
Hc2(T ) [2].

C. Effective free energy

When the order parameter ψ is uniform the function-
al (1) is reduced to

F (ψ,A) = F0(ψ) + FA(ψ) (11)

with

F0(ψ) = VD(a|ψ|2 +
b

2
|ψ|4) (12)

and

FA(ψ) =
1

8π

∫

dDx

{

ρ(ψ)A2(x)

+
1

2

D
∑

i,j=1

(

∂Aj
∂xi

− ∂Ai
∂xj

)2
}

. (13)

Here ρ = ρ0|ψ|2 and ρ0 = (8πe2/mc2). It is convenient
to calculate the partition function Z(ψ) and the effec-
tive free energy FD(ψ) in the k-space, where Eqs. (9)
and (13) take the form

∫ ∞

−∞

D
∏

j=1

k≤Λ
∏

k>0

dReAj(k) dImAj(k)δ [k · A(k)] (14)

and

FA(ψ) = FA(0) + ∆FA(ψ) . (15)

Here

FA(0) =
1

8π

∑

j,k

k2 |Aj(k)|2 , (16)

and

∆FA(ψ) = ρ
∑

j,k

|Aj(k)|2 ; (17)

note, that we have used the Coulomb gauge k ·A(k) = 0.
Then the partition function (8) will be
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Z(ψ) = e−F0(ψ)/kBTZA(ψ) , (18)

where

ZA(ψ) =

∫

DAe−FA(ψ)/kBT (19)

with FA(ψ) given by (15) and the functional integration
defined by the rule (14). With the help of Eqs. (10)–(19)
the effective free energy FD(ψ) becomes

FD(ψ) = F0(ψ) + Ff (ψ) , (20)

where F0(ψ) is given by Eq. (12) and

Ff (ψ) = −kBT ln

[Z(ψ)

Z(0)

]

(21)

is the ψ-dependent fluctuation part of F(ψ). In Eq. (20)
the ψ-independent fluctuation energy {−kBT ln [ZA(0)]}
has been omitted. This energy should be ascribed to the
normal state of the superconductor, which by convention
is set equal to zero.

Defining the statistical averages as

〈(. . .)〉 =

∫

DA e−FA(0)/kBT (. . .)

ZA(0)
, (22)

we can write Eq. (21) in the form

Ff (ψ) = −kBT ln 〈e−∆FA(ψ)/kBT 〉. (23)

Eq. (23) is a good starting point for the perturba-
tion calculation of Ff (ψ). We expand the exponent in
Eq. (23) and also take into account the effect of the log-
arithm on the infinite series. As a result we obtain

Ff (ψ) =

∞
∑

l=1

(−1)l

l!(kBT )l−1
〈∆F lA(ψ)〉c , (24)

where 〈. . .〉c denotes connected averages [4]. Now we have
to calculate averages of the type

〈Aα(k1), Aβ(k2) . . . Aγ(kn)〉c . (25)

Here we will use the Wick theorem and the correlation
function of the form

G
(A)
ij (k,k′) = 〈Ai(k)Aj(−k′)〉 = δk,k′GAij(k) , (26)

where

GAij(k) = 〈Ai(k)Aj(−k)〉 =
4πkBT

k2

(

δij − k̂ik̂j

)

(27)

and k̂i = (ki/k).
The calculation of lowest order terms (l = 1, 2, 3) in

Eq. (24) with the help of (25) - (27) is straightforward.
The perturbation terms in (24) are shown by diagrams
in Fig. 1. The infinite series (24) can be exactly summed
up and the result is the following logarithmic function

Ff (ψ) =
(D − 1)

2
kBT

∑

k

ln

[

1 +
ρ(ψ)

k2

]

. (28)

Fig. 1. Diagrammatic representation of the series (24); •
represents the ρ-vertex in (13) and (17), and the solid lines
represent bare correlation functions 〈|Aj(k)|2〉.

The same result for Ff (ψ) can be obtained by a di-
rect calculation of the Gaussian functional integral (8).
This is done using the integral representation of the δ-
function in (9) or (14) but it introduces an additional
functional integration that should be carried out after
the integration over Aj(x).

Eqs. (10), (20) and (28) give the effective free energy
density

fD(ψ) = FD(ψ)/VD (29)

in the form

fD(ψ) = f0(ψ) + ∆fD(ψ) , (30)

where

f0(ψ) = a|ψ|2 +
b

2
|ψ|4 (31)

and

∆fD(ψ) =
(D − 1)kBT

2VD

∑

k

ln
(

1 +
ρ

k2

)

. (32)

Eqs. (20) and (29) - (32) are the basis of our further
consideration. We should mention that the fluctuation
contribution ∆fD(ψ) to f(ψ) transforms to convergent
integral in the continuum limit

1

VD

∑

k

→
∫

dDk

(2π)D
= KD

∫ Λ

0

dk.kD−1 , (33)

where KD = 21−Dπ−D/2/Γ(D/2) for all spatial dimen-
sionalities D ≥ 2. But the terms in the expansion of the
logarithm in (32) are power-type divergent with the ex-
ception of several low-order terms in certain dimension-
alities D. Therefore, we will work with a finite sum of an
infinite series with infinite terms. In our further calcula-
tions we will keep the cutoff Λ finite for all relevant terms
in ∆fD(ψ). This is a prerequisite for obtaining correct
results.
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D. 2D–3D crossover

The dimensional (2D–3D) crossover has been consid-
ered in Refs. [34,39]. Here we follow Ref. [34], where the
effective free energy density f(ψ) ≡ f3(ψ) = F3(ψ)/V3

of a thin superconducting film of the thickness L0 and
volume V = V3 = (L0L1L2) is derived in a more general
way, which allows the investigation of the dimensional
crossover. Now one should perform integration (33) only
with respect to the wave vector components k1, and k2

corresponding to the large sizes Lj � L0 (j = 1, 2). The
result for the effective free energy density is [34]:

f(ψ) = a|ψ|2 +
b

2
|ψ|4 + kBTJ [ρ (ψ)] , (34)

where

J(ρ) =

∫ Λ

0

dq

2π
qS (q, ρ) (35)

is given by the sum

S =
1

L0

+Λ0
∑

k0=−Λ0

ln

[

1 +
ρ(ψ)

q2 + k2
0

]

, (36)

and q = |q|, q = (k1, k2).
In Eqs. (34)–(36), the integral J(ρ) and the sum S(q, ρ)

over the wave vector k = (q, k0) are truncated by the up-
per cutoffs Λ and Λ0. The finite cutoff Λ is introduced
for the wave number q and Λ0 stands for k0.

As our study is based on the quasimacroscopic GL ap-
proach the second cutoff Λ0 should be again related to ξ0
rather than to the lattice constant a0, i. e. Λ0 ∼ (1/ξ0),
which means that phenomena at distances shorter than
ξ0 are excluded from our consideration. We will assume
that the lowest possible value of Λ0 is (π/ξ0), as is for
Λ, but we will keep in mind that both Λ0 and Λ can
be extended to infinity, provided the main contribution
to the integral J(ρ) and the sum S come from the long
wavelength limit (qξ0 � 1).

In a close vicinity of the phase transition point Tc0
from normal (ψ = 0) to Meissner state (|ψ| > 0) the
parameter ρ ∼ |ψ|2 is small and the main contribution
to the free energy f(ψ) will be given by the terms in
S with small wave vectors k � Λ. This allows an ap-
proximate but reliable treatment of the 2D–3D crossover
by expanding the summation over k0 in (36) to infini-
ty, Λ0 ∼ ∞. A variant of the theory when Λ0 is kept
finite (Λ = Λ0 = π/ξ0) can also be developed but the
results are too complicated [36]. Performing the sum-

mation and the integration in Eqs. (35)–(36) we obtain
J(ρ) = (Λ2/2πL0)I(ρ), where

I(ρ) =

∫ 1

0

dy ln

[

sinh
(

1
2 L0Λ

√
ρ+ y

)

sinh
(

1
2 L0Λ

√
y
)

]

, (37)

The integral (37) has a logarithmic divergence that cor-
responds to the infinite contribution of magnetic fluc-
tuations to the free energy of the normal phase (Tc0 >
0, ϕ = 0). Such a type of divergence is a common proper-
ty of many phase transition models. In the present case,
as is in other systems, this divergence is irrelevant, be-
cause the divergent term does not depend on the order
parameter ψ and the free energy f(ψ) is defined as the
difference between the total free energies of the super-
conducting and normal phases: f(ψ) = (fS − fN).

Introducing a dimensionless order parameter ϕ =
(ψ/ψ0), where ψ0 = (α0Tc0/b)

1/2 is the value of ψ at
T = 0, we obtain the free energy (34) in the form

f(ϕ) =
H2
c0

8π

[

2t0ϕ
2 +

b

2
|ϕ|4 + 2(1 + t0)CI(µϕ

2)

]

, (38)

with I(µϕ2) given by Eq. (37), µ = (1/πκ)2, Λ = π/ξ0,
and

C =
2π2kBTc0
L0ξ20H

2
c0

. (39)

From the equation of state (∂f/∂ϕ = 0) we find two
possible phases: ϕ00 = 0 and the superconducting phase
(ϕ0 > 0) defined by the equation

t0 + ϕ2
0 +

(1 + t0)CL0ξ0
4πλ2

0

K(µϕ2
0) = 0 , (40)

where

K(z) =

∫ 1

0

dy
coth

(

1
2 L0Λ

√
y + z

)

√
y + z

. (41)

The analysis of the stability condition (∂2f/∂ϕ2 ≥ 0)
shows that the normal phase is a minimum of f(ϕ) for
t0 ≥ 0, whereas the superconducting phase is a minimum
of f(ϕ) if

1 >
1

4
(1 + t0)CL0Λµ

2K̃(µϕ2
0) , (42)

where

K̃(z) =

∫ 1

0

dy

y + z

[

coth
(

1
2 L0Λ

√
y + z

)

√
y + z

+
L0Λ

2 sinh2
(

1
2 L0Λ

√
y + z

)

]

. (43)
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The entropy jump ∆s = (∆S/V ) = [−df(ϕ0)/dT ] per
unit volume at the equilibrium point of the phase tran-
sition Tc 6= Tc0 is obtained in the form

∆s(Tc) = −H
2
c0ϕ

2
c0

4πTc0

[

1 +
CI(ϕc0)

ϕ2
c0

]

, (44)

where ϕc0 ≡ ϕ0(Tc) is the jump of the dimensionless
order parameter at Tc.

The second term in ∆s can be neglected. In fact, tak-
ing into account the equation f [ϕ0(Tc)] = 0 for the
equilibrium phase transition point Tc we obtain that
|CI(ϕ0)/ϕ

2
0| is approximately equal to |tc0 + ϕ2

c0/2|,
where ϕ2

c0 and the dimensionless shift of the transi-
tion temperature tc0 = t0(Tc) are expected to be much
smaller than unity. The latent heat Q = Tc∆s(Tc) and
the jump of the specific heat capacity at Tc, ∆C =
Tc(∂∆S/∂T ) can be easily calculated with the help of
Eq. (44). For this purpose we need the function ϕ0(T ),
which cannot be obtained analytically from Eq. (40).

Eqs. (38) and (40) can be analyzed numerically. This
relatively simple 2D–3D crossover formulae can be used
in investigations of specific substances by variation of the
thickness L0 of the films from L0 � Λ−1 (3D system)
to a0 < L0 � Λ−1 (quasi-2D system) and even to a 2D
system for L0 = a0. Then one can vary the effective di-
mension of the system Deff(L0Λ) as a function of L0Λ0

from D = 2 to D = 3 [43]. However, from a purely calcu-
lational point of view we have found it more convenient
to consider particular dimensions of interest separately
and then to compare the results in order to demonstrate
the relevant differences between the bulk (3D) and thin
film properties. This approach is applied below.

E. Effective free energy for particular dimensions

For purely 2D superconductor consisting of a single
atomic layer, we can use Eqs. (29)–(32) setting D = 2
and calculate ∆f2(ψ) with the help of rule (33):

∆f2(ψ) =

(

kBT

8π

)[

(Λ2 + ρ0|ψ|2) ln

(

1 +
ρ0|ψ|2

Λ2

)

− ρ0|ψ|2 ln

(

ρ0|ψ|2
Λ2

)]

. (45)

The first term of this free energy can be expanded in the powers of |ψ|2:

∆f2(ψ) =

(

kBT

8π

){

ρ0|ψ|2 + ρ0|ψ|2 ln

(

Λ2

ρ0|ψ|2
)

+
ρ2
0|ψ|4
2Λ2

}

. (46)

In this way we obtain the result from Ref. [40]. This
case is of special interest because of the logarithmic term
in the Landau expansion for f(ψ) but it has no practical
application for the lack of ordering in purely 2D super-
conductors.

For quasi-2D superconductors we assume that
(2π/Λ) > L0 � a0, where L0 is the thickness of the
superconducting film and the more precise choice of the
upper cutoff Λ � (1/a0) for the wave numbers ki is a
matter of additional investigation [30]. In order to jus-
tify this definition of quasi-2D system one can use the
2D–3D crossover description presented in Sec. II.D. The
summation over the wave number k0 = (2πn0/L0) in Eq.
(36) cannot be substituted with an integration because
L0 � Lj and the dimension L0 does not obey the condi-
tions, valid for Lj , (j = 1, 2) [41–43]. Therefore, for such
3D system we must sum over k0 and integrate over two
other components (k1 and k2) of the wave vector k (see
Sec.II.D). This gives an opportunity for a systematic de-
scription of the 2D–3D crossover as shown in Sec. II.D.

In the limiting case of very small thickness the 2D–3D
crossover theory (Sec. II.D) leads to a result, which is
obtained more simply in an alternative way, namely, by
ignoring all terms corresponding to k0 6= 0 in the sum
in Eq. (32). This corresponds to a supposition that the
quasi-2D film thickness cannot exceed 2πΛ. Assuming
this point of view the real physical size of the quasi-2D
film thickness will depend on the choice of the cutoff
Λ. It is certain at this stage that Λ ≥ ξ0, because the
(quasi)phenomenological GL theory does not account for
phenomena for the size less than ξ0. The upper cutoff Λ
of wave numbers can be defined in a more precise way at
next stages of consideration; see Sec. II.F–II.H).

For a quasi-2D film we have the expression:

∆f(ψ) =
2

L0
∆f2(ψ) , (47)

where ∆f2(ψ) is given by Eq. (45).
For bulk (3D) superconductor we obtain:

∆f3(ψ) =
kBT

2π

[

Λ3

3
ln

(

1 +
ρ0|ψ|2

Λ2

)

+
2

3
ρ0|ψ|2Λ − 2

3
ρ
3/2
0 |ψ|3 arctan

(

Λ
√

ρ0|ψ|2

)]

. (48)
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The Landau expansion in the powers of |ψ| in this form of f3(ψ) confirms the respective results of Refs. [6,7], moreover
it correctly gives the term of type ρ2

0|ψ|4, which has been considered small and neglected in these papers.
For 4D-systems ∆fD(ψ) becomes

∆f4(ψ) =
3kBT

64π2

[

Λ2ρ0|ψ|2 + Λ4 ln

(

1 +
ρ0|ψ|2

Λ2

)

− ρ2
0|ψ|4 ln

(

1 +
Λ2

ρ0|ψ|2
)]

. (49)

The above expression for ∆f4(ψ) can be also expand-
ed in the powers of |ψ| to show that it contains a term
of the type |ψ|4 ln (

√
ρ0|ψ|/Λ), which produces a first or-

der phase transition; this case is considered in the scalar
electrodynamics [14], as mentioned in Sec. I. In our fur-
ther investigation we will focus our attention on 3D and
quasi-2D superconductors.

The free energy density ∆fD(ψ) can be expanded in
the powers of |ψ| but the Landau expansion can be done
only in an incomplete way for even spatial dimensions.
Thus f2(ψ), f4(ψ), and f(ψ) — the free energy densi-
ty corresponding to the quasi-2D films — contain log-
arithmic terms, which should be kept in their original
form in the further treatment of the function ∆fD(ψ)
in the Landau expansion. The analysis has been per-
formed [35] in two ways: with and without Landau ex-
pansion of ∆fD(ψ). These variants of the theory are
called “exact” theory (ET) and “Landau” theory (LT),
respectively [33]. It has been shown [35] that these two
ways of investigation give the same results in all cas-
es except for quasi-2D films with relatively small thick-
nesses (L0 � ξ0). It seems important to establish the
differences between two variants of the theory because
the HLM effect is very small and any incorrectness in
the theoretical analysis may be a cause for an incorrect
result. By the same arguments one can investigate the
effect of the factor T in ∆fD(ψ) on the thermodynam-
ics of quasi-2D films. This factor can be represented as
T = Tc0(1 + t0) and one may expect that the usual ap-
proximation T ≈ Tc0, which is well justified in the Lan-
dau theory of phase transitions [2, 4], may be applied.
This way of approximation can be made by neglecting
terms in the thermodynamic quantities smaller than the
leading ones. On the other hand, practical calculations
lead to the conclusion that this approximation cannot
be made without a preliminary examination because for
some quasi-2D films it produces a substantial error of
about 10% [35]. LT, in which the factor T is substituted
by Tc0, is referred to as a “simplified Landau expansion”
(SLT). All three variants of the theory, ET, LT and SLT,
have been investigated in Ref. [35].

F. Limitations of the theory

The general result (29)–(32) for the effective free en-
ergy f(ψ) has the same domain of validity [2] as the
GL free energy functional in the zero external magnetic
field. When we neglect a sub-nano interval of tempera-
tures near the phase transition point we can use Eq. (1),

provided |t0| = |T − Tc0|/Tc0 < 1, or in a particular case
of type I superconductors, |t0| < κ2 [2]. Note, that the
latter inequality does not appear in the general GL ap-
proach. It comes as a condition for the consistency of
this approach with the microscopic BCS theory for type
I superconductors [2].

Taking the continuum limit we have to assume that
all dimensions of the body, including the thickness L0,
are much larger than the characteristic lengths ξ and
λ. The exception of this rule is when we consider thin
films. Especially for thin films of type I superconductors,
where ((2π/Λ) > L0 � a0), we should have in mind
that ξ(T ) > λ(T ), so the inequalities ξ > λ > ξ0 > λ0

hold true in the domain of validity of the GL theory
|t0| < κ2 < 1. In Ref. [30] a comprehensive choice of
the cutoff Λ has been made, namely, Λ = ξ0 (the prob-
lem for the choice of the cutoff Λ is discussed also in
Sec. II.G–II.H). The respective conditions for quasi-2D
films of type II superconductors are much weaker and are
reduced to the usual requirements: κ > 1/

√
2, |t0| < 1

and (2π/Λ) > L0 � a0.

If we do a Landau expansion of fD(ψ) in the powers of
|ψ|2 the condition ρ� Λ2 should be satisfied. In order to
evaluate this condition we substitute |ψ|2 in ρ = ρ0|ψ|2
with η2 = |a|/b, which corresponds to e = 0. As λ2(T ) =
1/ρ, the condition for the validity of the Landau expan-
sion becomes [Λλ(T )]2 � 1, i. e., (Λλ0)

2 � |t0|. Choos-
ing the general form of Λτ = (πτ/ξ0), where τ describes
the deviation of Λτ from Λ1 ≡ Λ = (π/ξ0), we obtain
(πτκ)2 � |t0|; κ = (λ0/ξ0) is the GL parameter.

Thus we can conclude that in type II superconductors,
where κ = (λ0/ξ0) > 1/

√
2, the condition (ρ/Λ2) � 1 is

satisfied very well for the values of the cutoff in the
interval between Λ = (π/ξ0) and Λ = (π/λ0), i. e.,
for 1 < τ < (1/κ). For type I superconductors, where

κ < 1/
√

2 the cutoff value Λ ∼ (1/ξ0) leads to the BCS
condition (|t0| < κ2) for the validity of the GL approach.
Substantially larger cutoffs (Λ � π/ξ0), for example,
Λ ∼ (1/λ0) for type I superconductors with κ � 1 lead
to a contradiction between this BCS condition and the
requirement ρ� Λ2.

In our calculations we often use another parameter
µτ = (1/πτκ)2 and, in particular, µ ≡ µ1 = (1/πκ)2

and in terms of µ the condition for the validity of ex-
pansion of fD(ψ) becomes µ|t0| � 1, or, more generally,
µτ |t0| � 1. Choosing τ = 1/π we obtain the BCS crite-
rion for the validity of the GL free energy for type I su-
perconductors [2]. The choice τ = (ξ0/πλ0) corresponds
to the cutoff Λτ = 1/λ0. As we will see in Sec. II.G the
thermodynamics near the phase transition point in 3D
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systems has no substantial dependence on the value of
the cutoff Λτ but it should be chosen in a way that is
consistent with the mean-field-like approximation. The
cutoff problem for quasi-2D films has been investigated
in Ref. [35]. It has been shown that the choice Λ ∼ π/ξ0
is consistent in the framework of the GL theory.

Alternatively, the inequality (ρ/Λ2) � 1 may be in-
vestigated with the help of the reduced order parame-
ter ϕ defined by ϕ = |ψ|/η0, where η0 ≡ η(T = 0) =
(α0Tc0/b)

1/2 is the so-called zero-temperature value of
the order parameter for the GL free energy f0(ψ), giv-
en by Eq. (31). The reduced order parameter ϕ will be
equal to |t0| for t0 < 0, if only the magnetic fluctuations
are ignored, i. e., when |ψ| = η. Using the notation ϕ, we
obtain the condition (ρ/Λ2) � 1 in the form µτϕ

2 � 1.
This condition seems to be more precise because it takes
into account the effect of magnetic fluctuations on the
order parameter ψ.

G. Bulk superconductors

1. Thermodynamics

The effective free energy f3(ψ) of bulk (3D-) super-
conductors is given by Eqs. (29)–(31) and (48). The an-
alytical treatment of this free energy can be done by the
Landau expansion in small (

√
ρ0|ψ|/Λ). Up to the order

of |ψ|6 we obtain

f3(ψ) ≈ a3|ψ|2 +
b3
2
|ψ|4 − q3|ψ|3 +

c3
2
|ψ|6 , (50)

where

a3 = a+
kBTΛρ0

2π2
, (51)

b3 = b+
kBTρ

2
0

2π2Λ
, (52)

q3 =
kBTρ

3/2
0

6π
, (53)

and

c3 = −kBTρ
3
0

6π2Λ3
. (54)

The cutoff Λ in Eqs. (51)–(54) is not specified and can
be written in the form Λτ = (πτ/ξ0) as suggested in
Sec. II.F.

It can be shown by both analytical and numerical cal-
culations [31] that |ψ|6-term has no substantial effect on
the thermodynamics described by the free energy (50).
That is why we ignore this term. The possible phases
|ψ0| are found as a solution of the equation of state:

[∂f(ψ)/∂|ψ| ]ψ0
= 0 . (55)

There always exists a normal phase |ψ0| = 0, which is
a minimum of f3(ψ) for a3 > 0. The possible supercon-
ducting phases are given by

|ψ0|± =
3q3
4b3

(

1 ±
√

1 − 16a3b3
9q23

)

≥ 0. (56)

Having in mind the existence and stability conditions of
the |ψ0|±-phases [4] we obtain that the |ψ0|+-phase ex-
ists for (16a3b3) ≤ 9q23 and this region of existence always
corresponds to a minimum of f3(ψ). The |ψ0|−-phase ex-
ists for 0 < a3 < 9q23/16b3 and this region of existence al-
ways corresponds to a maximum of f3(ψ), i. e., this phase
is absolutely unstable. For a3 = 0, |ψ0|− = 0 and hence,
it coincides with the normal phase. For 9q23 = 16a3b3
we have |ψ0|+ = |ψ0|− = 3q3/4b3 and f3(|ψ0|+) =
f3(|ψ0|−) = 27q43/512b33. Furthermore, f3(|ψ0|−) > 0 for
all allowed values of |ψ0|− > 0, whereas f3(|ψ0|+) < 0
for a3 < q23/2b3, and f3(|ψ0|+) > 0 for (q23/2b3) <
a3 < 9q23/16b3. The equilibrium temperature Teq of the
first order phase transition is defined by the equation
f(|ψ0|+) = 0, which gives the following result:

2b3(Teq)a3(Teq) = q23(Teq) . (57)

These results are confirmed by numerical calculations of
the effective free energy (50) [31].

The equilibrium entropy jump is ∆S = V∆s and
∆s = −(df3(|ψ|)/dT ) can be calculated with the help
of Eq. (50) and the equation of state (55):

∆s = −|ψ0|2Φ(|ψ0|) , (58)

where Φ(|ψ0|) is the following function:

Φ(y) = (α0 +
kBΛρ0

2π2
) − ρ

3/2
0 kB

6π
y +

(

kBρ
2
0

4π2Λ

)

y2 . (59)

The specific heat capacity per unit volume ∆C =
T (∂∆s/∂T ) is obtained from (58):

∆C = −
(

T

Tc0

)

∂|ψ0|2
∂t0

Φ(|ψ0|) . (60)

The quantities ∆s(T ) and ∆C(T ) can be evaluated at
the equilibrium phase transition point Teq, which is found
from Eq. (57):

Teq

Tc0
≈ 1 − kBρ0Λ

2π2α0
+

(

ρ
3/2
0 kB/6π

)2

b+ (ρ2
0kB/2π2Λ)Tc0

(

Tc0
α0

)

, (61)

provided |∆Tc| = |Tc0 − Teq| � Tc0. Further we will see
that condition |∆Tc| � Tc0 is valid in real substances.
The second term in r. h. s. of Eq. (61) is a typical negative
fluctuation contribution whereas the positive third term
in r. h. s. of the same equality is typical of the first-order
transitions [4].

To obtain the jumps ∆s and ∆C at Teq we have to put
the solution |ψ0|+ found from Eq. (56) in Eqs. (58)–(60).
The result will be:

∆s = −q
2
3c

b23c







α0 +
kBρ0Λ

2π2
−
(

kBρ
3/2
0

6π

)2
Teq

b23c







, (62)
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and

∆C =
4α0

b3c

(

α0Tc0 −
q23cb

b23c

)

, (63)

where b3c and q3c are the parameters b3 and q3 at
T = Teq. As |∆Tc| = |Tc0 − Teq| � Tc0 we can set
Teq ≈ Tc0 in r. h. s. of Eqs. (62) and (63) and obtain
q3c ≡ q3(T = Teq) ≈ q3(Tc0) and b3c ≈ b3(Tc0).

The latent heat per unit volume, Q = −Teq∆s, of the
first order phase transition at Teq can be calculated from
Eq. (62). If we neglect the second and third terms in the
r. h. s. of Eq. (62) and the second term in the r. h. s. of
Eq. (63) we shall obtain a result for the ratio

(∆T )eq =
Q

∆C
, (64)

which is similar to that presented in Ref. [6]. Here we
should mention that Eq. (63) gives the jump ∆C at the
equilibrium phase transition point of the first order phase
transition, described by |ψ|3 term [4], while the specif-
ic heat jump considered in Ref. [6] is equal to the spe-
cific heat jump at the standard second order transition

∆C̃ = (α2
0Tc0/b) [4] and is four times smaller. Therefore,

we obtain (∆T )eq four times smaller than the respective
value in Ref. [6].

2. The results for Al

In order to do the numerical estimates we repre-
sent the Landau parameters α0 and b with the help
of the zero-temperature coherence length ξ0 and the
zero-temperature critical magnetic field Hc0. The con-
nection between them is given by the formulae of
the standard GL superconductivity theory [2]: ξ2

0 =
(~2/4mα0Tc0) and H2

c0 = (4πα2
0T

2
c0/b). The expres-

sion for the zero-temperature penetration depth λ0 =
(~c/2

√
2eHc0ξ0) is obtained from the above relation and

λ0 = (b/α0Tc0ρ0)
1/2. We will use the following experi-

mental values of Tc0, Hc0 and ξ0 for Al given in Table 1.
The experimental values for Tc0, Hc0 and ξ0 vary about
10-15% depending on the method of measurement and
the geometry of the samples (bulk material or films) [44]
but such deviations do not affect the results of our nu-
merical investigations.

substance Tc0 (K) Hc0 (Oe) ξ0 (µm) κ |ψ0| × 10−11

W 0.015 1.15 37 0.001 0.69

Al 1.19 99.00 1.16 0.010 2.55

In 3.40 281.5 0.44 0.145 2.0

Table 1. Values of Tc0, Hc0, ξ0, κ, and |ψ0| for W, Al, In [44].

The evaluation of the parameters a3 and b3 for Al
gives:

a3 = (α0Tc0)
[

t0 + 0.972× 10−4(1 + t0)τ
]

, (65)

and

b3
b

= 1 +
0.117

τ
. (66)

Setting τ = 1 corresponds to the cutoff Λ1 = (π/ξ0)
(Sec II.F). For τ = (1/κ)Al = 102, which corresponds
to the much higher cutoff Λ = (π/λ0), we have b3 ≈ b.
i. e., the ρ2

0-term in b3, given by Eq. (52), can be neglect-
ed. However, as we can see from Eq. (66), for τ = 1 the
same ρ2

0-correction in the parameter b3 is of the order 0.1b
and cannot be automatically ignored in all calculations,
in contrast to the supposition in Refs. [6, 7]. However,
the more important fluctuation contribution in 3D su-
perconductors comes from the τ -term in Eq. (65) for the
parameter a3. This term is of the order 10−4 for τ ∼ 1
and this is consistent with the condition |t0| < κ2 ∼ 10−4

but for τ ∼ 102, i. e., for Λ ∼ (π/λ0) ∼ 106µm, the same
τ− term is of the order 102, which exceeds the temper-
ature interval (Tc0 ± 10−4) for the validity of the BCS
condition for Al (Sec. II.F).

These results demonstrate that for our theory to be
consistent, we must choose the cutoff Λτ = (πτ/ξ0),
where τ is not a large number (τ → 1 ÷ 10). To be
more concrete we set Λ = Λ1 = (π/ξ0) as suggested in
Ref. [30].

The temperature shift teq = t0(Teq) for the bulk Al can
be estimated with the help of Eq. (61). We obtain that
this shift is negative and very small: teq ∼ −10−4. Note
that the second term in the r. h. s. of Eq. (61) is of the or-
der 10−4, provided Λ ∼ (1/ξ0) whereas the third term in
the r. h. s. of the same equality is of the order 10−5. Once
again the change of the cutoff Λ to values much higher
than (π/ξ0) will take the system outside the tempera-
ture interval, where the BCS condition for Al is valid.
Let us note that in Ref. [31] the parameter t corresponds
to our present notation t0. But the numerical calculation
of the free energy function f3(ψ) in Ref. [31] was made
for the SLT variant of the theory and the shifted param-
eter (t0 + 0.972 × 10−4) was incorrectly identified with
t and this led to the wrong conclusion for its positive-
ness at the equilibrium phase transition point Teq. As a
matter of fact, the shifted parameter (t0 +0.972× 10−4)
is positive at Teq but teq ≡ t0(Teq) is negative, as firstly
noted in Ref. [35].
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Having in mind these remarks when we evaluate ∆s
and ∆C for bulk Al we can use simplified versions of (62)
and (63) which means to consider only the first terms
in the r. h. s and to take q3c ≈ q3 and b3c ≈ b at Tc0. In
this way we obtain

Q = −Tc0∆s = 0.8 × 10−2
[ erg

K · cm3

]

, (67)

and

∆C = 2.62× 103
[ erg

cm3

]

. (68)

The results are consistent with an evaluation of ∆C for
Al as a jump (∆C̃ = α2

0Tc0/b) at the second order su-
perconducting transition point [6] that, as we have men-
tioned above, is four times smaller than the jump ∆C
given by Eq. (68).

A complete numerical evaluation of the function f3(ψ)
and the jump of the order parameter at Teq for bulk Al
was presented for the first time in Ref. [31]. The results
there confirm that the order parameter jump and Q for
bulk type I superconductors are very small and can hard-
ly be observed in experiments.

We will finish the presentation of bulk Al with the dis-
cussion of ratio (64). It can be also written in the form

(∆T )eq =
32π

9

(

k2
BT

2
c0

bα0

)(

e2

mc2

)3

, (69)

and it differs by a factor 1/4 from the respective result
in Ref. [6]. This difference is due to the fact that we take
∆C as the jump at the first order transition temperature
Teq while in the above cited paper [6] the authors define

∆C as a hypothetic jump (∆C̃) at the standard second
order phase transition point. From Eq. (69) we obtain

(∆T )eq = 6.7 × 10−12(T 3
cH

2
c0ξ

6
0), (70)

and multiplying the number coefficient in the above ex-
pression by 4 we can obtain Eq. (10) presented in Ref. [6].

H. Quasi-2D films

Following Refs. [32,33] we can present the free energy
density f(ψ) = (F (ψ)/L1L2) in the form

f(ϕ) =
H2
c0

8π

[

2t0ϕ
2 + ϕ4 + C(1 + t0)Γ(µϕ2)

]

, (71)

where

Γ(y) = (1 + y) ln (1 + y) − y ln y, (72)

To obtain Eqs. (71)–(72) we have set Λ = (π/ξ0) and
introduced the notation ϕ = |ψ|/η0; η0 is defined in
Sec. II.E. Some of the properties of free energy (71) were
analyzed in Ref. [32] for Al films and in Ref. [33] for films
of Tungsten (W), Indium (In), and Aluminium (Al). Here
we will briefly discuss the main results.

The equilibrium order parameter ϕ0 > 0 correspond-
ing to the Meissner phase can be easily obtained from
the equation ∂f(ϕ)/∂ϕ = 0 and Eq. (71):

t0 + ϕ2
0 +

Cµ(1 + t0)

2
ln

(

1 +
1

µϕ2
0

)

= 0 . (73)

The logarithmic divergence in Eq. (73) has no chance
to occur because ϕ0 is always positive and does not tend
to zero.

The largest terms in the entropy jump δs and the spe-
cific heat jump δC at the equilibrium first order phase
transition point Teq are given by [32, 33]

δs = − H2
c0

4πTc0
ϕ2

eq, (74)

where ϕeq = ϕ0(T = Teq), and

δC =
H2
c0

4πTc0
. (75)

The latent heat of the phase transition [4] is given
by Q = −Teqδs and Eqs. (73)–(74). Since the tem-
peratures Teq and Tc0 have very close values, the dif-
ference between the values of Q, δs, and δC at Tc0
and Teq, respectively, can also be ignored, for example,
|δC(Teq) − δC(Tc0)|/δC(Tc0) � 1 and we can use either
δC(Tc0) or δC(Teq) [32].

The equations (71)(73) corresponding to quasi-2D
films are quite different from the respective equations for
bulk (3D-) superconductors but it is easily seen that the
relatively large values of the order parameter jump ϕ2

in thin films again correspond to relatively small values
of the GL parameter κ. That is why we consider ele-
ment superconductors with small values of κ and study
the effect of this parameter, the critical magnetic field
Hc0 and the film thickness L0 on the properties of the
fluctuation-induced first order phase transition.

We use experimental data for Tc0, Hc0, ξ0 and κ for
W, Al, and In published in Ref. [44] (see Table 1). In
some cases the GL parameter κ can be calculated with
the help of the relation κ = (λ0/ξ0) and the available da-
ta for ξ0 and λ0. In other cases it is more convenient to
use the following representation of the zero-temperature
penetration depth:

λ0 =
~c

2
√

2eHc0ξ0
. (76)

The value of |ψ0| in Table 1 is found from

|ψ0| =
( m

π~2

)1/2

ξ0Hc0 . (77)

The order parameter dependence on the reduced tem-
perature difference t0 is shown in Fig. 2 for Al films of
different thicknesses. It is readily seen that the behav-
ior of the function ϕ0(t0) corresponds to a well estab-
lished phase transition of the first order. The vertical
dashed lines in Fig. 2 indicate the respective values of
teq = t0(Teq), at which the equilibrium phase transition
occurs as well as the equilibrium jump ϕ0(Teq) = ϕeq

for different thicknesses of the film. The parts of the
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ϕ0(t0)-curves which extend up to t0 > teq describe the
metastable (overheated) Meissner states, which can ap-
pear under certain experimental circumstances (see in
Fig. 2 the parts of the curves on the r. h. s. of the dashed
lines). The value of ϕeq and the metastable region de-

crease with the increase of the film thickness, which
shows that the first order of the phase transition is bet-
ter pronounced in thinner films and this confirms the
conclusion in Ref. [32].

0
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–0.003 –0.002 –0.001
reduced temperature difference

Fig. 2. Order parameter profile ϕ(t0) of Al films of different thicknesses: L0 = 0.05 µm (“+”-line), L0 = 0.1 µm (◦), and
L0 = 0.3 µm (·) [33].

f
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–0.0005

0

0.0005

–0.002 –0.001

Fig. 3. The free energy f(t0) for Al films of the thickness L0 = 0.05 µm (“+”-line), L0 = 0.1 µm (◦), L0 = 0.3 µm (·) [33].
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Fig. 4. Order parameter profile ϕ(t0) films of the thickness L0 = 0.05 µm: W (“+”-line), Al (◦), and In (·) [33].

These results are confirmed by the behavior of the free
energy as a function of t0. We used Eqs. (71)–(73) for the
calculation of the equilibrium free energy f [ϕ0(t0)]. The
free energy for Al films with different thicknesses is shown
in Fig. 3. The equilibrium points Teq of the phase tran-
sition correspond to the intersection of the f(ϕ0)-curves
with the t0-axis. It is obvious from Fig. 3 that the tem-
perature domain of overheated Meissner states decreases
with the increase of the thickness L0.

The shape of the equilibrium order parameter ϕ0(t0)
in a broad vicinity of the equilibrium phase transition
for thin films (L0 = 0.05µm) of W, Al, and In was found
from Eq. (73). The result is shown in Fig. 4. The vertical
dashed lines in Fig. 4 again indicate the respective values
of teq = t0(Teq), at which the equilibrium phase transi-
tion occurs as well as the equilibrium jump ϕ0(Teq) = ϕeq

in the different superconductors.

The order parameter jump at the phase transition
point of In (the In curve is marked by points in Fig. 4)
is relatively smaller than for W, and Al, where the GL
parameter has much lower values. The same is valid for
the metastability domains; see the parts of the curves in
Fig. 4 on the left of the vertical dashed lines. It is obvi-
ous from Fig. 4 and Table 2 that the equilibrium jump
of the reduced order parameter ϕeq of W has a slightly
smaller value than that of Al although the GL number
κ for W has a ten times lower value compared with κ of
Al. Note, that in Fig. 4 we show the jump of ϕeq, but the
important quantity is |ψ|eq = |ψ0|ϕeq. Using the data for
L0 = 0.05µm from Tables 1 and 2 we find for |ψ|eq the
following values: 0.1×1011 for Al, 0.05×1011 for In, and
0.02×1011 for W. This result shows that the value of the

critical filed Hc0 is also important and should be taken
into account together with the smallness of GL number
when the maximal values of the order parameter jump
are looked for. Thus the value of the order parameter
jump at the fluctuation-induced phase transition is max-
imal, provided small values of the GL parameter κ are
combined with relatively large values of the critical field
Hc0. In our case Al has the optimal values of these two
parameters.

The importance of the zero-temperature critical mag-
netic field Hc0 for the enhancement of the jumps of cer-
tain thermodynamic quantities at the equilibrium phase
transition point Teq becomes obvious from Eqs. (74),
(75) and (77). Eq. (77) shows that the order parame-
ter jump |ψ|eq = |ψ0|ϕeq is large for large values of Hc0

and ξ0. This is consistent with the requirement for rela-
tively small values of the GL parameter κ as shown by
Eq. (76). Therefore, the unmeasurable ratio Q/δC dis-
cussed in Ref. [6] does not depend on the value of the
critical field Hc0 but the quantities Q and δC themselves
as well as the order parameter jump |ψ|eq depend essen-
tially on Hc0. The values of the reduced order parameter
jump ϕeq for films of Al, In and W of the same thickness
have the same order of magnitude while the respective
order parameter jump |ψ|eq is one order of magnitude
higher for Al than for W, as shown above. The effect
of the critical magnetic field Hc0 on the latent heat Q
is, however, much stronger and, as is seen from Table
2, the latent heat Q in W films is very small and can
be neglected while in Al and In films it reaches values,
which could be measured in suitable experiments. This
is so because the latent heat is proportional to the dif-
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ference [H2
c0/8π ∼ b|ψ0|4] between the energies of the

ground state (superconducting phase at T = 0) and the
normal state. It is consistent with the fact that the fluc-
tuation contribution to the free energy, i. e., the C-term
in the r. h. s. of Eq. (71) is generated by the term of type
|ψ|2

∫

dDxA2(x) in the GL free energy. At T = 0 this
free energy term is also proportional to the mentioned
difference between the free energies of the ground and
normal states.

The shift of the phase transition temperature teq =
|(Teq − Tc0)|/Tc0, the reduced value ϕeq of the equilibri-

um order parameter jump |ψ|eq, and the latent heat Q
of the equilibrium transition are given for films of dif-
ferent thicknesses and substances in Table 2. This table
shows that the shift of the phase transition temperature
is very small and can be neglected in all calculations and
experiments based on them. The values for ϕeq for dif-
ferent L0 and those for |ψ0| given in Table 1 confirm the
conclusion, which we have made for films of Al, In, and
W with L0 = 0.05µm. The latent heat Q has maximal
values for In, where the critical field is the highest for
the considered materials.

Al In W

L0 teq ϕeq Q teq ϕeq Q teq ϕeq Q

0.05 −0.00230 0.041 1.95 −0.00167 0.025 3.94 −0.00174 0.039 1.6× 10−4

0.1 −0.00147 0.032 0.80 −0.00094 0.017 1.82 −0.00118 0.032 1.1× 10−4

0.3 −0.00070 0.023 0.41 −0.00037 0.010 0.63 −0.00064 0.023 5.6× 10−5

0.5 −0.00048 0.016 0.20 −0.00029 0.008 0.40 −0.00048 0.020 4.1× 10−5

1 −0.00029 0.012 0.11 −0.00013 0.006 0.23 −0.00032 0.016 2.7× 10−5

2 −0.00017 0.009 0.06 −0.00008 0.004 0.10 −0.00021 0.013 1.8× 10−5

Table 2. Values of teq, ϕeq, and Q (erg/cm3) for the films of W, Al, and In with different thicknesses L0 (µm) [33].

I. Final remarks

Our analysis shows that the MF studies of the HLM
effect have a well defined domain of validity for both 3D-
and quasi-2D superconductors. Our conclusion is that
the MF theory of the magnetic fluctuations in super-
conductors and, in particular, the MF prediction for the
fluctuation driven weakly first order phase transition in
zero external magnetic field in bulk superconductors [6]
and quasi-2D superconducting films [30,32,33] is reliable
and can be tested by experiments. While the HLM ef-
fect in bulk systems is unobservingly small, in quasi-two
dimensional superconductors this effect is much stronger
and might be observed with available experimental tech-
niques.

Our consideration of quasi-2D superconductors is
highly nontrivial in view of the relevance of the depen-
dence of the effective Landau parameters on the thick-
ness of the films, L0. We have justified this dependence
by simple heuristic arguments and by a reliable consid-
eration of the 2D–3D crossover. In contrast to initial ex-
pectations [6] those films made of superconductors with
extremely small GL parameter κ such as Al and, in par-
ticular, W will be the best candidates for an experimen-
tal search of the HLM effect; our careful analysis (for the
first time published in Ref. [33]) definitely gives a some-
what different answer. The Al films still remain a good
candidate for transport experiments, through which the
jump of the order parameter at the phase transition point
could be measured but surprisingly the W films turn out
inconvenient for the same purpose due to their very low
critical field Hc0. The importance of the critical magnet-

ic field Hc0 for the clearly manifested first-order phase
transition has been established and discussed, too. Al-
though In has ten times higher GL number κ than Al,
the In films can be used on equal footing with the Al
films in experiments intended to prove the order param-
eter jump. Here the choice of one of these materials may
depend on other features of experimental convenience.
As far as caloric experiments are concerned, the In films
seem to be the best candidate due to their high latent
heat.

As shown in this review, experiments intended to
search the HLM effect can be performed by both type
I and type II superconductors. In experiments the ex-
ternal magnetic field cannot be completely eliminated.
Then vortex states may occur for H = |H| > 0 below
Tc = Tc(H) ≤ Tc0 in type II superconducting films and
this will obscure the HLM effect. Note that both in type
I and type II superconductors the external magnetic field
H generates additional entropy jump at the phase tran-
sition point Tc(H) and this effect can hardly be separat-
ed from the entropy jump (74) caused by the magnetic
fluctuations in the close vicinity of Tc0. Therefore, in ex-
periments aimed at the search for the HLM effect the
external magnetic field should be minimized as much as
possible. For quasi-2D superconductors, where the HLM
effect is relatively strong and the latent heat can exceed
several ergs, one should ensure external fields less than 10
Oe, or, in more reliable experiments, less than 1 Oe [35].

The temperature range around Tc0, where the HLM ef-
fect is significant has been estimated in Ref. [6] to a few
microdegrees, and later, this estimate has been confirmed
in a more accurate way [45]. According to our point of
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view, the possibilities for the observation of the effect are
related mainly with its magnitude, because the range of
temperatures where it occurs always exists, even in the
critical region of strong ψ-fluctuations, as the RG studies
indicate (Sec. III). The review of the results for Al, In,
and W in Sec. II shows that the metastability domains
(of overheating and overcooling) are much larger than the
Ginzburg critical region. This result confirms the reliabil-
ity of the MF treatment. As one may see from Figs. 2–4
the metastability temperature interval is relatively larger
for smaller values of the GL number κ, but in order to
ensure large values of some measurable thermodynam-
ic quantities as, for example, the latent heat Q and the
specific heat capacity C we must choose a material with
a large critical field Hc. The experimental verification
of the order parameter jump can be made by transport
experiments. As we see from Figs. 2–4 and Table 2, this
quantity has maximal values for W, where the parameter
κ is very small. Having in mind also the large metastabil-
ity regions in this material one may conclude that W is a
good candidate for a testing the HLM effect by transport
experiments (measurements of the superconducting cur-
rents), provided some specific disadvantages of this ma-
terial (quite low Tc0, etc.) from the experimental point of
view do not contradict to this conclusion. Another effect,
which is relevant to the present discussion, is the known
variation of the GL parameter κ with the variation of
the thickness L0 (see, e. g., Ref. [46]. The parameter

κ < 1/
√

2 of a type-I bulk superconductor may change
up to the values corresponding to a type-II superconduc-
tor with the decrease of the thickness L0 below 10−7m.

In Ref. [47] a very interesting interrelationship between
the first order phase transition and the vortex fluctua-
tions in type-I 2D superconductors has been analyzed
by both analytical and numerical methods. A recent in-
vestigation [48] of HLM effect in superconducting films
has been proven wrong in our comment [49]; see, also,
the Corrigendum [50] to the work [48]. In further pa-
pers the same authors and co-workers [51, 52] confirm
our results published in Refs. [30–35] and discussed in
this Section. Another paper has been intended to the
treatment of gauge effects in superconductors with the
help of the Gaussian effective functional [53], which gives
results quite near to the mean-field ones and is useless
within the present discussion.

III. RG STUDIES AND OTHER TOPICS

A. Notes about RG

The RG methods are intended to the investigation of
the strong fluctuation interactions in the critical region
of the second order phase transitions and multi-critical
phenomena [4,5]. In studies of complex systems with sev-
eral orderings or with the influence of additional gauge
fields, as in Eq. (1), usually the k-space RG methods are
used because of their wider applicability. The methods
differ from each other in specific technical details but all
of them lead to the same predictions about the phase

transition properties. The common feature is that the
mentioned methods are based on the so-called loop ex-
pansion [4, 5, 12]. The RG equations are, in fact, infinite
asymptotic series, which are truncated at one-, two-, or,
in rare cases, higher orders in the loop expansion. The
total infinite series can be summed only in case of trivial
(usually exactly soluble) models and in some very excep-
tional cases as, for example, the RG series for interacting
real bosons in the quantum limit T → 0 [54].

For the simple φ4-theory the RG series can be derived
and analyzed to high orders in the loop expansion where-
as for more complex models this can be practically done
within the one- and two-loop approximations. As the RG
series are asymptotic, normally, the one- and two-loop
orders give all important features of the specific system
of interest: (i) the presence of stable fixed points (FP)
of the RG equations and the associated with them types
of critical behavior, and (ii) the lack of stable FPs and
related conclusions about the lack of standard critical or
multi-critical behavior. The higher orders of the theo-
ry are more relevant to investigations of the asymptotic
properties of the loop series than for obtaining a qual-
itatively new critical behavior or other new qualitative
characteristics of the system. The latter are reliably ob-
tained within the one- and two-loop approximations.

B. The order of the phase transition

In Ref. [6] the simultaneous effect of ψ- and A-
fluctuations in the fluctuation Hamiltonian (1) has been
investigated by one-loop RG and ε = (4−d)-expansion [4]
for the general case of n/2-component complex vector
field ψ = {ψα;α = 1, . . . , n/2}; note that this field is
equivalent to a n-component real vector field. It has been
shown [6] that a stable FP exists below four dimensions
d = (4 − ε) only for symmetry indices n ≥ 365.9, which
are far above the real symmetry index n = 2 for usu-
al superconductors and numbers n = 4, 6 corresponding
to superconductors with certain unconventional Cooper
pairings [55]. For n < 365.9 real FP does not exist at all.
Besides, the 1/n-expansion has been used for the calcu-
lation [6] of the critical exponents in the so-called large-n
limit (alias “Hartree limit”) [4,5], where (n > 365.9) the
phase transition is definitely of the second order.

According to the usual interpretation of RG results,
the lack of stable FP is an indication for a lack of stan-
dard second order phase transition. But usually addi-
tional (non-RG) arguments are needed to determine the
actual order of the phase transition. In the present case,
the lack of stable FP could be a result of the same mech-
anism that produces a fluctuation-driven weakly first or-
der phase transition in MF approximation (Sec. II). As
RG takes into account both fluctuations of ψ and A, one
can conclude that the result for the weakly–first order
phase transition in zero external magnetic field is valid
for both type I and II superconductors. Of course, the
size of the effect (the size of jumps of energy, latent heat,
order parameter) will depend on the specific substance.
This path of investigations has been further developed
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in paper [7] and several problems opened in the short
Ref. [6], have been solved.

In Ref. [40] where both 2D and 3D superconductors
are considered the HLM effect has been confirmed in
one-loop order (annealed disorder [40]) just as the avail-
ability of the second order phase transition for largen
has been proven in another variant of the Hartree limit
(n→ ∞).

Next, the effect has been confirmed in a RG inves-
tigation of the equation of state below the phase tran-
sition point Tc0 [56, 57]. These investigations show that
the effect may occur under quite restricted conditions for
the vertex parameters e and b of functional (1), in par-
ticular, the effective charge |e∗| exceeds some value. A
strong restriction on the HLM effect, but in the opposite
direction — a requirement for a sufficiently small effec-
tive electric charge |e∗|, has been found also by a Monte
Carlo (MC) study [58] of a lattice version of model (1).
Another MC study [59] concludes that at fixed effective
charge (|e2| = 5) the HLM effect strongly depends on the
GL parameter κ = λ/ξ: it is well established for κ � 1,
becomes very weak for κ ∼ 1 and vanishes for large κ.
On the basis of this picture a proposal is made [59] for
the existence of a tricritical point at some “tricritical”
value of κ. As κ is related with the charge e, this propos-
al seems to be in conformity with other investigations.
Note, that the first prediction for change of the phase
transition order with the variation of κ and for the pos-
sibility of “tricritical point“ to appear at some value of
κ, has been made in Ref. [60] on the basis of duality
arguments [61] and analytical calculations; see further
development of this approach in Refs. [62–65]. A further
MC study [66] of type II superconductors indicates that
these systems undergo a second order phase transition of
universality class 3D XY rather than a weakly first order
phase transition. The two-loop RG studies [67, 68] show
that the account of higher orders of the loop expansion
allows a lowering of the critical value nc = 365.9 but the
RG equations still have no real FP at D = 3 and n = 2
(conventional 3D superconductors), except for a treat-
ment by Padè analysis [68] (see, also, the review [37]).
In 2 + ε dimensions, the nonlinear σ model exhibits a
second-order phase transition for all values of n > 0 [69].
Owing to this result one may suppose that the critical
value nc vanishes at some dimension 2 < d < 4, as men-
tioned in Ref. [70]. RG studies [71,72] at fixed dimension
d have also been carried out with the aim to determine
the phase transition order (see, also Ref. [70] for a com-
ment).

C. Disorder effects

Here we will discuss mainly disorder described by
Gaussian distributions [4]. The effects of annealed and
quenched disorder in classical versions of Abelian–Higgs
models, equivalent to the GL model (1) have been inves-
tigated by Hertz [73, 74] in the context of the theory of
spin glasses in case of Dzyaloshinskii–Moriya interaction.
The specific feature of this approach is that the disorder
is associated with the vector gauge field A(x) and can

be used to describe superconductors in random, uncorre-
lated, or, which is the same, short-range (δ-) correlated
magnetic fields rather than usual ones. In high energy
physics this approach makes contact with gauge fields
where the Higgs field is coupled to a random color field.
It is natural to expect, as has been proven [40, 73], that
the annealed gauge model will bring a fluctuation-driven
first order phase transition at usual symmetry indices
and a second order phase transition in the Hartree limit
(n → ∞). In Ref. [40] the phase transition in case of
quenched impurities has been predicted to be of second
order in a calculation to one-loop order, in contradiction
to the conclusion for a lack of stable nontrivial FP of
the RG equations within the same one-loop order [73].
The origin of this discrepancy is clear from the argument
that the lack of stable FP may result without any change
of the Hamiltonian structure, whereas the conclusion for
the second order of the transition in Ref. [40] has been
made, perhaps, incorrectly, based on the argument of
the absence of |ψ|4-term for D = 3 and of the absence of
|ψ|2ln|ψ|-term for D = 2.

A more usual case of quenched disorder in Abelian–
Higgs models has been considered in Refs. [75, 76]. This
is the case when the parameter a in (1) has a random
part, which obeys a Gaussian distribution. This disor-
der is of the type of random impurities, or, what is the
same, “random critical temperature [4]. In the case of
the so-called “uncorrelated”, or, (δ-) short range corre-
lated quenched impurities, the system exhibits a spec-
tacular competition between the impurities and gauge
effects. The RG equations have a new stable FP of a fo-
cal type [76] for the dimensions D < 4, which exists for
symmetry indices n > 1 and has a physical meaning at
the dimensions D > Dc(n) = 2(n+ 36)/(n+ 18) [76]. In
the impure superconductor, a new focal FP occurs exact-
ly in the domain of symmetry indices n < 365.9, where
the HLM analysis [6] yields a lack of FP for the respective
pure system. Having in mind the asymptotic nature of
the ε-expansions within the RG approach [4,77], one may
conclude that this focal FP governs the critical behavior
at the real dimension D = 3 in conventional supercon-
ductors (n = 2), although the direct substitution of n = 2
in the above expression for the “lower critical” dimension
Dc(n) yields Dc(2) = 3.8. This problem has been further
investigated in Ref. [78]. Long-range quenched disorder
within the same RG approach to model (1) has been
considered in Ref. [79].

The effect of another relevant type of disorder, the so-
called “random field disorder”, on the phase transitions
described by the GL functional (1) has been considered
in Ref. [80]. In both short-range and long-range random
field correlations [4, 81, 82] a new stable FP has been
obtained [80]. For short range random correlations this
FP is stable below the upper critical dimension DU = 6
and for symmetry indices n > nc = 10. This FP de-
scribes a quite specific critical behavior. The situation
for long range random correlations is more complicated
and here we will advise the reader to follow the discussion
in Ref. [80]. In general, the annealed disorder leaves the
phase transition properties almost identical to those in

346



GAUGE EFFECTS ON PHASE TRANSITIONS IN SUPERCONDUCTORS

the pure Abelian–Higgs model (1) whereas the quenched
disorder gives lower critical values of the symmetry in-
dex n, below which the weakly first order phase transi-
tion (HLM effect) exists. Thus one may conclude that
the quenched disorder acts in the direction of “smear-
ing” the fluctuation-driven first order phase transition,
i. e. the HLM effect seems to be much weaker in such
systems.

D. Liquid crystals

The first theoretical study of the HLM effect on the
properties of the nematic–smectic A phase transition in
liquid crystals was been performed in Refs. [22, 23]. The
main result of these investigations is the confirmation of
the HLM effect in a close vicinity of this liquid crystal
phase transition. Perhaps, because of the liquid crystal
anisotropy, which explicitly enters the propagator of the
gauge field [23], here the critical value nc = 38.17 of the
symmetry index n, below which the weakly first order
transition occurs, is lower than in pure superconductors
(nc = 364.9) but it is still quite above the real value
n = 2. Thus the RG predictions in Refs. [22, 23] in the
1970s were in favor of a weakly first order phase transi-
tion whereas the experimentalists [83, 84] at the same
time claimed that the same nematic-smectic A phase
transition is of second order (for triple and tricritical
points in nematic–smectic-A–smectic-C systems, and the
interrelationship to the present problem, see Ref. [85]),
as well as later papers [86,87]. While in 3D superconduc-
tors the HLM effect is very weak and unobservable with
available experimental techniques, the size of the same
effect in 3D liquid crystals allows an observation in case
of very precise experiment and elimination of obscuring
effects as, for example, neighborhood to tricriticality and
liquid crystal anisotropy. Experiments [88,89] consistent
with the HLM effect has been carried out but, as no-
ticed in Ref [90], these experiments are at their resolu-
tion limits and the full implications of the HLM theory
remains to be tested. On the other hand, experiments
in Ref. [90] demonstrate a discrepancy with the simple
approximation (ψ = const) for the smectic-A filed within
the mean-field like approach (Sec. II).

E. Miscellaneous

Quantum effects. The first account of quantum cor-
relations (“fluctuations”) [4, 91, 92] on the properties of
the phase transition to superconducting state has been
performed in Ref. [93]. It has been shown [93] that the
dynamical critical exponent z produced by the quantum
correlations at finite temperatures (T > 0) is given by
z = 2 + 18ε/n. This is a purely gauge result because, as
shown in ref. [94], the critical dynamics of a superconduc-
tor in case of neglecting the local gauge effects (A ≡ 0)
is identical to that described by the time dependent GL
model (TDGL) in case of lack of conservation laws [95]; a
prediction of the latter result has been given for the first

time in Ref. [91]. Another study [96] of a gauge model of
type (1) is intended to the study of the quantum phase
transition (Tc0 = 0) in granular superconductors. The
simultaneous effect of the local U(1) symmetry, disorder
and quantum fluctuations has been considered in stud-
ies [97,98] of disordered electronic systems at T = 0. The
problem was further extended to the treatment of quan-
tum phase transitions in underdoped high-temperature
superconductors [99, 100].

Complex systems. The RG investigation [101] of sys-
tems with superconducting and other (non-magnetic) or-
derings shows that the gauge field A(x) leads to a drastic
modification of the critical behavior in close vicinity of
bicritical and tetracritical points (for such points, see,
e. g., Ref. [2, 4]). Near these multicritical points the su-
perconducting fluctuations can be enhanced by the fluc-
tuations of another ordering field and, hence, the HLM
effect in such complex systems seems to be stronger than
in the simpler case discussed so far [102]. The coupling
between the superconducting field ψ and the magneti-
zation mode M(x) in models of ferromagnetic supercon-
ductors intended to describe the coexistence of super-
conductivity and ferromagnetism in ternary compounds
has been investigated by RG in Ref. [103, 104]. It has
been shown again that the gauge field A(x) produces
a weakly first order phase transition enhanced by the
M -fluctuations. The same problem has been further
opened in Ref. [105] by a lattice version of the GL model
and dual arguments [61] with the conclusion that un-
der certain circumstances the phase transition from the
disordered phase to the phase of coexistence of ferro-
magnetism and superconductivity should be, at least in
type II superconductors, of the second order in contrast
to the RG prediction [103, 104]. Another investigation
of coupled magnetic and superconducting order parame-
ters, where the gauge effects are also relevant, is intended
to describe a state of vortex solid in rear-earth and boro-
carbide compounds [106,107].

Unconventional superconductors. Another interesting
problem is the behavior of unconventional superconduc-
tors [55, 108] where the field ψ is a complex vector:
ψ = {ψα, α = 2, 3}, i. e., n = 4 or 6, depending on
the type of the unconventional Cooper pairing. It has
been shown [109], that the HLM FP in this case is un-
stable towards the parameters, describing the anisotropy
of the Cooper pair and the crystal anisotropy, and the
new FP points that appear in the theory are unstable
for usual values of the symmetry index (n = 4, 6). It
has been shown by analytical calculations [109] that one
of the FP points that appear in the RG equations ex-
ists for n > nc = 10988 and is stable for some val-
ues above nc, at least, in the Hartree limit (n → ∞).
Owing to these results, and mainly due to a very high
value of nc, a conclusion has been made that the HLM
effect should be more pronounced in unconventional su-
perconductors [109]. The next step along this path of RG
studies has been made in Ref. [110], where unconvention-
al superconductors with quenched impurities have been
considered.
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External field effect. In real experiments the exter-
nal magnetic field can hardly be completely eliminated.
Study [38] of the HLM effect in a wider context of nonze-
ro external magnetic field H0 shows that the weakly first
phase transition discussed so far can be obtained in Lan-
dau gauge from a renormalized theory of the equation of
state in one loop order; see also Ref. [45]. The phase tran-
sition at the second critical magnetic field Hc2 has been
studied by a ε = (6 − d) expansion within the one loop
approximation with the conclusion that the magnetic
fluctuation effects should produce a fluctuation induced
first order phase transition [111]. Further investigations

of this problem have been performed in the Hartree lim-
it (n → 0) [112, 113], and in higher orders of the loop
expansion [114,115]; for comments, see Refs. [116,117].
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Здiйснено огляд класичних i сучасних результатiв, якi стосуються впливу калiбрувальних ефектiв на

властивостi фазового переходу в надпровiдний стан в об’ємних i плiвкових надпровiдниках. Також обго-

ворено подiбнi проблеми в описi iнших природних систем (рiдкi кристали, квантова теорiя поля, раннiй

Всесвiт). Детально розглянуто вiдносно сильний вплив калiбрувальних ефектiв на флюктуацiї поля впо-

рядкування при малих вимiрностях простору D i, зокрема, в тонких (квазiдвовимiрних) плiвках. Особливу

увагу звернуто на флюктуацiї калiбрувального поля. Показано, що механiзм впливу цих калiбрувальних

флюктуацiй на порядок та iншi властивостi фазового переходу змiнюється зi змiною просторової вимiр-

ности D. Обговорено проблему експериментального пiдтвердження теоретичних передбачень щодо порядку

фазового переходу в калiбрувальних системах.
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