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I. INTRODUCTION

During the last decades Idempotent Mathematics, i. e.
mathematics obtained by replacing the usual arithmetic
operations by idempotent ones (an example is the opera-
tion ⊕ = max, as we have x⊕x = x for all real numbers
x) has been developed by many authors.

In various papers the idempotent mathematics is re-
garded as “a result of dequantization of the traditional
mathematics over numerical fields as the Planck constant
h tends to zero taking imaginary values” [1].

The basic philosophy of the investigations in this di-
rection consists in the following correspondence princi-
ple, which is regarded as a counterpart of Bohr’s corre-
spondence principle in the quantum theory. The princi-
ple asserts that there exists a correspondence between
the constructions and results of traditional mathematics
and those of idempotent mathematics [1].

An example of such a correspondence is that, if we re-
place + by max in the definition of metric, the triangle
inequality looks as d(x, y) ≤ d(x, z)⊕ d(z, y) (strong tri-
angle inequality), i. e. we obtain the notion of ultramet-
ric (another term for “ultrametric” is “non-Archimedean
metric”).

The notion of (additive) measure in mathematics cor-
responds to that of idempotent measure. A measure m
is idempotent if m(A ∪ B) = max{m(A),m(B)}. Note
that these measures appear also in the fuzzy set theory
as “possibility measures” (see [2]).

It is well-known (see, e. g. [3]) that one can regard
the compact convex subsets of locally convex spaces as
the algebras of the probability measure monad. The fact
that the so called max-plus convex sets correspond to
the idempotent probability measure monad is remarked
in [4]. Recall that a subset A in the Euclidean space Rn
is called max-plus convex if, for any α, β ∈ [−∞, 0] with
α⊕ β = 0 and any x, y ∈ A, we have α� x⊕ β � y ∈ A
(here by � we denote the addition; note that this def-
inition corresponds, in the idempotent mathematics, to
the usual convexity because of the following observation:
−∞ is a neutral element for the operation ⊕ while 0 is
that for the operation �).

A version of max-plus convexity is defined by Briec and

Horvath [5]. For any homeomorphism Φ:X → Rn, they
define on the topological spaceX the set operator CoΦ by
the formula CoΦ(A) = Φ−1(Co(Φ(A))), where Co stands
for the convex hull in Rn. In particular, if ϕ: R → R is a
homeomorphism, one defines Φ = ϕ× . . .×ϕ: Rn → Rn.
Taking ϕr(t) = t2r+1, where r is a natural number, one
obtains homeomorphisms Φr = ϕr × . . .× ϕr.

The set A ⊂ Rn+ is said to be B-convex if tx⊕y ∈ A for
any x, y ∈ Rn and t ∈ [0, 1]. The B-convex are precisely
the Kuratowski–Painleve limits of the Φr-convex sets as
r →∞ (see [5–7]).

We see that the B-convex sets can be obtained from
the max-plus convex sets by change of variables t 7→ et

and replacing addition by multiplication.
The ultrametrization in this paper is a counterpart of

the ultrametrization in the set of probability measures
with compact support (see [8]).

The paper provides a brief survey of the results ob-
tained in the direction mentioned above. We also formu-
late some conjectures and open problems.

II. PRELIMINARIES

We assume that the reader is familiar with the back-
grounds of the category theory (see, e. g. [9]). Given a
category C, we denote by |C| the class of its objects. For
brevity, functor stands for covariant functor.

By Comp we denote the category of compact Haus-
dorff spaces. We usually assume that all maps are contin-
uous. See, e. g. [10] for basic notions of the general theory
of functors acting in Comp.

Let C(X) denote the set of continuous functions on a
topological space X. The set C(X) is a linear space with
respect to the operations of pointwise addition and mul-
tiplication by scalars and also this set is a lattice with
respect to the pointwise operations max and min.

Let C > 0. A map f :X → Y of metric spaces (X, d),
(Y, %) is called C-Lipschitz if

%(f(x), f(y)) ≤ Cd(x, y), x, y ∈ X.

If C = 1 we say that f is nonexpanding, if C < 1 we
say that f is a contraction.
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If A is a subset of a metric space and r > 0, by Or(A)
we denote the open r-neighborhood of A.

Recall that a function d:X ×X → R is called a pseu-
dometric on X if

1. d(x, y) ≥ 0, d(x, x) = 0;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

III. IDEMPOTENT PROBABILITY MEASURES
AND MAX-MIN MEASURES

First, we briefly outline some definitions from [4].
Following the style of idempotent mathematics (see,

e. g., [1, 11, 12]) we denote by �: R × C(X) → C(X)
the map acting by (λ, ϕ) 7→ λX + ϕ, and by ⊕:C(X) ×
C(X) → C(X) the map acting by (ϕ,ψ) 7→ max{ϕ,ψ}.

For each c ∈ R by cX we denote the constant function
from C(X) defined by the formula cX(x) = c for each
x ∈ X.

Definition III.1 A functional µ:C(X) → R is called an
idempotent probability measure (a Maslov measure) if

1. µ(cX) = c;

2. µ(c� ϕ) = c� µ(ϕ);

3. µ(ϕ⊕ ψ) = µ(ϕ)⊕ µ(ψ),

for every ϕ,ψ ∈ C(X) and every c ∈ R.

The number µ(ϕ) is the Maslov integral of ϕ ∈ C(X)
with respect to µ. Another notation for this integral is∫ ⊕
X
ϕdµ.

Let I(X) denote the set of all idempotent probability
measures on X. We endow I(X) with the weak* topolo-
gy. A base of this topology is formed by the sets

〈µ;ϕ1, . . . , ϕn; ε〉 =
{
ν ∈ I(X) | |µ(ϕi)− ν(ϕi)| < ε,

i = 1, . . . , n
}
,

where µ ∈ I(X), ϕi ∈ C(X), i = 1, . . . , n, and ε > 0. En-
dowed with this topology, the space I(X) is a subspace
of the space of the order-preserving weakly additive func-
tionals O(X) introduced by T. Radul [13,14].

The construction I determines a functor on the catego-
ry Comp. Given the morphism f :X → Y in Comp, we
define I(f): I(X) → I(Y ) by the condition: I(f)(µ)(ϕ) =
µ(ϕf), µ ∈ I(X), ϕ ∈ C(Y ). Note that the functor I is
a subfunctor of the functor O of weakly additive order-
preserving functionals [13, 14]. We also mention another
subfunctor of the functor O, namely the well-known func-
tor P of probability measures. The space P (X) consists
of non-negative normed linear functionals on C(X).

The following is an example of an idempotent proba-
bility measure. Let x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R
be numbers such that max{λ1, . . . , λn} = 0. Define
µ:C(X) → R as follows:

µ(ϕ) = max{ϕ(xi) + λi | i = 1, . . . , n}, ϕ ∈ C(X).

As usual, for every x ∈ X, we denote by δx (or δ(x))
the functional on C(X) defined as follows: δx(ϕ) = ϕ(x),
ϕ ∈ C(X) (the Dirac probability measure concentrated
at x). Then one can write µ = ⊕ni=1λi � δxi

.
To every µ ∈ I(X) there corresponds a function (let

us denote it by mµ) defined on closed subsets on X:

mµ(A) = inf{µ(ϕ) | ϕ ∈ C(X), ϕ|A ≡ 0}, A ⊂ X.

This set-valued function satisfies the condition mµ(A ∪
B) = max{mµ(A),mµ(B)}, i. e. is a possibility measure
(see [2]). Note that the possibility measures take their
values in the set Rmax = [−∞, 0].

Applying the transformation t 7→ et, we come to the
set J(X) of functionals µ defined on the set C+(X) of
positive continuous functions on a compact Hausdorff
space X satisfying

1. µ(cX) = c;

2. µ(cϕ) = cµ(ϕ);

3. µ(ϕ⊕ ψ) = µ(ϕ)⊕ µ(ψ),

for every ϕ,ψ ∈ C(X) and every c ≥ 0. Applying the
above transformation to the just defined possibility mea-
sures one obtains the measures taking their values in the
segment [0, 1].

Let ? denote the min operation on the extended real
line

R̄ = R ∪ {−∞,∞} = [−∞,∞].

We endow the set R̄ with the topology generated by its
natural order.

Let X ∈ |Comp|. We denote by Ξ(X) the set of func-
tionals µ:C(X) → R satisfying

1. µ(ϕ)⊕ µ(ψ);

2. µ(cX) = c;

3. µ(λ ? ϕ) = λ ? µ(ϕ), for every λ ∈ R̄, λ > −∞;

4. µ(ϕ+ cX) ≤ µ(ϕ) + c

can be topologized by the weak* topology. Similarly to [4]
one can prove that Ξ(X) is a compact Hausdorff space if
such is X. Note that no longer Ξ(X) is a subset of O(X)
because of the lack of weak additivity.

If f :X → Y is a morphism in Comp, then we de-
fine a map Ξ(f): Ξ(X) → Ξ(Y ) as follows: Ξ(f)(µ)(ϕ) =
µ(ϕf), µ ∈ Ξ(X), ϕ ∈ C(Y ). If f :X → Y is an embed-
ding then such is Ξ(f) and in this case we identify Ξ(X)
with the subset Ξ(f)(Ξ(X)) of Ξ(Y ).

Suppose that A is a closed subset of X and µ ∈ Ξ(X).
One can define the measure of A as the number

mµ(A) = lim
t→∞

inf{µ(ϕ) | ϕ ∈ C(X), ϕ|A ≡ t}.

We obtain again a possibility measure defined on closed
subsets in X. Unlik the case of the space I(X), the mea-
sure mµ takes its values in the set R̄.
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The following is an example of an element of Ξ(X).
Let x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R̄ be such that⊕n

i=1 λi = ∞. For any ϕ ∈ C(X), define

µ(ϕ) =
n⊕
i=1

λi ? ϕ(xi) =
n⊕
i=1

λi ? δxi
(ϕ). (1)

One can easily see that µ ∈ Ξ(X).

Proposition III.2 For every µ ∈ Ξ(X) with supp(µ) =
{x1, . . . , xn} there exist λ1, . . . , λn ∈ R̄ such that µ has
form (1).

Proof. Without loss of generality, one may assume that
X = {x1, . . . , xn}. Define, for every t > 0 and ev-
ery i = 1, . . . , n, a function ϕti ∈ C(X) by the condi-
tion ϕti(xj) = t whenever i = j and −t otherwise. Let
λi = inft>0 µ(ϕti). We leave to the reader the verification
that µ is then represented by formula (1). �

Proposition III.3 Let X = {x1, . . . , xn} (we suppose
that the cardinality of X is n, i. e. xi 6= xj whenever
i 6= j). Then the space Ξ(X) is homeomorphic to the
following “max-min”-simplex

Γ̄n−1 =

{
(λ1, . . . , λn) ∈ R̄n |

n⊕
i=1

λi = ∞

}
.

There is a natural coordinatewise homeomorphism
of Γn−1 onto Γ̄n−1 induced by the homeomorphism of
Rmax = [−∞, 0] onto R̄ acting by t 7→ − ln(−t) on fi-
nite points. This homeomorphism naturally extends to a
functorial isomorphism of the restrictions of the functors
I and Ξ onto the category of finite spaces.

We formulate an open problem whether such an iso-
morphism can be extended over the whole category
Comp. The following argument speaks in favor of the
affirmative solution of this problem. Let m be a pos-
sibility measure defined on Borel subsets of a com-
pact metric space X and taking its values in R̄. Like
in the Lebesgue integral theory, for any simple func-
tion ϕ on X (i. e. a function with at most countable
image ϕ(X) such that ϕ−1(y) is Borel for every y ∈
ϕ(X)), one can define its max-min-integral

∫
X
ϕdm as

the expression
⊕

y∈ϕ(X) y ? m(ϕ−1(y)). Extending the
obtained integral over the class of continuous functions
by means of the standard procedure one obtains a func-
tional µm:C(X) → R, which belongs to Ξ(X). In turn, if
one defines the integral as

⊕
y∈ϕ(X) y �m(ϕ−1(y)), one

obtains a functional in I(X).

IV. MAX–MIN–MEASURES ON ULTRAMETRIC
SPACES

In [8], the ultrametrics on the set of probability mea-
sures on the ultrametric spaces are considered in con-
nections with problems of computer science, in particu-
lar, the semantics of program languages. The idempotent
measures on ultrametric spaces are introduced in [15].

Now, let X be a metric space. We define the set Ξ(X)
as the direct limit

lim
−→
{F (A), F (iAB); expX},

where expX is the family of all non-empty compact sub-
sets of X ordered by inclusion and, for every A,B ∈
expX with A ⊂ B the map iAB :A→ B is an embedding.
We define the support of µ ∈ Ξ(X) (written supp(µ)) as
the minimal (with respect to inclusion) set A ∈ expX
such that µ ∈ Ξ(A).

Let (X, d) be an ultrametric space. We are going to
endow the set Ξ(X) with an ultrametric. For any ε > 0,
denote by Fε = Fε(X) the set of all functions ϕ ∈ C(X)
satisfying the property: for any y ∈ ϕ(X) the set ϕ−1(y)
is the union of balls of radii ε.

Given µ, ν ∈ I(X), we let

ď(µ, ν) = inf{ε > 0 | µ(ϕ) = ν(ϕ) for all ϕ ∈ Fε}.

Proposition IV.1 The function ď is ultrametric on
I(X).

Proof. Evidently, ď ≥ 0. Let now µ, ν ∈ I(X), µ 6= ν.
Then there exists ϕ ∈ C(X) such that µ(ϕ) 6= ν(ϕ).
Without loss of generality, one may assume that µ(ϕ)−
ν(ϕ) = c > 0. Since µ, ν are of compact supports, one
may assume that there is a compact subset K ⊂ X such
that ϕ|(X \K) ≡ 0.

One can easily construct ψ ∈ Fε, for some ε > 0, such
that ψ ≤ ϕ ≤ ψ + (c/3).

Then

µ(ψ) ≤ µ(ϕ) ≤ µ(ψ + (c/3)X) ≤ µ(ψ) + (c/3),
ν(ψ) ≤ ν(ϕ) ≤ µ(ψ + (c/3)X) ≤ µ(ψ) + (c/3),

whence µ(ψ) 6= ν(ψ) and therefore ď(µ, ν) ≥ ε > 0.
It is obvious that ď(µ, ν) = ď(ν, µ), i. e. the function ď

is symmetric.
In order to prove the strong triangle inequality, let

µ, ν, τ ∈ I(X), ď(µ, ν) = a, ď(ν, τ) = b. Without loss of
generality, we may assume that a ≥ b. Then, for every
η > 0 and every ϕ ∈ Fa+η, we have µ(ϕ) = ν(ϕ) and
ν(ϕ) = τ(ϕ). Letting η → 0, we see that ď(µ, τ) ≤ a.

�
Endowed with this metric, the space Ξω(X) of the

max-min measures of finite supports turns out to be iso-
metric to the space Iω(X) of the idempotent measures
of finite supports via the map sending

⊕n
i=1 λi ? δxi

to⊕n
i=1−e−λi⊕δxi

. Since one can prove that the set Ξω(X)
is dense in Ξ(X) and the corresponding fact holds true
for the idempotent measures. This isometry extends to
the unique isometry between the spaces Ξ(X) and I(X).
Moreover, it turns out that these isometries induce an
isomorphism of the functors Ξ and I on the catego-
ry UMet of the ultrametric spaces and nonexpanding
maps. At the first glance, there is no reason to introduce
the functor Ξ, however, as we will see later, there is a
substantial distinction between Ξ and I on the higher
level of consideration.
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V. MONAD STRUCTURE

A. Category Comp

Recall that a triple T = (F, η, ψ) is called a monad on
a category C if F : C → C is a functor and η: 1C → F ,
ψ:F 2 → F (hereafter F 2 denotes the composition FF ,
similarly to F 3) are natural transformations such that
the diagrams

F (X)
ηF (X) //

1F(X) $$IIIIIIIII

F (ηX)

��

F 2(X)

ψX

��
F 2(X)

ψX

// F (X)

F 3(X)
F (ψX)//

ψF (X)

��

F 2(X)

ψX

��
F 2(X)

ψX

// F (X)

are commutative. If F = (F, η, ψ) and F′ = (F ′, η′, ψ′) are
monads on the same category, C, we say that a natural
transformation γ:F → F ′ is a morphism of the monad
F onto F′ if the diagrams

F
γ // F ′

1

η

__???????? η′

??~~~~~~~~

F 2
γF ′F (γ) //

µ

��

F ′
2

µ′

��
F γ

// F ′

are commutative.
If γ consists of embeddings, we say that F is a sub-

monad of F′.
The monad structure with the functor I as its functori-

al part is defined in [4]. It follows from the general theory
of functors acting in the category Comp (see [10]) that
δ: 1Comp → I is the unique natural transformation. The
natural transformation ζ: I2 → I is defined as follows.

Let X ∈ |Comp|. Given ϕ ∈ C(X), define ϕ̄: I(X) →
R as follows: ϕ̄(µ) = µ(ϕ), µ ∈ I(X).

Given M ∈ I2(X), define the map ζX(M):C(X) → R
as follows: ζX(M)(ϕ) = M(ϕ̄).

The obtained monad I = (I, δ, ζ) turns out to be a
submonad of the monad O of weakly additive order-
preserving functionals introduced by Radul [14]. The
probability measure monad P is also a submonad of O.
By change of variables t 7→ et, one obtains, out of the
monad I, the monad J on the category Comp.

We are going to define a monad structure with Ξ as
its functorial part. Let ϕ ∈ C(X), where X is a com-
pact Hausdorff space. Define ϕ̄: Ξ(X) → R as follows:
ϕ̄(µ) = µ(ϕ), µ ∈ Ξ(X), µ ∈ Ξ(X).

Define a map ζ̄X by the condition: ζ̄X(M)(ϕ) = M(ϕ̄),
ϕ ∈ C(X). If M =

⊕
λi ? µi ∈ Ξ2(X), where µi =

⊕
κij ? δxij

∈ Ξ(X), for every i, then

ζ̄(M) =
⊕
i

⊕
ij

(λi ? κij) ? δxij
∈ Ξ(X).

The map ηX :X → Ξ(X) sends x ∈ X to the Dirac
measure δx (denoted also δX(x)).

The maps ζ̄X and δX are components of natural trans-
formations ζ̄: Ξ2 → Ξ and δ: 1Comp → Ξ respectively.

The following result is a counterpart of that obtained
for the idempotent probability measure functor [4].

Theorem V.1 The triple X = (Ξ, δ, ζ̄) is a monad on
the category Comp.

We conjecture that the monads I and X are not iso-
morphic.

Given the monad T = (T, η, µ) on the category C, we
say that the pair (X, ξ), where ξ:T (X) → X is a mor-
phism in C, is a T-algebra if ξηX = 1X and ξµX = ξT (ξ).
Given T-algebras (X, ξ), (X ′, ξ′), we say that a morphism
f :X → X ′ is a morphism of T-algebras if fξ = ξ′T (f).
The T-algebras and their morphisms form a category.
The category P-algebras is known to be isomorphic to
that of compact convex subsets in locally convex spaces
and continuous affine maps. Given such a compact con-
vex set, X, one defines the map ξ:P (X) → X as the
barycenter map defined by the condition: ϕ(ξ(µ)) =
µ(ϕ), for every linear function ϕ ∈ C(X).

Question V.2 Characterize the category of X-algebras.

We conjecture that the category of X-algebras is that
of compact max-min-convex sets in the locally convex
lattices. Equivalently, compact max-min-convex sets in
the Tychonov product Rτ , where τ is an arbitrary car-
dinal number. Here, a set X ⊂ Rτ is max-min-convex if,
for any x, y ∈ X and any t, s ∈ [−∞,∞] with t⊕ s = ∞,
we have t ? x ⊕ s ? y ∈ X (the operations are the coor-
dinatewise maximum and minimum). The morphisms of
max-min-convex sets are those induced by linear maps
Rτ → Rτ ′

adjoint to maps τ ′ → τ . The counterpart of
the barycenter map, ξ: Ξ(X) → X acts as follows:

ξ

(
n⊕
i=1

λi ? δxi

)
=

n⊕
i=1

λi ? xi

(and continuously extends to all the subspace Ξ(X)). Ac-
cording to the philosophy of monadology, one can regard
the spaces of the form Ξ(X) as the free max-min-convex
sets.

Summing up, one obtains the following correspondence
between the monads and the classes of convex sets in the
category Comp:

monad P I(J) X
algebras convex sets max -plus convex sets max - min convex sets

(B-convex sets)
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That P-algebras are precisely compact convex sets is
explicitly shown in [3]; some results of [4] testify to the
fact that the max-plus convex sets are the I-algebras.

B. Category of ultrametric spaces

Now let us turn our attention to the category UMet.
That the probability measure functor on the category
UMet defined in [8] determines a monad was first re-
marked by the author. In [15] a counterpart of this mon-
ad was constructed with I as its functorial part.

Given an ultrametric space (X, d), we endow the set
Ξ(X) with the ultrametric ď. Then the space Ξ2(X) car-
ries the ultrametric ˇ̌d.
Proposition V.3 The map ζ̄X : Ξ2(X) → Ξ(X) is non-
expanding.

This allows us to regard the maps ζ̄X as the compo-
nents of a natural transformation ζ̄: Ξ2 → Ξ in UMet.
Together with the natural transformation δ: 1UMet → Ξ
this gives us a monad on the category UMet.

A monad (I, δ, ζ) on the category UMet generated
by the functor I is defined in [15]. The following exam-
ple demonstrates that no coordinatewise isomorphism
γ of the functors I and Ξ induces a monad isomor-
phism. Namely, let α: [−∞, 0] → [−∞,∞] be an order-
preserving continuous homeomorphism (the mentioned
homeomorphism t 7→ − ln(−t) is an example). Note that,
for Y = {y1, . . . , yk}, we define

γY

(
k⊕
i=1

ci � δyi

)
=

k⊕
i=1

α(ci) ? δyi
.

Now, let X = {x, y, z} and

µ = 0� δx ⊕ (−1)� δy, µ
′ = 0� δx ⊕ (−2)� δy, M = c� δµ ⊕ δδz

, M ′ = c� δµ′ ⊕ δδz
.

Then

ζX(M) = c� δx ⊕ (c− 1)� δy ⊕ δz 6= ζX(M ′) = c� δx ⊕ (c− 2)⊕ δy ⊕ δz,

while, under the isomorphism γ defined above, we have

ζ̄X(γΞ(X)(I(γX(M))) = α(c) ? δx ⊕ (α(c) ? α(−1)) ? δy ⊕ δz

= ζ̄X(γΞ(X)(I(γX(M))) = α(c) ? δx ⊕ (α(c) ? α(−2)) ? δy ⊕ δz

whenever c < −2.

The underlying spaces of the X-algebras in the cate-
gory UMet can serve as counterparts of the so-called
max-min-convex sets in the category Comp. Similarly,
the algebras of the probability measure and possibility
measure monads can be interpreted as counterparts of
the convex sets, and the max-plus convex sets, respec-
tively.

VI. METRIZATION

Let (X, d) be a compact metric space.
By n-LIP = n-LIP(X, d) we denote the set of Lipschitz

functions with the Lipschitz constant ≤ n from C(X).
Fix n ∈ N. For every µ, ν ∈ I(X), let

d̂n(µ, ν) = sup{|µ(ϕ)− ν(ϕ)| | ϕ ∈ n-LIP}.

The following theorem is proved in [4].

Theorem VI.1 The function d̂n is a continuous pseu-
dometric on I(X).

One can similarly prove that the function ďn: Ξ(X)×
Ξ(X) → R defined by the formula

ďn(µ, ν) = sup{|µ(ϕ)− ν(ϕ)| | ϕ ∈ n-LIP}

is a continuous pseudometric on Ξ(X).

Proposition VI.2 The map δ = δX , x 7→ δx: (X, d) →
(I(X), d̃n), is an isometric embedding for every n ∈ N.

A similar fact takes place also for the pseudometric ďn
on Ξ(X).

Note that the above construction of d̂ can be applied
not only to metrics but also to continuous pseudomet-
rics. Proceeding in this way we obtain the iterations
(I(X), d̃n), (I2(X), ˜̃dnm = (d̃n)̃m), . . .

Proposition VI.3 For a metric space (X, d), the map
ζX : (I2(X), ˜̃dnn) → (I(X), d̃n) is nonexpanding.

The latter proposition has its counterpart also for the
pseudometrics ďn on the spaces Ξ(X).

One way to attack the problem whether the functors
I and Ξ are isomorphic consists in tackling the obtained
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pseudometric spaces (I(X), d̂n) and (Ξ(X), ďn). Namely,
the problem reduces to that whether the map

n⊕
i=1

λi ? δxi
7→

n⊕
i=1

−e−λi ⊕ δxi

is uniformly continuous (and so is its inverse) when the
corresponding measure spaces are endowed with the met-
rics defined above.

VII. ITERATED FUNCTION SYSTEMS

Let (X, d) be a metric space. An iterated function sys-
tem inX is a finite sequence f1, . . . , fn:X → X of contin-
uous maps. Fix µ0 ∈ Ξ({1, . . . , n}). Then µ0 =

⊕n
i=1 λi?

δi. Any such system determines a map Φ: Ξ(X) → Ξ(X)
as follows:

Φ(µ) =
n⊕
i=1

λi ? Ξ(fi)(µ).

Dissimilar to the case of the probability measure func-
tor and the Kantorovich metric on the spaces P (X), it

does not seem to be true that the maps Ξ(fi) are con-
tractions (with respect to the family of pseudometrics
defined in the previous section) if such are the maps fi.
This does not allow us to apply, for the map Φ, the Ba-
nach contraction principle in order to prove the existence
of a unique fixed point of Φ.

One can prove that, for a compact metric X, the space
Ξ(X) carries a natural generalized convexity structure
making it an absolute extensor (AE). Therefore, the map
Φ has a (not necessarily unique) fixed point. We leave as
an open problem that of searching conditions that should
be imposed onto the iterated function system making
these fixed points counterparts of the probabilistic frac-
tals, i. e. possibility fractals.

VIII. REMARKS AND OPEN QUESTIONS

A. Prokhorov type metrics

Recall that the Prokhorov metric on the set of prob-
ability measures on a metric space (X, d) is defined by
the formula

dP (m,m′) = inf{ε > 0 | m(F ) ≤ m′(Oε(F )) + ε, m′(F ) ≤ m(Oε(F )) + ε, F closed}.

It is not clear whether the Prokhorov metric has its
counterpart for the ultrametric spaces. The counterpart
of the Prokhorov metric can also be defined for the spaces
I(X) as well as Ξ(X).

B. Economic applications

Given a game represented by two payoff functions
ui:X1 × X2 → R, i = 1, 2, one can define a game in

mixed strategies ūi:P (X1)× P (X2) → R, where

ūi(µ, ν) =
∫
X1×X2

uid(µ⊗ ν), i = 1, 2.

Here ⊗ stands for the product of probability measures.
It is known that the monad structure allows us to define
the products of the idempotent probability measures as
well as of the max-min-measures. Therefore, one can con-
sider the games in strategies taking their values in the
spaces I(X) and Ξ(X). One of the main problems in this
direction is to find suitable economic interpretations of
these games.
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