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We give the full list of types of static (homogeneous) solutions within a wide family of exactly
solvable 2D dilaton gravities with the back-reaction of conformal fields. We discuss in detail the class
of black hole solutions which includes the previously known ones as particular cases. For this class,
the whole spacetime can be divided into different sheets with one horizon on each sheet between
neighboring singularities with a finite value of dilaton field, the neighboring sheets being glued
along the singularity. The position of singularities coincide with the values of dilaton in solutions
with a constant dilaton field. Quantum corrections to the Hawking temperature vanish. We also
consider a general approach to exactly solvable 2D dilaton cosmology. We find a rather rich class
of everywhere regular solutions which exist practically in every type of the analyzed solutions.
They exhibit different kinds of asymptotic behavior in the past and future, including inflation,
superinflation, deflation, power expansion or contraction. In particular, for some models the dS
spacetime with a time-dependent dilaton field is the exact solution of field equations. For some
kinds of solutions the weak energy condition is violated independently of a specific model. We find
also the solutions with a singularity which is situated in an infinite past (or future), so at any finite
moment of a co-moving time the universe is singularity-free. It is pointed out that for some models
the spacetime may be everywhere regular even in spite of infinitely large quantum back-reaction in
an infinite past.
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I. INTRODUCTION

Two-dimensional theories of gravity count on better
understanding of the role of quantum effects in black
hole physics in a more realistic four-dimensional case.
In particular, a new insight was gained due to reducing
the problem of black hole evaporation to the solution
of differential equations of the semiclassical theory [1].
However, these equations remain too complicated in the
sense that exact solutions cannot be found. This obsta-
cle was overcome in the approach based on modifying
the form of the semiclassical action in such a way that
solvability is restored. The well-known example is the
Russo–Susskind–Thorlacius (RST) model [2]. In partic-
ular, this enabled one to give exhaustire analysis of either
geometry or thermodynamics of eternal black holes in the
framework of RST dilaton gravity [3].

Examples of exactly solvable theories of dilaton grav-
ity were discussed in [4, 5]. As was shown by Kazama,
Satoh and Tsuichiya (KST), these models as well as the
RST one can be found as particular cases of the unified
approach [6] based on the symmetries of the nonlinear
sigma model. A number of other exactly solvable models
were suggested later [7–10].

In the present paper we develop the general approach
to exactly solvable 2D dilaton gravity theories with quan-
tum back-reaction described by the Polyakov–Liouville
action. The corresponding set of solutions includes all
those known before. We dwell in detail on the solutions
describing black holes and cosmological spacetimes. For

black holes, we outline general features of their space-
time structure and thermodynamic properties. It turned
out that, in spite of diversity of different forms of dilaton
potentials, a wide class of exactly solvable models shares
similar properties.

As far as the cosmological solutions in 2D dilaton grav-
ity are concerned, a particular cosmological solution for
such a system was found in [11] but it turned out that it
suffers from the presence of unavoidable physical singu-
larities. The interest in exact solutions in 2D semiclas-
sical cosmology was further stimulated by the fact that
the inclusion of back-reaction in some other models does
cure the problem of cosmological singularities. This was
observed in Ref. [12], where it was shown that this effect
leads to a smooth transition between superinflation and
FRW phases for some particular model and, thus, re-
solves the problem of the graceful exit (a brief review on
this issue in the context of dilaton theory can be found
in [13]). However, this result was achieved at the cost
of putting the quantum coupling parameter κ = ~(N−24)

24
to negative values. Meanwhile, the quasiclassical approx-
imation, within which the whole consideration was per-
formed, implies ~ → 0, N → ∞, that is κ > 0. The
improved model, free of unphysical restriction on κ, was
analyzed in [14], [15] and was shown also to contain
singularity-free solutions. These studies on 2D dilaton
cosmology with everywhere regular solutions concerned
only some special fixed models with the zero cosmologi-
cal constant. In the present paper we relax the demand
of having the zero cosmological constant (that, in the
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context of modern cosmology, looks more physical) and
(i) give the full list of cosmological solutions within the
exactly solvable models specified by the only relationship
between the coefficient of the gravitation-dilaton action,
(ii) find among them examples with everywhere bounded
curvature.

II. BASIC EQUATIONS

Hereafter we restrict ourselves to semiclassical dilaton
gravity with the back-reaction of conformal fields only.
Consider the action

I = I0 + IPL, (1)

where

I0 =
1
2π

∫
M

d2x
√
−g
[
F (φ)R+ V (φ)(∇φ)2 + U(φ)

]
(2)

and the Polyakov–Liouville action [18]

IPL = − κ

2π

∫
M

d2x
√
−g
[
(∇ψ)2

2
+ ψR

]
(3)

responsible for the back-reaction of fields conformally
coupled to gravity. Here the function ψ obeys the equa-
tion

2ψ = R, (4)

where 2 = ∇µ∇µ, κ = N/24 is the quantum coupling
parameter, N is the number of scalar massless fields, R
is a Riemann curvature. We omit the boundary terms
in the action as we are interested only in field equations
and their solutions.

From Eqs. (1)–(4) one can infer field equations (see be-
low) which are valid for any gravitation–dilaton system
of the kind under discussion. Meanwhile, our main goal
is to analyze possible exactly solvable cases. The typical
representative of the corresponding family reads

F = exp(−2φ) + 2κ(d− 1)φ,
V = 4 exp(−2φ) + 2(1− 2d)κ+ 4C(e−2φ − κd)2,
U = 4λ2 exp(−2φ), (5)

λ and d are constants. If C = 0, this model turns to the
one suggested in [10]. In turn, it includes different par-
ticular known models. For example, in the case d = 0
one obtains the model suggested in [9], if d = 1/2 it co-
incides with the RST model [2]. Meanwhile, the family
of exactly solvable models under discussion in our paper
is wider than (5), including it only as a particular class.

Let us return to the issue of field equations in the
generic case. Varying the action with respect to a metric
gives us (Tµν = 2 δI

δgµν ):

Tµν ≡ T (0)
µν − T (PL)

µν = 0, (6)

where

T (0)
µν =

1
2π
{
2(gµν2F −∇µ∇νF )− Ugµν

+ 2V∇µφ∇νφ− gµνV (∇φ)2
}
, (7)

T (PL)
µν =

κ

2π

{
∂µψ∂νψ − 2∇µ∇νψ + gµν [2R−

1
2
(∇ψ)2]

}
(8)

Variation of the action with respect to φ gives rise to
the equation

R
dF

dφ
+
dU

dφ
= 2V2φ+

dV

dφ
(∇φ)2. (9)

In general, field equations cannot be solved exactly
and function ψ, dilaton φ and metric depend on both
time-like (t) and space-like (σ) coordinates: ψ = ψ(t,σ),
φ = φ(t, σ). In what follows we restrict ourselves to such
a kind of solutions that ψ can be expressed in terms of
φ only: ψ = ψ(φ). We will see that this leads to the ex-
istence of the Killing vector. On the other hand, as all
static or homogeneous solutions depend on one variable,
one may exclude it and express ψ in terms of φ. Thus,
the assumption ψ = ψ(φ) turns out to be equivalent to
the static or homogeneous character of solutions.

Let us take the trace of Eqs. (6)–(8) and Eq. (9). De-
noting

F̃ ≡ F − κψ,U ≡ Λe
R
dφω, (10)

we get

U = 2F̃ (11)

A12φ+A2(∇φ)2 = 0,
A1 = (u− κω)ψ′ + ωu− 2V, (12)
A2 = (u− κω)ψ′′ + ωu′ − V ′,

where u ≡ F ′ and prime throughout the paper denotes
a differentiation with respect to φ. For arbitrary coeffi-
cients A1(φ), A2(φ) Eq. (12) cannot be solved exactly.
This can be done, however, under some restrictions on
the form of the coefficients A1, A2. Let us demand that

A1 = (u− κω)χ′, A2 = (u− κω)χ′′ (13)

where χ = χ(φ) and 2χ = 0. Then it follows that
ψ = ψ0 + χ, where

ψ′0 =
2V − ωu
u− κω

, (14)

which enables us to find at once ψ0 in terms of the known
functions u, V , ω by direct integration. Demanding that
both equations in (13) be consistent with each other, we
obtain the restriction on the action coefficients

u′(2V − ωu) + u(uω′ − V ′) + κ(ωV ′ − 2V ω′) = 0 (15)

This equation can be solved:
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V = ω
(
u− κω

2

)
+ C(u− κω)2, (16)

where C is a constant.
The fact that function ψ is defined up to a function

whose Laplacian vanishes is explained by Eq. (4) which
is, in fact, the definition of ψ. The presence of χ reveals
itself in the nature of quantum state (see below). Eq.
(16) is just the condition obtained in [16], so account for
χ does not generate new types of exactly solvable models
but extends the set of solutions within these models.

With Eq. (11) taken into account, the field equations
(6)–(8) can be rewritten in the form

[ξ12φ+ ξ2(∇φ)2]gµν = 2(ξ1∇µ∇νφ+ ξ2∇µφ∇νφ) (17)

where ξ1 = dF̃
dφ , ξ2 = d2F̃

dφ2 − Ṽ , Ṽ = V − κ
2 (dψdφ )2. Let us

multiply this equation by the factor ζ chosen in such a
way that ξ2ζ = d(ξ1ζ)

dφ . Then Eq. (17) turns into

gµν2µ = 2∇µ∇νµ, (18)

where by definition µ′ = ξ1ζ. This equation takes the
same form as eq. (2.24) from [3] and entails the same gen-
eral conclusion about the existence of the Killing vector
lα = εβαµ,β . In the present section we consider the case
when the Killing vector is time-like everywhere that gives
rise to static solutions and mainly concentrates on black
hole ones.

It is convenient to work in the conformal gauge

ds2 = g(−dt2 + dσ2), (19)

where, in accordance with the choice of the Killing vec-
tor, g = g(σ) and does not depend on a time-like coor-
dinate σ. In gauge (19) the curvature

R = −g−1 ∂
2 ln g
∂σ2

. (20)

Eq. (11) takes the form

Λeη =
∂2F̃

∂σ2
g−1, η =

∫
dφω. (21)

Now for any function f(σ) we have 2f = g−1 ∂
2f
∂2σ

whence it is clear that χ = γσ, where γ is a constant.
Thus, we have

ψ = ψ0 + γσ, (22)

where ψ0 is defined according to (14). It follows from (4)
that

g = e−ψ−aσ = e−ψ0−δσ, (23)

where a is a constant, δ = γ+a. After a simple rearrange-
ment the (00) and (11) field equations (6), (17) with the
metric in the conformal gauge (19) are reduced to one
equation

ξ1
d2φ

dσ2
+ ξ2

(
dφ

dσ

)2

− ξ1g−1 dg

dσ

dφ

dσ
= 0. (24)

It is convenient to split the coefficients in Eq. (24) into
two parts singling out the term which is built up with
the help of ψ0: ξ1 = ξ

(0)
1 − κγ dσdφ , ξ2 = ξ

(0)
2 − κγ d

2σ
dφ2 +

κ[ dηdφγ
dσ
dφ + 1

2 (γ dσdφ )2],

ξ
(0)
1 =

dF̃ (0)

dφ
, ξ

(0)
2 =

d2F̃ (0)

dφ2
− Ṽ (0),

F̃ (0) = F − κψ0, Ṽ (0) = V − κ

2

(
dψ0

dφ

)2

. (25)

Then Eq. (24) takes the form

ξ
(0)
1

d2φ

dσ2
+ ξ

(0)
2

(
dφ

dσ

)2

+ ξ
(0)
1

dφ

dσ

(
dψ0

dσ
+ δ

)
= κγ

(
δ − γ

2

)
. (26)

Let us multiply this equation by the factor s so

that ξ
(0)
2 s = d(ξ

(0)
1 s)
dφ , s = exp

[
(ξ

(0)
2 −ξ(0)

′
1 )

ξ
(0)
1

]
=

exp
[
−Ṽ (0)/ξ

(0)
1

]
.

Then eq. (26) can be cast into the form

dz

dσ
+ z

(
dψ0

dσ
+ δ

)
= κγ

(
δ − γ

2

)
s, (27)

where z = sξ
(0)
1

dφ
dσ = sdF̃

(0)

dσ . It follows from (14) and
(16) that

ψ0 = η + 2CH, (28)

g = e−η−2CH−δσ (29)

and

F̃ (0) = H(1− 2κC), (30)

where H = F − κη. If Λ 6= 0, the metric function (up to
the constant factor) is equal to

g =
e−δσ−2CH

U
, (31)

H = F − κ lnU + const. (32)

We obtain from (16), (25), (28), (30)

Ṽ (0) = (1− 2κC)H ′(ω + CH ′),

ξ
(0)
1 = (1− 2κC)H ′, (33)

whence

s = e−η−CH . (34)

Then after a simple rearrangement Eq. (27) gives rise to

d2H

dσ2
+ C

(
dH

dσ

)2

+ δ
dH

dσ
= α, (35)
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where

α = κγ(δ − γ

2
)/(1− 2κC). (36)

It is convenient to introduce a new variable ρ, where
|ρ| = eCH . Then we have the linear equation

d2ρ

dσ2
+ δ

dρ

dσ
= αCρ (37)

One can seek a solution in the form ρ ∼ eβσ, whence
we obtain

β2 + δβ − αC = 0 (38)

This equation is quadratic and has two roots β1, β2. De-
pending on their properties, one can classify all possi-
ble types of solutions and describe their properties. In a
natural way, the solutions fall into three different class-
es: I (both β1, β2 are real, β1 6= β2); II (β1, β2 are real,
β1 = β2), III (roots are complex, β1 = β∗2). We describe
the results below.

III. A GENERAL CASE. TYPES OF SOLUTIONS

It is convenient to cast the solutions of Eq. (35) into
uniform formulas:

CH = CH0 −
δσ

2
+ ln |f | , (39)

where the function obeys the equation

d2f

dσ2
= fε2, ε2 =

δ2

4
+ αC. (40)

We get the following different cases.
Ia. ε2 > 0, f = shεσ

ε ; Ib: f = chεσ
ε ;

IIa: ε = 0, f = σ; IIb: f = 1;
III: ε2 ≡ −κ2 < 0, f = sin κσ

κ .
It follows from (21) that

ΛC
1− 2κC

= e2CH0z, (41)

where z = 1 for the Ib case, z = 0 = Λ for IIb and z = −1
in cases Ia, IIa, III.

The Riemann curvature reads the following.
Ia, IIa, III:

R =
UC

1− 2κC
[2 +

ω

CH ′ −
1

C2H ′

( ω
H ′

)′
q2]. (42)

Ib :

R =
UC

1− 2κC
[2 +

ω

CH ′ +
1

C2H ′

( ω
H ′

)′
q2] (43)

IIb:

R =
eη+2CH0

1− 2κC
1

C2H ′

( ω
H ′

)′ δ2
4
. (44)

Here q = ( dfdσ −
δ
2f).

In a similar way, we get the general structure of the ex-
pression for quantum stresses. Two nonzero components
of quantum stresses are connected for conformal fields by
the well known relationship T

0(PL)
0 + T

1(PL)
1 = κR

π (see
eq. (8)). Here we list the component T 1(PL)

1 only. One ob-
tains from (8), (28), (29), (36):

T 1
1 = − 1

4πg

[
κ

(
∂ψ0

∂σ
+ 2δ

)
∂ψ0

∂σ
+ 2α (1− 2κC)

]
, (45)

∂ψ0

∂σ
=

(
ω

CH
′
φ

+ 2

)
q

f
,

whence

T
1(PL)
1 = − κ

4π
|UC|

1− 2κC
Z, (46)

Z =
( qω

CH ′ + 2f
′
)2

− (δ − γ)2f2, (47)

except the case IIb, when

T
1(PL)
1 = − κ

4π
e2CH0+ηZ, (48)

Z = δ2

4

(
ω

CH′

)2

− (δ − γ)2.

IV. BLACK HOLES

It is clear from the formulas listed above that there
exists a significant variety of different types of solutions.
We restrict ourselves by the simplest but physically rel-
evant cases and dwell mainly on black hole solutions.
(The complete classification can be obtained as direct
counterpart of that for the homogeneous time-dependent
solution which is considered below in the section “Cos-
mological solutions”. Therefore, to avoid duplication, in
the present section we omit it.) Apart from this, we con-
sider the case when the quantum fields are in the Hartle-
Hawking state, so that we have the state of thermal equi-
llibrium between a black hole and quantum fields, the
stress-energy tensor of these fields being finite on the
horizon as usual. The reservations made in the previous
sentence are meaningful since in 2D theories there are
exact self-consistent solutions for which the state inter-
polates between the Hartle–Hawking and Boulware state,
the geometry being regular notwithstanding the fact that
the stresses diverge [21].

Let C = 0 = α = γ, ω = const. For convenience, we
choose ω = −2 to facilitate comparison with standard
models. Then it follows from (35) that

H = H0 +D exp(−δσ). (49)

If, instead of the conformal coordinate σ one uses the
Shwarzschild one, the metric can be cast into the from
(17)–(35) that

ds2 = −gdt2 + g−1dx2 (50)
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where

g = A

∫ φ

φh

dφ̃
∂µ

∂φ̃
eψ(φ̃)−ψ(φ) (51)

x = B−1µ, µ =
∫ φ

dφ̃
∂H

∂φ̃
e

R φ̃ dφ′p(φ′),

p = − Ṽ

H ′′ . (52)

Now we can make general conclusions about the struc-
ture of spacetime. Curvature (19) can be rewritten in the
Schwarzschild coordinates as R = − d2g

dx2 . Then, we obtain

R =
4λ2

H ′

[
ω(H −Hh)

H ′

]′
exp

(∫ φ

dφ̃ ω

)
(53)

Let, by definition, H ′(φc) = 0, xc = x(φc). Near φc the
function H ′ ∝ φ−φc, x−xc ∝ (φ−φc)2 and, in general,
R ∝ (φ−φc)−3 ∝ (x−xc)−3/2. The exceptional case aris-
es when φc = φh. Then the above expression in square
brackets is finite and R ∝ (φ − φc)−1 ∝ (x − xc)−1/2.
Thus, singularity becomes weaker but does not disap-
pear. Such a behavior, found earlier for the RST mod-
el [3], is inherent to any model under consideration.

Thus, the metric possesses singularities in the points
φ = φc where H ′ = 0. The spacetime splits into inter-
vals between zeros of H ′ which can be viewed as different
sheets that generalizes the corresponding feature of the
RST model [3]. Within each of them function H ′ does
not alter its sign, so function H(φ) is monotonic and the
equation H = Hh has only one root. Then, according
to (19), there is only one horizon at φ = φh on every
sheet between any two singularities with a finite value
of φ. In principle, it may happen that on a sheet be-
tween infinity and a singularity nearest to it there exists
an additional horizon due to the factor e−ψ in which
case the coordinate x calculated according to (19) takes,
generally speaking, a finite value in this limit. To ob-
tain the maximally extended analytical continuation of
spacetime, one is led to accept the possibility of complex
dilaton field values [19]. We will not, however, discuss
such possibilities further. For the RST model there ex-
ist only two sheets but, depending on the properties of
function H(φ), the number of sheets in a general case
can be made arbitrary. Any two neighboring sheets are
separated by a singularity located at φ = φc.

From eqs. (50), (52) we obtain the formula for the
Hawking temperature TH =

(
dg
dx

)
x=xh

which turns out

surprisingly simple:

TH = (2π)−1λ (54)

and does not acquire quantum corrections. Moreover, as
this temperature is a constant, it turns out that all hori-
zons present in the solution have the same temperature.
Both properties generalize a similar feature of the RST
model [3]. In the latter case H ∝ eωφ.

Apart from the solutions discussed above, there is one
more class of them. It is seen from eq. (12) that this equa-
tion turns into identity when φ = const ≡ φ0. For such
solutions field Eq. (11) gives us U = −κR. Substituting
it into eq. (9) we have RF̃ ′ = 0 where we have taken into
account that H ′ = u − κω. This means that nontrivial
solutions (R 6= 0) exist only for the values of the dilaton
field φ0 = φc. Let me recall that this is just the point
where the curvature for solutions described by eq.(19)
diverges. This gives a nontrivial interplay between two
branches of solutions, also found for the particular case
of the RST model [3]: the values of the dilaton field for
constant dilaton solutions coincide with the singularity of
non-constant ones. In particular, it follows from the con-
tent of the present paragraph that the class of models
under discussion does not contain constant dilaton solu-
tions with two horizons found in [20]. It is not surprising
since the latter solutions exist only under the presence
of an electromagnetic field which is now absent.

V. COSMOLOGICAL SOLUTIONS

In the section “Basic equations” we pointed out that
the theories of gravity under discussion admit the Killing
vector. Up till now, we discussed the case when this vec-
tor is time-like, the corresponding solutions being static.
In the present section we consider the case when the
Killing vector associated with the spacetimes under dis-
cussion has the space-like character, so we will be dealing
with homogeneous cosmological solutions. In contrast to
the black hole case, here we consider in general variety
non-zero parameters introduced above. They turn out
to be essential for physically relevant solutions. Homo-
geneous counterparts of static solutions have a similar
structure considered above but they have quite different
meaning.

A. Particular cases and limiting transitions

The solutions obtained depend on several parameters.
In what follows it is assumed that the dilaton is not iden-
tically constant. Quantities Λ and C enter the definition
of the action coefficients: Λ is the “amplitude” of the po-
tential U of a generic model according to eq. (10), while
parameter C defines coefficient V of an exactly solvable
one (16). Meanwhile, quantities δ and α are the parame-
ters of the solutions of field equations, they do not enter
the action but characterize the different solutions for the
same model. Let us denote symbolically [C, Λ](δ, α) solu-
tions with the given parameters for a given action, where
it is supposed that the values of parameters differ from
zero, unless otherwise stated explicitly. Consider first the
case

B. C = 0

Now
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ψ0 = η, g = e−η−δt. (55)

In the cases [0, 0](0, α) and [0, 0](δ, 0) it turns out
that field equations are mutually inconsistent, so these
cases cannot be realized.

1. Type [0, 0](0, 0)

H = At, g = e−η, R = −A
2

H ′

( ω
H ′

)′
eη, (56)

T
0(PL)
0 =

κ

4π
A2ω

2eη

H ′2
> 0.

Here A is an arbitrary constant.
Below we will mainly concentrate on the potentials of

the form

H = e−2φ (57)

and

H = e−2φ − κdφ, d > 0. (58)

The condition d > 0 ensures that H ′(φ) < 0 and does
not change the sign.

Example.
Let, for definiteness, A < 0,

ω = −2n, 0 < n < 2. (59)

Then for model (57) we have a superinflation with the
exact solution

a v (−τ)p, p = − n

2− n
, R v

1
τ2
,

φ = φ0 +
1

n− 2
ln |τ | , (60)

(φ0 is a constant). Hereafter we use for shortness dimen-
sionless time τ . The case n = 2 corresponds to de Sitter
spacetime with a v exp(τ).

A More interesting situation arises for case (58). Then
for τ → −∞ eqs. (60) hold asymptotically (φ → −∞),
whereas for τ →∞ (φ→∞) we have

a v τ, R v τ−s, s =
2n+ 2
n

. (61)

Thus, we have a graceful exit from superinflation to the
FRW (Friedmann–Robertson–Walker) phase. This solu-
tion generalizes the previous result of [15] (which holds
for n = 1) to the case of an arbitrary 0 < n < 2.

Let now n = 2. Then for the model of the type (58)
a v exp(τ), φ v τ

2 → −∞ at τ → −∞ and a v τ and
R v τ−3 at τ → ∞. Thus, we obtain the graceful exit
from inflation to FRW (Friedmann–Robertson–Walker)
phase.

For an arbitrary n the curvature

R v
exp[−(2n+ 2)φ]

[2 exp(−2φ) + κd]3
(62)

remains finite everywhere for any 1 ≤ n ≤ 2.

It is instructive to compare this with previous papers
on semiclassical exactly solvable cosmological models.
Actually, the solution considered in [22] corresponds just
to the case [0, 0](0, 0) and a particular model (58) for
n < 0. In [22] there was obtained the power asymptotic
behavior at the beginning of expansion near τ = 0, where
a v τ that it is rather difficult to call “inflation” (as it was
called in [22]). Moreover, as the spacetime is geodesical-
ly incomplete in the case considered there (parameter τ
having the meaning of co-moving time is finite), it seems
that this is not a cosmological solution at all but, rather,
it describes a transition from the homogeneous to the
static, when an observer crosses an event horizon of a
white hole where a = g = 0. Therefore, the finiteness
of the curvature on the horizon tells nothing about the
possible existence of a singularity which may lie behind
the horizon.

Compare now our results with those in [15]. Using
a = exp(φ) from (56), we obtain (taking for simplicity in
(56) A = −1) for model (58)

τ = κdeφ − 2e−φ = κda− 2a−1. (63)

Solving eq. (63) with respect to eφ, we obtain

a =
1
κd

(
√
τ2 + 2κd+ τ). (64)

This corresponds to eq. (17) of [15] (a reader should bear
in mind that in [15] by definition κ = N~

12 , while we use
κ = N~

24 ). Choosing the values of constants in [15], α = 1,
β = 0 (this can be always done without loss of generality
by a proper shift and recalling variable τ) and d = 1 in
our paper, we achieve full coincidence. The curvature is
everywhere bounded. For τ → ∞ R v τ−4 that agrees
with (61) in the case n = 1.

It is also worth commenting on some general properties
of the geometry and quantum stresses for the kind of so-
lution under discussion, generalizing the previous obser-
vations made for particular representatives of the models
studied in [15, 17]. If ω = const (that is indeed the case
for the most popular dilaton potentials and was used in
the above consideration), R = A2ωH′′eη

H′3 . For the nonsin-
gular models, which represent the most interest, H ′ does
not vanish. If, for definiteness, H ′ < 0 and ω < 0, we
obtain that R > 0. Taking into account (20), we obtain
that in any kind of such a model d2a

dτ2 > 0: the universe
is ever accelerating.

The WEC (weak energy condition) is violated
(T 0(PL)

0 > 0) for any kind of the solution [0, 0](0, 0). On
the other hand, it turns out that for any solution of the
type [0, 0](0, 0) the classical part of the energy density
vanishes. Indeed, let us write down field equations in the
form

T νcl.µ = T ν(PL)
µ + T ν(φ)

qµ ≡ θνµ, (65)

where the term T
ν(φ)
qµ is obtained by varying the part of

the term in the gravitation–dilaton part that depends on
κ explicitly. By definition, the term T νcl.µ, when expressed
in terms of the metric and dilaton according to (6), does
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not contain κ. Then, calculating (6) with the condition
of exact solvability (16) taken into account, we obtain
that θ00 = 0.

2. Type [0, 0](δ, α)

H =
α

δ
t, a = exp(−η

2
− δ2

2α
H),

R = −α
2

δ2
1
H ′

( ω
H ′

)′
exp(η +

δ2

α
H), (66)

T
0(PL)
0 =

exp(η + δ2H
α )

4π
α
[
κ(
αω

δH ′ + 2δ)
ω

δH ′ + 2
]
.

If α = Aδ and δ → 0, while A is kept fixed, (66) turns
into (56). If H ′ < 0 H ′′ > 0 and ω < 0, curvature R > 0,
so similarly to the [0, 0](0, 0) case we obtain accelerating
spacetimes only.

If δ > 0 and α > 0 (this is just the case discussed
in [15]) the curvature diverges at t→∞. Let now δ > 0,
α ≡ −κµ < 0. Then for model (58) with ω = −2n cur-
vature R is bounded everywhere if q ≡ 2n+ 2− 2p ≥ 0,
where p ≡ dδ2

2µ , otherwise it diverges at φ→∞.
Example.
For model (58) we obtain at t→ −∞: a v (−τ)→∞,

exp(−2φ) v (−t) → ∞, R v |τ |−2 (ln |τ |)−2. Thus, R
always remains bounded at τ → −∞ independent of the
value of q.

At t → ∞ φ v µ
dδ t, a v exp[t µδd (1 − p)]. If p ≤ 1,

the spacetime is geodesically complete since τ → ∞.
Consider first the case p < 1. Then a v τ , , φ v ln τ ,
R v exp(−qφ) v exp(− µ

δdqt) v τ−s, s = q(1− p)−1 > 0.
Thus, we have a FRW-like expansion. Let now p = 1.
Then a → 1 and the spacetime becomes asymptotically
flat.

The above solutions [0, 0](0, 0) and [0, 0](δ, α) repre-
sent what was called, correspondingly, “first and second
branches” in [15].

For model (58) with ω = −2 it is convenient to rewrite
the scale factor in (66) in the form

a = exp
(
φ− δt

2

)
= exp

[
φ

(
1 +

δ2dκ

2α

)
− δ2

2α
e−2φ

]
.

(67)

Introducing notation ξ = e−2φ and choosing the values
of constants δ2 = 2µ > 0, α = κµ, d = 1 we have

a = ξ−1 exp
(
− ξ
κ

)
(68)

that coincides in this particular case with Eq. (24) of [15].
It is worth stressing that the choice of the sign of α

(while keeping δ positive) has a crucial effect on the
asymptotic behavior of the geometry. For α > 0 the
solution [0, 0](δ, α) contains a singularity in agreement
with [15] whereas for α < 0, as we saw above, the geom-
etry is everywhere regular.

3. Type [0, Λ](δ, α)

H = h(t) = H0 +
α

δ
t+De−δt, (69)

R =
eη

H ′

[
ωΛ−

( ω

H ′
φ

)′
φ

(
α2

δ2
eδt − 2αD +D2δ2e−δt

)]
,

T
0(PL)
0 =

1
4π
eη+δt

{
2α+ κ

(α
δ
−Dδe−δt

)
× ωH

′−1
[
2δ +

(α
δ
−Dδe−δt

)
ωH

′−1
]}

,

Dδ2 = −Λ. (70)

Let Λ < 0, D > 0, δ < 0, α > 0. By a proper shift
in t, one can always achieve D = 1. Then there ex-
ists some point t0 at which h′(t0) = 0. Let H = e−2φ,
ω = −2. Then at t → ∞, φ → −∞ we have a flat
spacetime, φ = − |δ|t

2 , g → 1, R ∼ κφe2φ → 0. Consider
t→ t0, where h′(t0) = 0 and choose H0 = α

δ2 (ln α
δ2 − 1),

so that h(t0) = 0, h = α (t−t0)2
2 + . . . near t0. Then

φ → ∞, g → ∞, the proper time τ ∼ ln(t − t0) → −∞,
a v exp(−τ), φ v −τ . We obtain de Sitter space under-
going deflation.

There also exists the second branch of solutions the:
−∞ < t < t0. For this branch we have inflation in future:
a v exp(τ) →∞. In the infinite past exp(−2φ) v α

|δ| |t|,
a v −τ , R v τ−2 ln−2 |τ |. The point τ = 0 is singular.

If α > 0, δ > 0, the universe in the second branch
starts from the flat state and ends up with eternal infla-
tion.

4. Type [0, Λ](δ, 0)

H = H0 +De−δt, g = e−η−δt,

R =
U

H ′

[
ω + (H −H0)

( ω
H ′

)′]
, (71)

T
0(PL)
0 =

κωU

4πH ′

[
2− ω(H −H0)

H ′

]
. (72)

Example.

H = Ae−φ + e−2φ, A > 0. (73)

Let δ = − |δ| < 0, H0 ≡ −e|δ|t0 < 0, D > 0, Λ < 0,
ω = −2. We may achieveD = 1. Then t0 < t <∞. When
t → t0 φ → ∞, a v (t − t0)−1 v exp(−τ), τ → −∞. At
future τ →∞, φ = − 1

2 |δ| t→∞, a→ 1. Thus, we have
the graceful exit from deflation to the flat spacetime.

In the particular case A = 2 it is possible to obtain an
explicit solution for the whole region. Solving (71) with
respect to e−φ, we find

e−φ =
√

1 +H0 +De−δt − 1, (74)

a =
exp(− δt

2 )√
1 +H0 +De−δt − 1

. (75)

The solution [0, Λ] (0, 0) proves to be inconsistent with
field equations.
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5. Type [0, Λ](0, α)

H =
αt2

2
+H0, g = e−η,Λ = −α =

κγ2

2
> 0, (76)

R =
U

H ′ [ω + 2
( ω
H ′

)′
(H −H0)],

T
0(PL)
0 = − U

2π
[1 +

( ω
H ′

)2

κ(H −H0)].

This kind of solutions exists due to quantum effects
(κ 6= 0) only.

Examples.
H = e2φ − Ae−2φ, ω = −2, A > 0. Then we have the

solution which behaves asymptotically as a v exp(τ) at
τ → −∞ and a v exp(−τ) at τ →∞. Thus, we have the
everywhere regular solution which starts at the inflation
phase, passes through the maximum value of a and ends
up with deflation.
H = eφ − ce−3φ, ω = −2, c > 0. Then at τ → −∞

a v (−τ)−2 and at τ →∞ a v τ−2. Thus, superinflation
is changed to superdeflation with everywhere bounded
curvature.

C. C 6= 0

1. Type [C, Λ](0, 0).

Then

H = H0 + C−1 ln
∣∣∣∣ tt0
∣∣∣∣ , g = e−η

(
t0
t

)2

=
const
|U | t2

,

a =
a0

|t|
√
|U |

, (77)

R =
U

1− 2κC

[
ω

H ′ + 2C −
( ω
H ′

)′ 1
H ′C

]
, (78)

ΛC = (1− 2κC)t−2
0 > 0,

T
0(PL)
0 =

κUC

4π(1− 2κC)

(
2 +

ω

CH ′

)2

> 0, (79)

where a0, t0 are constants. Thus, the weak energy condi-
tion (WEC) is always violated for this type of solutions.

It is worth noting that the dependence of the metric
on the dilaton g(φ) for this kind of solutions coincides
with that for [0, 0](δ, α), provided C = δ2/2α.

On the other hand, the dependence of the dilaton
on the proper time actually coincides with that for the
[0, 0](0, 0) since in both cases

τ(φ) = const
∫
dφH ′(φ) exp(−η/2). (80)

Consider model (57) with H0 = 0, U = Λe−4φ, Λ,
C > 0, −∞ < t < t0. Then

τ = −τ0 ln
(

ln
∣∣∣∣ tt0
∣∣∣∣) , (81)

a = a1 exp
[
− exp

(
− τ

τ0

)
+
τ

τ0

]
,

a1 =
a0C

|t0|
√

Λ
, τ0 = a1 |t0| , (82)

e−2φ = C−1 exp
(
− τ

τ0

)
. (83)

The exact expression for the curvature is

R =
2
τ2
0

[
1 + exp

(
− τ

τ0

)
+ exp

(
−2τ
τ0

)]
. (84)

Thus, we have a remote singularity in the infinite past
and the inflationary stage in an infinite far future.

The next example is model (58) with C > 0, H0 = 0,
U = Λe−2φ, 0 < t < ∞. Then it follows from (77) that
at t→ 0, τ → −∞,

a ∼ (−τ)s, s = 1 + κCd,R v τ−2, φ v ln |τ | , (85)

at t→∞, τ →∞

a ∼ τ−1 exp(−τ2)→ 0, R ∼ τ2, φ v − ln τ. (86)

Thus, the universe starts from the flat spacetime and
infinite scale factor and exhibits power contraction, at
the far future we have a remote singularity.

2. Type [C, Λ](δ, 0):

eCH = eCH0
∣∣1 +DCe−δt

∣∣ , g = e−η
[eC(H−H0)ν − 1]

DC
e−2CH , (87)

R =
U

(1− 2κC)

{
2C +

ω

H ′ +
1

CH ′

( ω
H ′

)′ [
νeC(H−H0) − 1

]}
,

Λ
(1− 2κC)

= −e2CH0Dδ2,

T
0(PL)
0 =

UC

4π
κ

1− 2κC

( ω

CH ′ + 2
){

2 +
ω

CH ′

[
1− νeC(H−H0)

]}
,

ν = sign(1 +DCe−δt).
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Example
Let us take the same model as in (73) and choose

D = 1, C > 0, δ < 0, exp(−CH0)−1
C ≡ exp(Ce|δ|t0−1)

C ≡
exp(|δ| t1). Then t1 < t < ∞. At t → t1 the solution
has the same asymptotic behavior as for C = 0 that is
deflation a v exp(−τ). However, the behavior at t→∞
changes drastically as compared to [0,Λ](δ, α). Indeed,
now we have H v C−1 |δ| t instead of H v e|δ|t. We have,
instead of the flat spacetime (inherent to the C = 0 case)
the singularity at the finite value of τ = τ0, where

g v t−1 exp(− |δ| t), a v τ0 − τ → 0,
R v t−1 exp(|δ| t) v (τ0 − τ)−2 ln−2(τ0 − τ). (88)

One more example.
δ < 0, D = 1, C = − |C|, H0 = 0, H is the same as in

(73). Consider the cosmological solution

exp(− |C|H) = exp(|δ| t)− 1, (89)

g =
exp(|δ| t)

U [exp(|δ| t)− 1]2
, (90)

defined in the region 0 < t < t0, where exp(|δ| t0) = 2.
Then at t→ t0 e

−φ v t0 − t, a v (t0 − t)−1 v exp(τ) →
∞, so we have inflation. At t→ 0 e−2φ v − ln t,

a v
1

t
√

(− ln t)
v (−τ)−1 exp(τ2),

τ → −∞, R v τ2. (91)

Thus, we have the remote singularity in an infinite past.
The type of solutions under discussion possesses one

more interesting pecularity. Usually, in the standard in-
flationary cosmology, the scalar field is assumed to be
approaching the constant, the corresponding effective po-
tential playing the role of a cosmological constant. Now
we will see that the family of solutions described above
contains a qualitatively different possibility: (∇φ)2 6= 0,
but de Sitter space-time (dS) is an exact solution of field
equations. If the dilaton depends only on time, so does
the metric and we get an exponentially growing scale
factor.

Indeed, let ω = η = 0, U = Λ = const. For example,
according to (16) with F = eφ, we have V = Ce2φ . Then
it follows from (87) that for the solution [C,Λ](δ, 0) the
Riemann curvature

R =
2ΛC

1− 2κC
= −2eCH0DCδ2 (92)

is a constant. If ΛC > 0, we obtain R > 0, so we have
the 2D dS metric. Let, for definiteness, δ = − |δ| < 0.
Then in the remote past [1 + DC exp(−δt)] > 0. Mak-
ing a proper shift in time and choosing H0 = 0, we may
achieve DC = −1, R = 2δ2. Then for t < 0 we have from
(87)

eCH = (1− e|δ|t), g =
e|δ|t

(1− e|δ|t)2
, (93)

Integrating the expression for τ =
∫
dta, we see that

t = 0 corresponds to τ → ∞. We obtain the exact ex-
pressions in dimensionless variables

|δ| τ = ln

[
1 + exp |δ|t

2

1− exp( |δ|t2 )

]
,

a = sinhτ̂ , τ̂ = |δ| τ, 0 < τ <∞, (94)

the behavior of the dilaton is governed by the equation

exp(CH) = cosh−2

(
τ̂

2

)
. (95)

The 2D dS metric can be viewed as the metric on the
hyperboloid

u2 − v2 + w2 = 1, (96)

embedded in the three-dimensional space

ds2 = du2 − dv2 + dw2. (97)

There are three typical possibilities:

u = sinhx sinh τ, v = coshx sinh τ, w = cosh τ, (98)

ds2 = −dτ2 + sinh2 τdx2, (99)

u = sin z cosh t, v = sin z sinh t, w = cos z, (100)

ds2 = −dt2 sin2 z + dz2, (101)

u =
ρ2 − t21 − 1

2t1
, v =

ρ2 − t21 + 1
2t1

,

w =
ρ

t1
, t1 = ±e−τ1 , (102)

ds2 = −dτ2
1 + e2τ1dρ2. (103)

Usually, it is metric (103) which is considered in the
theory of inflation. In the region |w| < 1, |u| > |v| metric
(103) can be reduced to the static form (101). This is
impossible for metric (99), for which |u| < |v|, |w| > 1.
The geometry, described by (94) is geodesically incom-
plete since at τ → 0 we have a horizon separating a
black hole and cosmological (non-static) regions. Once
the point τ = 0 is achieved from positive values, the
system enters the static region.

Eqs. (94), (95) describe the inflationary regime at
τ → ∞ provided CH(φ) → −∞. If ω 6= 0, but ω → 0
asymptotically, the inflationary regime can be considered
as an approximation.

3. Type [C, Λ](0, α)

It can be obtained directly from types I or III by
putting δ = 0.
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4. Type [C, 0](δ, α):

CH = β±t, g = exp(−η ∓ 2εCHβ−1
± ),

R = −
β2
±

C2H ′

( ω
H ′

)′
eη±2εCHβ−1

± , (104)

T
0(PL)
0 =

1
4π

exp
(
η ± 2ε

CH

β±

)
×
{
κβ±

(
2 +

ω

CH ′

)[
2(β± + δ)+

β±ω

CH ′

]
+ 2α(1− 2κC)

}
,

β± = − δ
2 ± ε. The solution [C, 0](0, α) does not bring

any qualitative new features and can be obtained directly
from (104) by putting δ = 0.

The equivalence between [0, 0](δ1, α1) and [C, 0](δ, α),
δ1 = 2ε, C = ±α1β±

δ1
.

The dependence g(φ) coincides with that for [0, 0](0, 0)
provided δ2/α = 2εC/β. The dependence τ(φ) coincides
with that for [0, 0](δ, α), provided δ2/α = 2εC/β.

5. Type [C, 0](δ0, α), where δ2
0 ≡ −4αC:

H = H0 −
δ0t

2C
, g = e−η, (105)

R =
α

CH ′

( ω
H ′

)′
eη, (106)

T
0(PL)
0 =

α

4π
(2− κω2

CH ′2 )eη. (107)

This dependence of the metric and dilaton on time
coincides with [0, 0](0, 0), provided A = −δ0/2C.

The solution [C, 0](δ, 0) can be obtained from (104)
directly by putting α = 0.

VI. REGULAR SOLUTIONS WITH INFINITELY
STRONG BACK-REACTION

It is common belief that quantum effects can destroy
classical singularity, thus leading to everywhere regular
spacetime. This was confirmed explicitly for the models
considered in [12, 15], where it was shown that it is the
finite quantum parameter κ that removes the singularity,
inherent to the classical limit κ = 0. In the present paper,
where also examples with everywhere bounded curvature
were found, it is essential that (at least in some cases)
this behavior is due to the nonzero coefficient d or κ (they
appear as a product dκ in model (58)). Thus, quantum
back-reaction can give rise to a regularity of the metric.

Meanwhile, in 2D dilaton gravity there exist cases
when this back-reaction becomes so strong that the con-
tribution from T

ν(PL)
µ diverges by itself. One could ex-

pect these divergencies to destroy the regularity of the
spacetime: in this sense not only the absence of back-
reaction but also too strong a back-reaction would seem
incompatible with the regularity of the geometry. Never-
theless, sometimes the geometry can remain finite even

in spite of divergencies in T
ν(PL)
µ . This was shown for

black hole solutions [21]. For cosmological ones these re-
sults could not be applied directly since the cosmological
counterpart of black holes considered there would have
a finite τ (an analogue of the proper length) and, thus,
would be geodesically incomplete. However, now we will
see, using the materials of the previous sections, that a
combination of divergent quantum stresses with regular
geometry is possible for cosmological spacetimes as well.

Let us reconsider the solution [0, 0](δ, α) for the model
discussed after Eq. (66), with p < 1. For t→∞, φ→∞,
τ → ∞, H ′ → −κd = const, R v exp(−qφ), T 0(PL)

0 v
exp[(2−q)φ]. If q = 2n+2−2p ≥ 0 but q < 2, the curva-
ture remains bounded but the energy density of quantum
fields diverges. This is indeed possible and is compatible
with the condition of the geodesic completeness, provid-
ed n < p < 1 < n+ 1.

Let us now turn to the type [0,Λ](0, α). It follows from
eq. (76) and the following formulas that in the limits
τ → ±∞ , when φ → −∞, T 0(PL)

0 v U v exp(−2φ)
becomes infinite. Meanwhile, the metric approaches de
Sitter one with the constant curvature.

The fact that in an infinite past (or infinite future)
quantum effects could be enormously large, is not in dis-
agreement in intuitive expectations about possible con-
tribution from quantum effects near classical singularity.
We see that these effects cannot (at least, for some kinds
of models) destroy the regular character of the spacetime.

VII. SUMMARY

Thus, we considered a rather wide family of exactly
solvable models of 2D dilaton gravity with back-reaction
of conformal fields, which includes previously known par-
ticular models of this kind, and enumerated all possible
types of static or homogeneous solutions that appear in
this family.

For black hole solutions, we singled out that in a wide
class of them (which, in particular, includes the RST
model) in which different solutions share common prop-
erties. Namely, the set of possible solutions is split to
different branches so that all spacetimes for φ 6= const
can be divided to separate sheets with one and only one
horizon on every sheet between two neighboring singu-
larities with finite φc (plus, perhaps, additional horizons
due to φ = ∞ or φ = −∞), different sheets are glued in
singular points; all horizons on different sheets share the
same temperature.

We also analyzed string-inspired models of dilaton cos-
mology, in which all coefficients are simple combina-
tions of exponential and linear functions of dilaton φ.
We showed that practically any subset of solutions may
describe a singularity-free universe, which starts in an
infinite past and expands or contracts forever. We found
also that in some cases these kinds of solution can oc-
cupy the intermediate place between completely regular
and singular spacetimes, representing remote singulari-
ties. This means that singularity exists but it lies in an
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infinite past (or infinite far future) with respect to any
event, so no observer hits it.

Quantum effects are crucial for the most part of the
considered cosmological solutions since they affect qual-
itatively the behavior of the system at φ → ∞ or
φ→ −∞ in the initial or final state. In this sense, quan-
tum back-reaction turns out to be a powerful tool of re-
moving singularities inherent to classical solutions. More-
over, in some cases even divergencies of quantum stresses
in the initial or final state (τ → −∞ or τ → ∞) do not
spoil the regularity of the geometry. For some particular
types, such as [0,Λ](0, α), the solution does not exist at
all without account for quantum terms.

It is worth paying attention to the non-standard ver-
sion of the inflation scenario which is contained in the
type [C,Λ](0, 0). Being geodesically incomplete, it repre-
sents the part of the de-Sitter world that expands expo-
nentially fast asymptotically, but in doing so the dilaton

field also depends on time, while the effective potential
U(φ) (which usually plays the role of a cosmological term
with φ = const) is absent.

We restricted ourselves to the simplest models. Howev-
er, the approach, once the condition of exact solvability
is respected, applies to any kind of models within this
class, so the results admit further extension.
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ТОЧНО РОЗВ’ЯЗУВАНI МОДЕЛI ДВОВИМIРНОЇ ДИЛАТОННОЇ ҐРАВIТАЦIЇ

О. Б. Заславський
Iнститут астрономiї Харкiвського

нацiонального унiверситету iменi В. Н. Каразiна,
вул. Сумська, 35, Харкiв, 61022, Україна

Ми подаємо повний перелiк типiв статичних (однорiдних) розв’язкiв у широкому сiмействi точно роз-
в’язуваних моделей двовимiрної дилатонної ґравiтацiї з урахуванням зворотної реакцiї конформних полiв.
Докладно обговорюємо клас чорнодiрних розв’язкiв, що мiстить ранiше знайденi. Для цього класу повний
простiр-час розпадається на рiзнi листи з горизонтом на кожному з них мiж найближчими синґулярностями,
так що сусiднi листи склеюються вздовж синґулярностей. Положення синґулярностей вiдповiдає величинi
дилатона для розв’язкiв зi сталим дилатонним полем. Квантовi поправки до температури Гокiнґа при цьому
зникають. Ми також розглядаємо загальний пiдхiд до точно розв’язуваних моделей у двовимiрнiй дилатон-
нiй космологiї. Знайдено доволi загальний клас реґулярних розв’язкiв, якi icнyють практично в кожному
типi аналiзованих розв’язкiв. Вони демонструють рiзноманiтнi типи асимптотичної поведiнки в минулому
й майбутньому, включаючи iнфляцiю, суперiнфляцiю, дефляцiю, статичне розширення або стиск. Зокрема
для деяких моделей простiр-час де Сiттера з дилатонним полем, що залежить вiд часу, є точним розв’язком
рiвнянь поля. Для деяких типiв розв’язкiв слабка енерґетична умова порушується незалежно вiд конк-
ретної моделi. Ми також знаходимо розв’язок iз синґулярнiстю, розташованою в нескiнченному минулому
(майбутньому), так що для будь-якого кiнцевого моменту супутнього часу синґулярнiсть буде вiдсутньою.
Для деяких моделей простiр-час може бути всюди реґулярним, навiть за наявности нескiнченно великої
зворотної реакцiї квантових полiв.
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