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Université de la Méditerranée and Centre de Physique Théorique,
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We study the existence of condensation in a one-dimensional model of the perfect boson gas
imbedded in the random Poisson potential of singular point impurities. This model manifests a
type I Bose–Einstein condensation localized in a single “largest” interval of a logarithmic size (the
Kac–Luttinger conjecture). It is shown that the mathematical mechanism of the Bose–Einstein con-
densation in this random model is identical with that in a one-dimensional nonrandom hierarchical
model of scaled intervals.
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I. INTRODUCTION

1.1 In our recent paper [13], we presented some gener-
al mathematical results concerning the existence of the
Bose–Einstein condensation (BEC) of the Perfect Bose-
Gas (PBG) placed in a semi-bounded from below ho-
mogeneous ergodic random external potential (random
impurities). There we show that for the infinite-volume
one-particle Schrödinger operator, a generic Lifshitz tail
behaviour of density of states near the lower edge of the
spectrum reduces the critical dimensionality of the BEC
for PBG from dimensionality d = 2 + ε to d = 1. There-
fore, the randomness enhances the BEC, and moreover,
it is shown to be stable with respect to the mean-field
particle interaction [12].

To tackle the corresponding Off-Diagonal Long-Range
Order (ODLRO), we introduced in [13] a concept of the

space-averaged one-body reduced density matrix. In spite
of a rather accurate estimate of this matrix out of the
BEC domain that shows an enhancement of the ODLRO
exponential decay due to impurities, we did not obtain
in [13] any sound estimate for this order in the BEC
domain.

1.2 The aim of this paper is to present a rigorous study
of a particular case of a one-dimensional PBG model
in homogeneous ergodic non-negative random potential
induced by the Poisson distributed singular point impu-
rities (the Luttinger–Sy model [17, 18]). We show that
this model allows a rigorous mathematical approach to
condensation and that one can compute explicitly some
of thermodynamical quantities even in the BEC domain.
This concerns in particular the ODLRO behaviour of the
two-point correlation function (space-averaged one-body
reduced density matrix) in the condensation regime.

Notice that the first study of possible modifications of
d = 3 dimensional BEC in the PBG caused by repul-
sive finite-range impurities goes back to Kac and Lut-
tinger [8, 9]. They predicted an enhancement of d = 3
BEC by indication that due to impurities there is a de-
creasing of the critical density, but did not discuss a mod-
ification of the critical dimensionality. They also men-
tioned a puzzling question about the nature of the es-
tablished BEC. For example, they conjectured that this
condensate occurs as a macroscopic occupation of only
the ground-state: type I BEC. We prove this conjecture
in the case of the Luttinger–Sy model, see discussion in
Section 6. We show that the nature of BEC in this model
is close to what is known as the “Bose-glass”, since it may
be localized by the random potential. This is of interest
for example in experiments with liquid 4He in random
environments like Aerogel and Vycor glasses, [6, 10].

On the other hand, the nature and behaviour of the
lattice BEC may be quite different. First of all, the lattice
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Laplacian and the on-site Bose–Hubbard particle repul-
sion produces a coexistence of the BEC (superfluidity)
and the Mott insulating phase as well as domains of in-
compressibility, see, e. g., a very complete review [23].
Adding disorder makes the corresponding models much
more complicated. The physical arguments show that
the randomness may suppress the BEC (superfluidity) as
well as the Mott phase in favour of the localized Bose-
glass phase, but this is very sensitive to the choice of
the random distribution, for some recent rigorous results
see [5].
1.3 The paper is organized as follows. In Section II we
recall definition of the Luttinger–Sy model and some of
its properties. We prove the self-averaging of the corre-
sponding integrated density of states in Section III and
we calculate it explicitly. In Section IV we prove that
the established integrated density of states implies the
existence of generalized BEC in the case of PBG.

Our main results are collected in Sections V and VI.
There we recall the notion of the space-averaged one-
body reduced density matrix and we prove that it has
an almost sure nonrandom thermodynamic limit (self-
averaging), which can be calculated explicitly for all val-
ues of particle density. We also prove that randomness
enhances decay of the two-point correlation function. In
particular we show that it keeps this decay always ex-
ponential, even in the presence of BEC. We found that
in the latter case the ODLRO is non-zero and that it
coincides with the condensate density.

The discussion of the properties of the BEC con-
clude Section VI. First, we analyze the critical density
dependence on the amplitude of the repulsive Poisson
point impurities. Notice that for the Luttinger–Sy model
the singular point impurities mean that this amplitude
is infinite. Next, we study the problem of the conden-
sate nature and its localization. To elucidate this point
we invented a hierarchical one-dimensional nonrandom
model, which mimics in a certain sense the (random)
Luttinger–Sy model. We show that this hierarchical mod-
el can manifest different types (I, II and III) of generalized
van den Berg–Lewis–Pulé condensations [1] localized in
one, several or infinite number of (infinite) intervals of
logarithmic sizes. To discriminate between these options,
i. e. to prove or disprove the Kac–Luttinger conjecture,
one has to have a fairly detailed information about the
energy level spacing in random intervals generated by
the Poisson impurity positions. We prove this conjec-
ture, i. e., that type I BEC in the Luttinger–Sy model is
localized in a single “largest” (i. e. infinite) interval of the
logarithmic size.

II. ONE-DIMENSIONAL POISSON RANDOM
MEDIA

In the framework of general setting this model corre-
sponds to the following one-dimensional (d = 1) single-
particle random Schrödinger operator in the Hilbert
space H = L2(R):
2.1 Consider a random (measurable) potential v(·)(·) :

Ω × R → R, (ω, x) 7→ vω(x), which is a random field on
the probability space (Ω,F ,P), with the properties:

(a) vω is homogeneous and ergodic with respect to the
group {τx}x∈R of probability-preserving translations on
(Ω,F ,P);

(b) vω is non-negative and infx∈Rd {vω(x)} = 0.
By E {·} :=

∫
Ω

P(dω) {·} we denote the expectation with
respect to the probability measure in (Ω,F ,P). Then the
random Schrödinger operator corresponding to the po-
tential vω is a family of random operators {hω}ω∈Ω :

hω := t+ vω, (2.1)

where t := (−∆/2) is the free one-particle Hamiltoni-
an, i. e., a unique self-adjoint extension of the operator:
−∆/2, with domain in L2(R).

Notice that assumptions (a) and (b) guarantee that
there exists a subset Ω0 ⊂ F with P(Ω0) = 1 such
that operator (2.1) is essentially self-adjoint on domain
C∞0 (R) for every ω ∈ Ω0 (see e. g. [20] Ch.I.2).
2.2 Let u(x) ≥ 0, x ∈ R, be continuous function with a
compact support. We call it a (repulsive) single-impurity
potential. Let {νω

λ (dx)}ω∈Ω be random Poisson measure
on R with intensity λ > 0 :

P ({ω ∈ Ω : νω
λ (Λ) = n}) =

(λ |Λ|)n

n!
e−λ|Λ| ,

n ∈ N0 = N ∪ {0} , (2.2)

for any bounded Borel set Λ ⊂ R. Then the non-negative
random potential vω generated by the Poisson distribut-
ed local impurities has realizations

vω(x) :=
∫

R
νω

λ (dy)u(x− y) =
∑

xω
j ∈Xω

u(x− xω
j ). (2.3)

Here the random set Xω corresponds to impurity po-
sitions Xω =

{
xω

j

}
j
⊂ R, which are the atoms of the

random Poisson measure, i. e., card {Xω � Λ} = νω
λ (Λ)

equals the number of impurities in the set Λ. Since the
expectation is that E (νω

λ (Λ)) = λ |Λ|, the parameter λ
coincides with impurities concentration on the axe R.

Remark II.1 The random potential (2.3) is obviously
homogeneous and ergodic (even strongly mixing), i. e. it
verifies the conditions (a) and (b). Moreover, see [20]
Ch.II.5, we have that:
— There exists a nonrandom measure dN (E) on R such
that

dN (E) := E {Ehω (dE; 0, 0)} . (2.4)

Here Ehω (dE;x, y) is the kernel of the spectral decompo-
sition measure corresponding to the random Schrödinger
operator hω. The spectrum σ(hω) of hω is almost-surely
(a. s.) nonrandom and it coincides with the support of N :
σ(hω) = suppN .
— For repulsive impurities with compact support and
for Poisson distribution, the a. s. nonrandom spectrum
σ(hω) = R+. Thus the lower edge of the spectrum
inf {σ(hω)} = 0, i. e. it coincides with the lower edge
of the spectrum of the nonrandom operator t, see (2.1).
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— In the one-dimensional case the asymptotic behaviour
of the integrated density of states N (E) := N ((−∞, E])
as E ↓ 0 has the form (the Lifshitz tail):

lnN (E) ∼ −λ
(cd
E

)d/2

, E ↓ 0 , (2.5)

for cd > 0. Recall that in the nonrandom case vω = 0
one obtains: N (E) ∼ Ed/2, E ↓ 0.

2.3 Luttinger and Sy defined their d = 1 model [17]
restricting the single-impurity potential to the point δ-
potential with the amplitude a > 0. In fact this choice
(even for a more general case of random {aj}j) goes back
to Frish and Lloyd [7]. Then the corresponding random
potential (2.3) takes the form:

vω
a (x) :=

∫
R
νω

λ (dy)aδ(x− y) = a
∑

xω
j ∈Xω

δ(x− xω
j ). (2.6)

Now the self-adjoint one-particle random Schrödinger op-
erator

hω
a := tu vω

a , (2.7)

can be defined in the sense of the sum of quadratic forms.
In spite of a singular nature of this random potential, by
standard limiting arguments [20] it inherits the proper-
ties quoted in Remark II.1.
2.4 Moreover, the same arguments [20] are applied to
define a strong resolvent (s.r.) limit of Hamiltonians
(2.7), when a → +∞, which is the last step in defini-
tion of the Luttinger–Sy model, [17]. This limit gives
the self-adjoint (Friedrichs) extension of the symmet-
ric operator t0 = −∆/2 with the domain dom(t0) =
{f ∈ H : f ∈ C∞0 (R \Xω)}. For any ω ∈ Ω we denote
this extension by

hω
D := s. r. lim

a→+∞
hω

a . (2.8)

Since for any ω ∈ Ω the set Xω can be ordered : Xω ={
xω

j

}
j
, it generates a set of intervals

{
Iω
j := (xω

j−1, x
ω
j )
}

j

of lengths
{
Lω

j := xω
j − xω

j−1

}
j
. Then one can decompose

the Hilbert space H = L2(R) into a (random) direct or-
thogonal sum:

H =
⊕

j

Hj , Hj := L2(Iω
j ). (2.9)

Correspondingly, let hD(Iω
j ) denote the Friedrichs exten-

sion of operator t0 = −∆/2 with the domain dom(t0) ={
f ∈ L2(Iω

j ) : f ∈ C∞0 (Iω
j )
}
:

(hD(Iω
j )f)(x) := −1

2
(∆f)(x) , (2.10)

f ∈ dom(hD(Iω
j ))

=
{
f ∈W 2

2 (Iω
j ) : f(xω

j−1) = f(xω
j ) = 0

}
,

where W 2
2 denotes the corresponding Sobolev space.

Then we get decompositions of the one-particle
Luttinger–Sy Hamiltonian:

hω
D =

⊕
j

hD(Iω
j ) , ω ∈ Ω , (2.11)

with the domain

dom(hω
D) =

⊕
j

dom(hD(Iω
j )) ⊂ H , (2.12)

into random disjoint free Schrödinger operators{
hD(Iω

j )
}

j,ω
with Dirichlet boundary conditions at the

end-points of the intervals
{
Iω
j

}
j
. The corresponding

eigenfunctions have the form:

Ψω
sj ,D(x) = (0, 0, . . . , ψω

j,sj
(x), 0, . . .) , (2.13)

with eigenvalues
{
Esj

(Lω
j )
}

sj
:

hω
D Ψω

sj ,D = Esj
(Lω

j ) Ψω
sj ,D . (2.14)

Remark II.2 For a given realization ω ∈ Ω the spec-
trum of the random operator (2.10) is explicitly defined
by non-degenerate eigenvalues

σ(hD(Iω
j )) =

{
Esj

(Lω
j ) =

1
2
π2s2j
(Lω

j )2

}∞
sj=1

, (2.15)

with the corresponding eigenfunctions

ψω
j,sj

(x) = IIω
j
(x)

√
2
Lω

j

sin(
πsj

Lω
j

(x− xω
j−1)) . (2.16)

Here IIω
j
(x) is the characteristic function of the interval

Iω
j . By consequence, the spectrum of the Luttinger–Sy

Hamiltonian (2.11) is the union of (2.15)

σ(hω
D) =

⋃
j

σ(hD(Iω
j )). (2.17)

By virtue of Remark II.1 this spectrum is a. s. non-
random, and it coincides with support of the integrat-
ed density of states N . Moreover, in the case of the
Luttinger–Sy Hamiltonian (2.11) it has been known ex-
plicitly since [17]. But the rigorous study and in partic-
ular the concept of “self-averaging”, which ensures this
nonrandom property, are due to [16].

III. SELF-AVERAGING OF THE INTEGRATED
DENSITY OF STATES

For the reader’s convenience we recall in this section
some arguments that one uses to derive the spectral
properties of the Luttinger–Sy one-particle Hamiltonian.
Since our aim is to study the thermodynamic properties
and Bose–Einstein condensation in this model, it is use-
ful to derive the integrated density of states first for a
finite system.
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3.1 Let Λ := [−L/2, L/2] ⊂ R. Then the finite
Luttinger–Sy model with the Dirichlet boundary con-
ditions at x = ±L/2 and with n − 1 singular point-
repulsive (a → +∞) impurities corresponds to the one-
dimensional self-adjoint Schrödinger operator

hL,Xn
:=

n⊕
j=1

hD(Ij) , (3.1)

acting in the direct orthogonal sum of Hilbert spaces
(2.9):

HΛ :=
n⊕

j=1

Hj . (3.2)

Here

Xn = {x0 = −L/2 < x1 < x2 < . . . < xn−1 < xn = L/2} , {Ij = (xj−1, xj)}n
j=1 , (3.3)

and operators {hD(Ij)}n
j=1 are defined by (2.10).

To make this system disordered , Luttinger and Sy [17]
supposed that the impurity positions are random vari-
ables, which are independently and uniformly distribut-
ed over the interval Λ. Then instead of (3.3) one gets the
random sets {Xω

n }ω∈Ω on (Ω,F ,P), which a. s. contain
n− 1 ordered impurities

{
xω

j

}n−1

j=1
. We denote the corre-

sponding random Luttinger–Sy Hamiltonian and eigen-
functions in Λ by

hω
D,n,L := hL,Xω

n
=

n⊕
j=1

(3.4)

hD(Iω
j ) , hω

D,n,LΨL,ω
sj ,D,n = Esj

(Lω
j )ΨL,ω

sj ,D,n ,

where the eigenfunctions have the form:

ΨL,ω
sj ,D,n = (0, 0, . . . , ψω

j,sj
(x), . . . , 0) ∈

n⊕
j=1

Hj , (3.5)

see definitions (2.11)-(2.14).
Notice that Remark II.2 is valid in this case modulo

the substitution of hω
D by the random operator (3.4). In

particular, for the spectrum of (3.4) one gets representa-
tion:

σ(hω
D,n,L) =

n⋃
j=1

σ(hD(Iω
j )). (3.6)

The following proposition is an immediate consequence
of the hypothesis about the independent uniform impu-
rities distribution and the thermodynamic limit : L →
∞, n→∞, with a fixed density of impurities

λ = lim
L→∞

n

L
. (3.7)

Proposition III.1 (a) In the thermodynamic limit the
above finite-volume random point field {Xω

n } converges
(in distribution) to the Poisson point field {Xω} with
the intensity λ and the corresponding random Poisson
measure (2.2).
(b) The uniform and independent distribution of n − 1
points of impurities induces on Λ a random set of inter-
vals

{
Iω
j

}n

j=1
, ω ∈ Ω, of random lengths

{
Lj = Lω

j

}n

j=1
.

The corresponding joint probability distribution is

dPL,n(L1, . . . , Ln) =
(n− 1)!
Ln−1

(3.8)

×δ(L1 + . . .+ Ln − L) dL1dL2 . . . dLn.

(c) In the thermodynamic limit the lengths
{
Lω

j

}
j

form
an infinite set of independent random variables and dis-
tribution corresponding to (3.8). It converges (weakly) to
the product-measure distribution σλ defined by a set of
consistent marginals:

dσλ,k(Lj1 , . . . , Ljk
) = λk

k∏
s=1

e−λLjsdLjs . (3.9)

The proof is standard [2,22], see e. g. [12] for details.
Recall that the finite-volume integrated density of

states is defined by a specific counting-function [20]. For
operator (3.4), it is a random variable of the form:

Nω
L (E) : =

1
L

∑
{ΨL,ω

s,D,n}
θ(E − Eω

s,D(n,L)) (3.10)

=
1
L

∫ L/2

−L/2

dx θ(E − hω
D,n,L)(x, x).

Here θ(E − hω
D,n,L)(x, y) is the kernel of the spectral-

projection operator of hω
D,n,L corresponding to the half-

line (−∞, E) and θ(x) = I(0,+∞)(x) stands for the step-
function.

Proposition III.2 In thermodynamic limit the finite-
volume integrated density of states (3.10) converges a. s.
to the non-random function

Nλ(E) := λ
e−cλ/

√
E

1− e−cλ/
√

E
, (3.11)

with c = π/
√

2.

Proof : Explicit expressions (2.15) and (2.16) imply for
(3.10) the representation:

Nω
L (E) =

1
L

n∑
j=1

∞∑
s=1

θ

E −
(
cs

Lω
j

)2
 . (3.12)

Then by Proposition III.1 and by (3.7), (3.12) we obtain
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Nλ(E) : = a. s. lim
L→∞

Nω
L (E) = a. s. lim

n→∞

λ

n

n∑
j=1

∞∑
s=1

θ

E −
(
cs

Lω
j

)2


= λ Eσλ

{ ∞∑
s=1

θ

(
E −

(
cs

Li

)2
)}

= λ2
∞∑

s=1

∫ ∞

0

dLi e
−λLiθ

(
E −

(
cs

Li

)2
)
. (3.13)

The a. s. limit for (non-random) integrated density of
states Nλ(E) exists by the Birkhoff ergodic theorem
[2,22] and the uniform convergence of the s — sum justi-
fies the permutation of expectation with respect the σλ

— distribution (3.9) and the sum. Thus, we obtain:

Nλ(E) = λ2
∞∑

s=1

∫ ∞

cs/
√

E

dLi e
−λLi (3.14)

= λ
∞∑

s=1

e−csλ/
√

E ,

which yields the explicit formula (3.11). �
3.2 Formula (3.11) allows us to recover for all energies
E > 0 the one-dimensional integrated density of states
for the free operator t, i. e. the case when density of im-
purities λ = 0, cf. Remark II.1 and (2.7):

lim
λ↓0

Nλ(E) = Nλ=0(E) =
√

2
π

√
E . (3.15)

Notice that for the Lebesgue-derivative nλ(E) :=
dNλ(E)/dE, i. e. for the density of states [14, Sect. 4],
this limit is not uniform in E in the vicinity of the spec-
trum edge E = 0. This confirms the argument, previously
presented in [13], that the Bose–Einstein condensation in
such random media cannot be viewed as a perturbation
of the free case, since this phenomenon is tightly related
to the behaviour of nλ(E) near the edge [1, 13].

On the other hand, for λ > 0 and for E close to the
edge of the spectrum, the integrated density of states
(3.11) exhibits the Lifshitz’ tail behaviour:

Nλ(E) = λe−cλ/
√

E {1−O(e−2cλ/
√

E)} , E ↓ 0 , (3.16)

see Remark II.1. In this case limE↓0 nλ(E) = 0.
It is known [11,16] that behaviour (3.16) near the edge

remains valid even if the parameter a > 0 in (2.6) is fi-
nite. Notice that this parameter does not appear in the
leading term of the asymptotics (3.16). This can be ex-
plained by the fact that a particle with small energy
“sees” a point impurity potential with the relative am-
plitude of a/E � 1. Therefore, in spite of its singular
nature the Luttinger–Sy Hamiltonian seems to be a good
approximation for studying the BEC in Poisson random
systems with non-singular repulsive impurities.

IV. THERMODYNAMICS AND BOSE–EINSTEIN
CONDENSATION

The second quantization of the one-particle Luttinger–
Sy Hamiltonian (3.4) in the boson Fock space gives the

one-dimensional PBG embedded into a random poten-
tial created by Poisson repulsive impurities (2.6) with
a = +∞. The latter implies that bosons are distributed
over independent intervals (“boxes”)

{
Lω

j

}
j,ω

.
4.1 We study the boson Luttinger–Sy model in the grand
canonical ensemble, defined by the inverse temperature
β > 0 and the chemical potential µ. Since the model
corresponds to independent “boxes”

{
Lω

j

}
j,ω

, the grand
partition function of the PBG in Λ = [−L/2, L/2] is the
product of partition functions calculated in individual
“boxes”:

Ξω
L(β, µ) =

n∏
j=1

Ξω
Lj

(β, µ)

=
n∏

j=1

∞∏
s=1

(
1− e−β(Esj

(Lω
j )−µ)

)−1

,

see (3.4). This gives for the grand canonical pressure

pω
L(β, µ) = − 1

βL

n∑
j=1

∞∑
s=1

ln
(
1− e−β(Esj

(Lω
j )−µ)

)
. (4.1)

To ensure convergence in (4.1) we have to bind a chem-
ical potential from the above: µ < infsj ,ω Esj

(Lω
j ). By

virtue of (2.15) we obtain in the thermodynamic limit:

a. s. lim
L→∞

inf
sj ,ω

Esj
(Lω

j ) = 0 . (4.2)

Lemma IV.1 For µ < 0 and L → ∞ the pressure
pω

L(β, µ) converges almost surely to the non-random func-
tion

p(β, µ) = a. s. lim
L→∞

pω
L(β, µ) (4.3)

= − 1
β

∫ ∞

0

dE nλ(E) ln
(
1− e−β(E−µ)

)
,

where the limiting density of states

nλ(E) :=
λ2c

2
ecλ/

√
E

E3/2
(
ecλ/

√
E − 1

)2 , (4.4)

and c = π/
√

2, cf. (3.11).

112



BOSE–EINSTEIN CONDENSATION IN A RANDOM MEDIA

Proof : By the definition of integrated density of states
(3.12) we can represent the pressure in (4.1) as the
Lebesgue–Stieltjes integral

pω
L(β, µ) = − 1

β

∫ ∞

0

dNω
L (E) ln

(
1− e−β(E−µ)

)
.

Then by virtue of (3.13) we obtain that the limit

p(β, µ) = a. s. lim
L→∞

pω
L(β, µ)

= −λ
2

β

∞∑
s=1

∫ ∞

0

dLi e
−λLi ln

(
1− e−β((cs/Li)

2−µ)
)

exists a. s. and, after a change of variables and the cal-
culation of the sum, takes the form:

p(β, µ) = −λ
2c

β

∫ ∞

0

dk

k2

e−cλ/k

(1− e−cλ/k)2

× ln
(
1− e−β(k2−µ)

)
.

Setting k =
√
E, we recover the relation (4.3) with the

density of states (4.4). �

Similarly, we obtain the statement about the thermo-
dynamic limit of the grand-canonical particle density.

Lemma IV.2 For all µ < 0 and β > 0, the grand-
canonical particles density

ρω
L(β, µ) =

1
L

n∑
j=1

∞∑
s=1

1

eβ(Esj
(Lω

j )−µ) − 1
(4.5)

=
∫ ∞

0

dNω
L (E)

1
eβ(E−µ) − 1

,

converges a. s. to

ρ(β, µ) =
∫ ∞

0

dE
nλ(E)

eβ(E−µ) − 1
, (4.6)

with the density of states nλ(E) defined by (4.4).

Proof : By virtue of representation (4.5), the demonstra-
tion follows the same line of reasoning as we used above
for the limiting pressure (4.3). �

Corollary IV.1 By the explicit formula (4.4) we obtain
that for the Luttinger–Sy model, defined by the Hamilto-
nian (2.11), the critical density

ρc(β) = lim
µ↑0

∫ ∞

0

dE
nλ(E)

eβ(E−µ) − 1
(4.7)

is bounded.

4.2 It is known that for PBG the condition ρc(β) < ∞
implies the existence of (generalized) Bose condensation
[1], when the particles density ρ > ρc(β). To make it ob-
vious in our case we have to study solutions µω

L(β, ρ) of
the finite-volume equations, see (4.5):

ρ = ρω
L(β, µ) , ω ∈ Ω . (4.8)

In fact, the asymptotic behaviour of µω
L(β, ρ) studied for

a general ergodic non-negative random potential in [13].
These results then can be applied to the Luttinger–Sy
model and lead to the following proposition:

Proposition IV.1 Let µω
L(β, ρ) be solution of equation

(4.8) for the a given ω ∈ Ω. Then
(a) for ρ < ρc(β) the limit

a. s. lim
L→∞

µω
L(β, ρ) = µ(β, ρ) < 0 , (4.9)

exists and is the unique root of equation defined by (4.6):

ρ = ρ(β, µ) , (4.10)

(b) for ρ ≥ ρc(β) the limit

a. s. lim
L→∞

µω
L(β, ρ) = 0 , (4.11)

For ρ ≥ ρc(β) the limit (4.11) implies that the density
of condensed particles can be defined in the usual (for
generalized condensation) way:

ρ0(β, ρ) := lim
ε↓0

{
a. s. lim

L→∞

∫ ε

0

Nω
L (dE)

1
eβ(E−µω

L(β,ρ)) − 1

}
= ρ− ρc(β) , (4.12)

see e. g. [1]. If ρ < ρc(β), the limit is zero. Notice that this nonrandom limit is a consequence of the chemical potential
asymptotics (Proposition IV.1) and of the uniform convergence of the particle density (4.5), see [13], Theorem 4.1.

V. OFF-DIAGONAL LONG-RANGE ORDER

In this section we study the problem of the two-point correlation function [21,24]. By definition, in the finite volume
Λ and for any ω ∈ Ω, it has the form:
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ρL
ω(x, y;β, µ) : =

n∑
j=1

∞∑
sj=1

1

eβ(Esj
(Lω

j )−µ) − 1

(
ΨL,ω

sj ,D,n(x),ΨL,ω
sj ,D,n(y)

)
Cn

=
n∑

j=1

∞∑
sj=1

1

eβ(Esj
(Lω

j )−µ) − 1
ψω

j,s(x) ψ
ω
j,s(y) , (5.1)

where (· , ·)Cn denotes the scalar product in Cn, see (3.4)
and (3.5). Therefore (5.1) is the kernel of for the one-body
reduced density matrix, see e. g. [15].
5.1 We know that this function is not self-averaging in
the thermodynamic limit [16, 20]. To get a way out, we
proposed in [13] to consider the space-averaged version
of (5.1):

ρ̃L
ω(x, y;β, µ) :=

1
L

∫ L/2

−L/2

dz ρL
ω(β, µ;x+ z, y + z) . (5.2)

The motivation was based on the fact that in the limit
λ ↓ 0, we recover from (5.2) the free case, see [13] and
subsection V.2 below.

Theorem V.1 For the Luttinger–Sy model, the thermo-
dynamic limit of the space-averaged two-point correlation
function (5.2) for β > 0 and µ ≤ 0, is a. s. nonrandom
and has the form:

ρ̃(x, y;β, µ) = ρ0(β, ρ) + e−λ|x−y| Φλ(|x− y|) . (5.3)

Here Φλ(|x − y|) is defined by (5.6). The chemical po-
tential µ = µ(β, ρ), and the condensate density ρ0(β, ρ)
(4.12) are related to the total particle density ρ.

Proof : We consider first the case of a negative chemical
potential (4.9), i. e. µ = µ(β, ρ) < 0 and ρ0(β, ρ) = 0. Us-
ing the explicit form of eigenfunctions (2.16), we obtain
for the thermodynamic limit of (5.2):

ρ̃(x, y;β, µ) = lim
L→∞

λ

n

n∑
j=1

∞∑
sj=1

1

eβ(Esj
(Lω

j )−µ) − 1
(5.4)

× 2
Lω

j

∫ L/2

−L/2

dz sin(ksj
(Lω

j )(x+ z − xω
j−1)) sin(ksj

(Lω
j )(y + z − xω

j−1))IIω
j
(x+ z)IIω

j
(y + z) ,

with ksj
(Lω

j ) :=
√

2Esj
(Lω

j ). Let for simplicity x > y. Then the integration reduces to the interval [xω
j−1−y, xω

j −x] =

[xω
j−1 − y, xω

j−1 − x+ Lω
j ], such that (x− y) ≤ Lω

j . Since ksj
(Lω

j )Lω
j = sjπ, the integration over z yields

2
Lω

j

∫ L/2

−L/2

dz sin(ksj
(Lω

j )(x+ z − xω
j−1)) sin(ksj

(Lω
j )(y + z − xω

j−1))IIω
j
(x+ z)IIω

j
(y + z)

= θ(Lω
j − (x− y))

{
cos(ksj

(Lω
j )(x− y))[1− (x− y)/Lω

j ] +
1
sjπ

sin(ksj
(Lω

j )(x− y))
}
,

with step function θ(z). Since by Proposition III.1 the random variables Lω
j are independent in the limit L→∞, we

apply to (5.4) the Birkhoff ergodic theorem. This yields the limit:

ρ̃(x, y;β, µ) = a. s. λ2
∞∑

s=1

∫ ∞

0

dL e−λL 1
eβ((csj/L)2)−µ) − 1

θ(L− (x− y))

×
{

cos(
√

2cs(x− y)/L)[1− (x− y)/L] +
1
sπ

sin(
√

2cs(x− y)/L)
}
.

with c = π/
√

2. If we put q = c s/L, then

ρ̃(x, y;β, µ) = λ2
∞∑

s=1

∫ ∞

0

dq

q2
e−csλ/q 1

eβ(q2−µ) − 1
(5.5)

×c θ(s− q(x− y)/c)
{

cos(
√

2q(x− y)) [s− q(x− y)/c] +
1
π

sin(
√

2q(x− y))
}
.

Two sums over s give:
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∞∑
s=1

e−csλ/q θ(s− q(x− y)/c)[s− q(x− y)/c] =e−ent[q(x−y)/c]λc/q

{
e−λc/q

(1− e−λc/q)2
− frac{q(x− y)/c}e−λc/q

1− e−λc/q

}
,

∞∑
s=1

e−csλ/qθ(s− q(x− y)/c) = e−ent[q(x−y)/c]λc/q e−λc/q

1− e−λc/q
,

where ent[u] and frac{u} denote correspondingly the entire and the fractional parts of u ∈ R. Since q(x − y)/c =
ent[q(x− y)/c] + frac{q(x− y)/c}, after a change of variables, q =

√
E, we obtain by (3.11), (4.4) and (5.5) :

ρ̃(x, y;β, µ) = e−λ|x−y|
∫ ∞

0

dE
nλ(E)

eβ(E−µ) − 1
eϕ(|x−y|,λ,E) cos(

√
2E(x− y))

− e−λ|x−y| λ

2

∫ ∞

0

dE

E3/2

Nλ(E)
eβ(E−µ) − 1

eϕ(|x−y|,λ,E)

× c

{
frac{

√
E(x− y)/c} c cos(

√
2E(x− y))− 1

π
sin(

√
2E(x− y))

}
=: e−λ|x−y| Φλ(|x− y|) . (5.6)

We put here ϕ(|x − y|, λ, E) := cλ frac{
√
E|x − y|/c}/

√
E and |x − y|, since the proof for x − y ≤ 0 is identical to

that for 0 ≤ x− y.
Notice that the positive function frac{

√
E|x− y|/c} ∈ (0, 1). Hence, for λ > 0 and for any (large) |x− y| � 1 there

exist Ẽ(|x− y|) > 0 such that frac{
√
E|x− y|/c} =

√
E|x− y|/c for E < Ẽ(|x− y|), i. e., ϕ(|x− y|, λ, E) = λ|x− y|.

By (3.11) and (4.4) the integrated density of states Nλ(E) and the density of states nλ(E) converge for E ↓ 0 to
zero faster than any power of E. By the Riemann–Lebesgue lemma this implies that the integrals (5.6) over interval
[0, E−(|x − y|)], where E−(|x − y|) < Ẽ(|x − y|), can be made of the order |x − y|−α for any (large) α > 0. On the
other hand, integrals (5.6) converge on [E−(|x − y|),∞) uniformly in |x − y|. This proves the representation (5.6)
with a bounded function Φλ(|x− y|).

Now we study the case when the condensate exists. The finite-volume chemical potential µω
L(β, ρ) is a solution of

equation (4.8). By Proposition IV.1(b) for ρ > ρc(β) it implies (4.11), i. e. µω
L(β, ρ > ρc(β)) converges a. s. to 0. To

find the limit of space-averaged correlation function (5.2) for the sequence {µω
L(β, ρ)}L we split (5.2) into two parts:

ρ̃ω
L(x, y;β, µω

L(β, ρ)) =
1
L

n∑
j=1

∞∑
sj=1

1

eβ(Esj
(Lω

j )−µω
L(β,ρ)) − 1

θ(δ − Esj
(Lω

j )) (5.7)

× θ(Lω
j − (x− y))

{
cos(ksj

(Lω
j )(x− y))[1− (x− y)/Lω

j ] +
1
sjπ

sin(ksj
(Lω

j )(x− y))
}

+
1
L

n∑
j=1

∞∑
sj=1

1

eβ(Esj
(Lω

j )−µω
L(β,ρ)) − 1

θ(Esj (L
ω
j )− δ)

× θ(Lω
j − (x− y))

{
cos(ksj

(Lω
j )(x− y))[1− (x− y)/Lω

j ] +
1
sjπ

sin(ksj
(Lω

j )(x− y))
}
,

for some δ > 0. Since in the second term of the right-hand side of (5.7) the eigenvalues Esj
(Lω

j ) ≥ δ > 0, the limit
(4.11) and uniform convergence of the sums (cf. Corollary 3.1 in [13]) yields

lim
δ↓0

lim
L→∞

ρ̃ω
L(x, y;β, µω

L(β, ρ)) = a. s. lim
δ↓0

lim
L→∞

1
L

ν∑
i=1

∞∑
sj=1

1

eβ(Esj
(Lω

j )−µω
L(β,ρ)) − 1

θ(δ − Esj (L
ω
j )) (5.8)

×θ(Lω
j − (x− y))

{
cos(ksj

(Lω
j )(x− y))[1− (x− y)/Lω

j ] +
1
sjπ

sin(ksj (L
ω
j )(x− y))

}
+ ρ̃(x, y;β, 0) ,

where the last term is defined by (5.6).
To study the limit of the first term in the right-hand side of (5.8) we use the fact that by (2.15) the levels with

energies Esj
(Lω

j ) < δ are all localized in large “boxes” with the length of the order of O(δ−1/2). Then for Esj
(Lω

j ) < δ

and |x− y| = o(δ−1/2), with δ → 0, we obtain the asymptotics

θ(Lω
j − (x− y))

{
cos(ksj

(Lω
j )(x− y))[1− (x− y)/Lω

j ] +
1
sjπ

sin(ksj
(Lω

j )(x− y))
}

= 1 + δ1/2 o(δ−1/2) .

Therefore, by definition of generalized condensation (4.12) and by (5.8), we get

ρ̃ω
L(x, y;β, 0) := a. s. lim

δ↓0
lim

L→∞
ρ̃ω

L(x, y;β, µω
L(β, ρ)) = ρ0(β, ρ) + ρ̃(x, y;β, 0) , (5.9)

for ρ > ρc(β). This finishes the proof of (5.3). �
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5.2 It is instructive to make a contact between the
concept of the space-averaged one-body reduced density
matrix (5.2) and the one for nonrandom free PBG.

Corollary V.1 When density of particles ρ exceeds the
critical value ρc(β) (4.7), the space-averaged one-body re-
duced density matrix of the Luttinger–Sy model, mani-
fests Off-Diagonal Long-Range Order:

ODLRO(β, ρ) := lim
|x−y|→∞

ρ̃(x, y;β, µ(β, ρ)) = ρ0(β, ρ),

(5.10)

We see that similarly to the nonrandom case this limit is
defined by the condensation density (4.12).

Remark V.1 Notice that for µ < 0 (or ρ < ρc(β)) ,
the space-averaged reduced density matrix (5.3) remains
consistent with the free nonrandom case. Indeed, when
λ ↓ 0, then the second integral in (5.6) tends, by (3.11),
to zero, whereas the first integral has, by (4.4), the limit:

lim
λ↓0

ρ̃(x, y;β, µ) = ρ(x, y;β, µ) , (5.11)

where

ρ(x, y;β, µ) =
1
π

∫ ∞

0

dE√
2E

1
eβ(E−µ) − 1

(5.12)

× cos(
√

2E(x− y))

coincides with two-point correlation function of the free
PBG [13]. This equivalence is valid only when there is
no condensation, since by (4.4) and (4.7) one has that
limλ↓0 ρc(β) = ∞.

VI. COMMENTS AND DISCUSSION

A. Critical density

We start by a remark concerning modifications of the
Luttinger–Sy model properties, and in particular of the
value of the critical density, when one passes from an
infinite to a finite amplitude a < ∞ of the δ-potential
(2.6).

Recall that operators {hω
a}a≥0 correspond to a mono-

tonically increasing family of quadratic forms with
hω

a=+∞ = hω
D, see (2.8). Then by definition of the in-

tegrated density of states (3.10), (3.11) and by the mini-
max principle for hω

D and hω
a , one gets

Nλ(E) ≡ Nλ,a=+∞(E) < Nλ,a(E) ≤ Nλ,a=0(E) (6.1)

= Nλ=0,a(E) =
√
E

c
.

Notice that the integrated density of states for the free
case a = 0 coincides with that for the zero impurity den-
sity (3.15), λ = 0. From (6.1) one gets the corresponding
inequalities for critical densities (4.7) indicating the en-
hancement of the BEC that was remarked already by
Kac and Luttiger [8, 9].

More refined arguments (see e. g. [20], Ch.III, 6B) give
for E < π2a2/32, for the estimate, cf. (3.14):

Nλ(E) < Nλ,a(E) < λ
∞∑

s=1

e−sλ(c/
√

E−4/a) =: N ∗
λ,a(E) .

(6.2)

Then, the definition of the critical density (4.7) and (6.1)
yield

ρc(β, λ) : = lim
µ↑0

∫ ∞

0

dNλ(E)
eβ(E−µ) − 1

=
∫ ∞

0

dE Nλ(E)
βeβE

(eβE − 1)2
≤
∫ ∞

0

dE Nλ,a(E)
βeβE

(eβE − 1)2
=: ρc(β, λ, a) ,

with obvious limits: lima→0 ρc(β, λ, a) = ∞ and limλ→0 ρc(β, λ, a) = ∞, by (6.1).
The estimate (6.2) yields the upper boundary on ρc(β, λ, a) for the small a. Setting Ẽ(a) := (πa/8)2 by (6.1)-(6.3)

we get that

ρc(β, λ, a) ≤
∫ Ẽ(a)

0

dE N ∗
λ,a(E)

βeβE

(eβE − 1)2
+
∫ ∞

Ẽ(a)

dE

√
E

c

βeβE

(eβE − 1)2
=: I(β, λ, a) . (6.3)

Then for fixed λ > 0 and small a > 0 we obtain the estimate:

ρc(β, λ, a) ≤ I(β, λ, a) ≤ 1
βλ

(
8
π

)2 1
4e(
√

2− 1)
+

1
a

16
√

2
βπ2

.

Similarly, for a > 0 and small λ > 0 we obtain by (6.3) that

ρc(β, λ, a) ≤
1
λβ

∫ Ẽ(a)

0

dx

x2

e−c/
√

x

1− e−c/
√

x
+
∫ ∞

Ẽ(a)

dE

√
E

c

βeβE

(eβE − 1)2
.
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Notice that the bounded critical density ρc(β, λ, a) for
λ > 0 and a > 0 is the key criterion of the existence
of BEC in the one-dimensional system with integrated
density of states Nλ,a(E), cf. (4.12). On the other hand
the Bogoliubov–Hohenberg theorem says that there is
no BEC in translation invariant boson systems if the di-
mension is less than d = 2, see e. g. [3, 4]. Therefore, the
BEC in the Luttinger–Sy model is of a different nature
than the case without a random impurity potential.

In fact, the randomness of the impurity potential is not
indispensable for BEC in one-dimensional perfect Bose-
gas. To this end we construct nonrandom hierarchical
models with impurity potential which manifest the BEC
via a mechanism similar to that in the Luttinger–Sy mod-
el.

B. Hierarchical model for BEC in one-dimensional
nonrandom intervals

We present here a nonrandom hierarchical one-
dimensional system, which manifests BEC and in a cer-
tain sense mimics the Luttinger–Sy model.
Type I BEC. Let Λ := (0, L) be a segment separated
into n impenetrable intervals of lengths Lj , j = 1, . . . , n
such that λ = n/L < ∞. For simplicity we take the hi-
erarchy when all intervals, except the first (largest) one,
are identical:

L1 =
ln(λL)
λ

and Lj 6=1 = L̃n =
L− L1

n− 1
. (6.4)

Then one gets

lim
L→∞

L1 = +∞ and lim
L→∞

L̃n =
1
λ
. (6.5)

This non-random system presents an obvious analogue of
the Luttinger–Sy model. Here again, the quantum states
are defined in independent intervals and they have ener-
gies

Ej,s =
c2s2

L2
j

, j = 1, . . . , n , s = 1, 2, . . . , (6.6)

with c2 = π2/2. The spectrum of the corresponding
Schrödinger operator is discrete and bounded below by
zero, cf. (2.15), (2.17). Then the chemical potential is
µ < 0 and the PBG particle density in Λ has the same
expression as in (4.5)

ρL(β, µ) =
1
L

n∑
j=1

∞∑
s=1

1
eβ(Ej,s−µ) − 1

, β > 0 , µ ≤ 0 .

By virtue of the hierarchical structure of intervals we can
separate the expression for density into two parts:

ρL(β, µ) =
1
L

∞∑
s=1

1
eβ(c2s2/L2

1−µ) − 1
(6.7)

+
n− 1
L

∞∑
s=1

1
eβ(c2s2/L̃2

n−µ) − 1
.

Since L1 = O(ln(λL)), the first sum in (6.7) converges,
when L→∞, to zero for all µ ≤ 0, i. e. we obtain

ρ(β, µ) = lim
L→∞

ρL(β, µ) = λ
∞∑

s=1

1
eβ((cs/λ)2−µ) − 1

. (6.8)

As a consequence, the critical density for this system is
finite:

ρc(β) : = sup
µ≤0

ρ(β, µ) = ρ(β, 0) (6.9)

= λ
∞∑

s=1

1
eβ(cs/λ)2 − 1

<∞ ,

and we have BEC condensation, when ρ > ρc(β).
This condensation is of type I, since the difference be-

tween the ground-state energy and the energy of the first
excited state (which are both localized in the biggest in-
terval L1) is of the order O(L−2

1 ) = O((ln(λL))−2), see
e. g. [1], or [25]. In this case the solution µL(β, ρ) of the
equation

ρ =
1
L

1
eβ(c2/L2

1−µ) − 1
(6.10)

+
1
L

∑
s>1

1
eβ((cs/L1)2−µ) − 1

+
ν − 1
L

∞∑
s=1

1
eβ((cs/L̃n)2−µ) − 1

,

for ρ > ρc(β) and large L has asymptotics

µL(β, ρ) = E1,1 −
1

βρ0(β, ρ)L
+O(1/L2) , (6.11)

see (6.6). Inserting (6.11) into (6.10) we obtain in the
limit

ρ = lim
L→∞

1
L

1
eβ(c2/L2

1−µL(β,ρ)) − 1
+ λ

∞∑
s=1

1
eβ(cs/λ)2 − 1

= ρ0(β, ρ) + ρc(β) ,

where by (6.11) the condensate density is

ρ0(β, ρ) = lim
L→∞

1
L

1
eβ(c2/L2

1−µL(β,ρ)) − 1
.

Therefore, this one-dimensional hierarchical model shows
type I BEC localized in the (logarithmically) large, but
not macroscopic, domain corresponding to the ground-
state wave function. Generalizations to another hierarchy
of intervals with one largest interval trapping BEC are
obvious.

For example, it is easy to generalize the above obser-
vation to type I BEC localized in a finite number of M
identical (logarithmically) large intervals:
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L1 = . . . = LM =
ln(λL)
λ

and (6.12)

Lj = L̃n =
L−ML1

n−M
, M < j ≤ n,

cf. (6.4). Then similar to the case M = 1 (6.7) one gets

ρL(β, µ) =
1
L

M∑
j=1

∞∑
s=1

1

eβ(c2s2/L2
j−µ) − 1

(6.13)

+
n−M

L

∞∑
s=1

1
eβ(c2s2/L̃2

n−µ) − 1
.

which implies through verbatim that for M > 1 the
critical density (6.9) rests the same. If ρ > ρc(β), the
equation ρ = ρL(β, µ) (6.13) yields for asymptotics of
the solution µL(β, ρ) an expression similar to (6.11) for
M = 1:

µL(β, ρ) = Ej,1 −
M

βρ0(β, ρ)L
+O(1/L2), (6.14)

1 ≤ j ≤M .

Here E1,1 = . . . = EM,1 by (6.6) and (6.12). Then taking
into account (6.6) and (6.12), (6.14) we obtain by (6.13)

ρ = lim
L→∞

1
L

M∑
j=1

1

eβ(c2/L2
j−µL(β,ρ)) − 1

+ λ
∞∑

s=1

1
eβ(cs/λ)2 − 1

= ρ0(β, ρ) + ρc(β),

where the condensate density is equally shared among
the first M intervals:

ρ0(β, ρ) = lim
L→∞

M

L

1
eβ(c2/L2

1−µL(β,ρ)) − 1
.

Type II BEC. To obtain type II BEC in one interval
we take, instead of (6.4):

L1 :=
√
L/λ and Lj 6=1 = L̃n =

L− L1

n− 1
. (6.15)

Then (6.7) gets the form

ρL(β, µ) =
1
L

∞∑
s=1

1
eβ(λc2s2/L−µ) − 1

(6.16)

+
n− 1
L

∞∑
s=1

1
eβ(c2s2/L̃2

n−µ) − 1
.

Since for µ ≤ 0 the first sum in (6.16) converges to zero,
when L → ∞, we obtain for ρ(β, µ) = limL→∞ ρL(β, µ)
and ρc(β) the same expressions as in (6.8) and (6.9).

Now, if ρ > ρc(β), the solution µL(β, ρ) of equation
ρ = ρL(β, µ) has asymptotics defined by (6.16):

ρ = lim
L→∞

1
L

∞∑
s=1

1
eβ(λc2s2/L−µL(β,ρ)) − 1

(6.17)

+ λ
∞∑

s=1

1
eβ(cs/λ)2 − 1

= ρ0(β, ρ) + ρc(β).

As in (6.11) this implies

µL(β, ρ) = E1,1 −
A(β, ρ)
βL

+O(1/L2) , (6.18)

see (6.6), where by (6.17) the coefficient A(β, ρ) ≥ 0 sat-
isfies the equation

ρ =
∞∑

s=1

1
βλc2(s2 − 1) +A

+ ρc(β) . (6.19)

Hence, for ρ > ρc(β) the BEC

ρ0(β, ρ) =
∞∑

s=1

1
βλc2(s2 − 1) +A(β, ρ)

is split between infinitely many states in the largest in-
terval L1, i. e. this is the van den Berg–Lewis–Pulé con-
densation [1] of the type II.
Type III BEC. Now we show that (unusual) spatially
fragmented type III BEC is possible in our hierarchical
model. To split BEC between infinitely many states in
different intervals, let volume Λ be occupied by [ln(n+1)]
identical (logarithmically) large intervals:

Lj =
ln(λL)
λ

, 1 ≤ j ≤ [ln(n+ 1)] =: Mn

and (6.20)

Lj>Mn
= L̃n :=

L− L1Mn

n−Mn
,

for Mn < j ≤ n, of small intervals, cf. (6.12). Then (sim-
ilar to (6.13)) we get for the particle density

ρL(β, µ) =
1
L

Mn∑
j=1

∞∑
s=1

1

eβ(c2s2/L2
j−µ) − 1

(6.21)

+
n−Mn

L

∞∑
s=1

1
eβ(c2s2/L̃2

n−µ) − 1
.

Since by (6.20) we have limL→∞ L̃n =
limL→∞ (n−Mn)/L = λ the critical density (6.9) re-
mains the same. If ρ > ρc(β), the equation ρ = ρL(β, µ)
(6.21) yields for asymptotics of the solution µL(β, ρ):

µL(β, ρ) = Ej,1 −
Mn

βρ0(β, ρ)L
+O(1/L2), (6.22)

1 ≤ j ≤Mn.

Then we obtain for the particle density in large intervals
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lim
L→∞

1
L

Mn∑
j=1

∞∑
s=1

1

eβ(c2s2/L2
j−µL(β,ρ)) − 1

= lim
L→∞

Mn

L

1
eMn/(ρ0(β,ρ)L)−O(1/L2) − 1

+ lim
L→∞

Mn

L

∞∑
s=2

1
eβ((λcs/ ln n)2−µL(β,ρ)) − 1

= ρ0(β, ρ). (6.23)

Limits (6.23) and (6.21), (6.22) imply that the conden-
sate density ρ0(β, ρ) = ρ− ρc(β) is split between ground
states of infinitely many logarithmic intervals in such a
way that the condensate density in each interval is zero.
This is a spatially fragmented type III BEC, which is dif-
ferent from the one corresponding to the simple dissim-
ination over an infinite number of states and discussed
by van den Berg, Lewis and Pulé in [1, 25].

C. Statistics of large Poisson intervals

By virtue of 6.2 to discriminate between possible types
of BEC in the Luttinger–Sy model one has to study
statistics of the size

{
Lω

j

}
j

of intervals induced by Pois-
son distributed point impurities, see Proposition III.1.

In fact, the first attempt to elucidate this question is
already contained in [18]. They gave some arguments in
favour of a large finite Λ, the largest interval Iω

1 hasing
a typical length of the logarithmic order:

Lω
1 ∼ λ−1 ln(λL) , L→∞ . (6.24)

Moreover, along the same line of reasoning they conclude
that all other intervals Iω

j>1 are typically much smaller
than Iω

1 . Then neglecting the fluctuations in the length
of Lω

1 they conclude that BEC has to follow the scenario
we described in 6.2 as type I BEC, cf. (6.4) and (6.24).

To check these arguments and to bolster them by some
rigorous reasonings we use Proposition III.1. First we
note that the average length of the Poisson intervals is

Eσλ
(Lω

js
) = λ

∫ ∞

0

dLLe−λL = λ−1 , (6.25)

i. e., the total average length of any sample of intervals{
Iω
j

}k

j=1
is k/λ. We are interested in the density of the

joint probability distributions generated by the events:
{ω ∈ Ω : Lω

j1
≥ Lω

j2
≥ . . . ≥ Lω

jk
}. They have evidently

the form

dσ>
λ,k(Lj1 , . . . , Ljk

) := k! θ(Lj1 − Lj2) θ(Lj2 − Lj3) . . . θ(Ljk−1 − Ljk
) dσλ,k(Lj1 , . . . , Ljk

) . (6.26)

Then one gets for the joint probability density of the two largest intervals:

dσ>
λ,k(Lj1 , Lj2)/dLj1dLj2 = k(k − 1)λ2 e−λLj1 e−λLj2

(
1− e−λLj2

)k−2
θ(Lj1 − Lj2) . (6.27)

Now, let A(s, t) be defined for non-negative integers s and t by

A(s, t) :=
∫ ∞

0

dx lns(x)xte−x . (6.28)

For s ≥ 1 and t ≥ 1 this function verifies the following identities:

A(s, t) = tA(s, t− 1) + sA(s− 1, t− 1) , A(1, t) = tA(1, t− 1) + Γ(t) , (6.29)

where Γ(t) stands for the Gamma-function:

Γ(t) =
∫ ∞

0

yt−1e−ydy.

It is also convenient to introduce the Euler Beta-function in the form:

B(ν, t) =
∫ ∞

0

e−ty
(
1− e−y

)ν−1
dy =

Γ(ν)Γ(t)
Γ(ν + t)

.

Then by (6.27) we get for the expectation value of the largest interval

Eσ>
λ,k

(Lω
j1) = kλ

∫ ∞

0

Lj1e
−λLj1

(
1− e−λLj1

)k−1
dLj1 (6.30)

= −k
λ

(∂tB(k, t))t=1 = −k
λ

Γ(k)∂t

(
Γ(t)

Γ(t+ k)

)
t=1

= −k
λ

(k − 1)!
(
∂tΓ(t)
k!

− ∂tΓ(k + t)
(k!)2

)
t=1

.
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Taking into account (6.28), (6.29) and the definition of
the Gamma-function one gets from (6.30)

Eσ>
λ,k

(Lω
j1) =

A(1, k)
k! λ

− A(1, 0)
λ

=
1
λ

k∑
s=1

1
s
. (6.31)

Similarly, we obtain the expectation for the next interval

Eσ>
λ,k

(Lω
j2) =

A(1, k)
k! λ

− A(1, 1)
λ

=
1
λ

k∑
s=2

1
s
. (6.32)

By virtue of (6.31) and (6.32) the mean difference
Eσ>

λ,k
(Lω

j1
− Lω

j2
) = 1/λ is independent of the number

k of intervals in the sample, whereas they have, for large
k, the logarithmic size (cf. (6.24)):

Eσ>
λ,k

(Lω
j 1,2

) =
1
λ

ln(k) +
1
λ
P1,2 +O(1/k) , (6.33)

with respect to the total average sample length k/λ,
here P1 = C := 0.577 . . ., is the Euler constant, and
P2 = C− 1. Using (6.26) and (6.28), (6.29) we find that
the variance of the difference between two largest inter-
vals in the sample is also k-independent and has the form:

V arσ>
λ,k

(Lω
j1 − Lω

j2) =
1
λ2

. (6.34)

Moreover, by the joint probability distribution (6.27) we
obtain for any δ > 0 that probability

P{ω : Lω
j1 − Lω

j2 > δ} = e−λδ (6.35)

of the events Ak(δ) = {ω : Lω
j1
− Lω

j2
> δ}, is indepen-

dent of k for an increasing sequence of samples
{
Iω
j

}k

j=1
,

when k →∞.
By 6.2 and (6.33), (6.34) we see that types II or III

BEC are impossible in the one largest logarithmic “box”,
since that total average length of the sample is k/λ. To
exclude types I, II, III condensations via a space frag-
mentation between, e. g., two “boxes”, we have to es-
timate the probability of the events corresponding to
the state-energy spacings between two largest intervals.
By 6.2 (see (6.14), (6.18), (6.22) and [13]) this spacing
should be larger than the inverse of the total sample
length, which is (k/λ)−1. To this end it is sufficient to
estimate the probability of the event Sk(a > 0, γ > 0)
corresponding to the spacing between ground states:

P{Sk(a, γ)} : = P
{
ω : Es=1(Lω

j2(k)) (6.36)

− Es=1(Lω
j1(k)) >

a

k1−γ

}
.

Here we denote the energies in the sample
{
Iω
j

}k

j=1
by

Es(Lω
jr

(k)) =
c2s2

(Lω
jr

(k))2
, (6.37)

r = 1, . . . , k, s = 1, 2, . . . .

Notice that by (6.35) we obtain that there is a kind “re-
pulsion” between energy levels in different intervals. In-
deed,

P{Sk(a, γ)} ≥ P{ω : Lω
j1(k)− Lω

j2(k) >
a

2c2k1−γ
Lω

j1(k)(L
ω
j2(k))

2}

=
∫ ∞

0

∫ ∞

0

dσ>
λ,k(x, y)θ(x− y − a

2c2k1−γ
xy2) =: pk(a, γ), (6.38)

where limk→∞ pk(a, 0 < γ < 1) = 1 by explicit calcu-
lations in (6.38). The same argument is valid for other
than ground states as well as for intervals

{
Iω
jr

}k

r>2
in-

stead of Iω
j2

. Therefore, in this limit with the probability
1 the spacing is too large for a fragmentation of the con-
densate between the largest and other intervals.

D. The Kac–Luttinger conjecture

The above arguments prove the Kac–Luttinger conjec-
ture in the case of the one-dimensional random Poisson
potential of point impurities: for PBG the BEC is of type
I and it is localized in one “largest box”.

To make this statement more precise recall that BEC
exists only in the thermodynamic limit, which we con-
struct as an increasing family of samples of intervals{
Iω
j

}k

j=1
induced by the point impurities on R. Since

these random variables are independent, we can choose
an increasing sequence of independent samples with one
largest interval and with the property that

lim
k→∞

k∑
r=1

P{Sk(a, γ)} = ∞ , (6.39)

see (6.38). Then by the Borel–Cantelli lemma [22]

P {lim Sk(a, γ)} = 1 , (6.40)

where the event
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lim Sk(a, γ) :=
∞⋂

k=1

⋃
l=k

Sl(a, γ)

means that infinitely many events {Sk(a, γ)}k≥1 take
place. Together with 6.3 statement (6.40) means that
with probability 1 in the thermodynamic limit R the
BEC is localized in a single “largest box”, and this con-

densation is of type I.
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КОНДЕНСАЦIЯ БОЗЕ–АЙНШТАЙНА В НЕВПОРЯДКОВАНИХ СЕРЕДОВИЩАХ

В. А. Заґрєбнов
Середземноморський унiверситет i Центр теоретичної фiзики,

Люмiнi–Каз, 907, Марсель, F–13288, Седе, 09, Францiя

Ми вивчаємо конденсацiю одновимiрного iдеального бозонного газу, вмiщеного у випадковий потенцi-
ял Пуассона, що вiдповiдає одиночним точковим домiшкам. У моделi виявлено бозе-айнштайнiвську кон-
денсацiю типу I, локалiзовану в одному “найбiльшому” iнтервалi логарифмiчного розмiру (гiпотеза Каца–
Лютiнґера). Показано, що математичний механiзм конденсацiї Бозе–Айнштайна в такiй випадковiй моделi
iдентичний до конденсацiї в одновимiрнiй невипадковiй iєрархiї моделi масштабованих iнтервалiв.
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