KYPHAJI ®IBNYHUX OJOCJIII2KEHDb
T. 11, Ne 2 (2007) c. 133-141

JOURNAL OF PHYSICAL STUDIES
v. 11, No. 2 (2007) p. 133-141

STATISTICAL FIELD THEORY FOR A MULTICOMPONENT FLUID:
THE COLLECTIVE VARIABLES APPROACH*

O. Patsahan', I. Mryglod!, J.-M. Caillol?
Y Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine,
1 Svientsitskii St., Lviv, UA-79011, Ukraine
2 Laboratoire de Physique Théoriqgue CNRS UMR 8627,
Bdt. 210 Université de Paris-Sud 91405 Orsay Cedez, France
(Received January 15, 2007)

Using the collective variables (CV) method the basic relations of statistical field theory of a
multicomponent non-homogeneous fluids are reconsidered. The corresponding CV action depends
on two sets of scalar fields: the fields p, connected to the local density fluctuations of the ath species
of particles and those w, conjugated to po. Explicit expressions for the CV field correlations and
their relation to the density correlation functions are found. The perturbation theory is formulated
and a mean field level (MF) of this theory is considered in detail.
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I. INTRODUCTION

In recent years much attention has been focused on
an issue of the phase transitions in multicomponent flu-
id mixtures, especially in ionic fluids. In spite of signif-
icant progress in this field, such systems are far from
being completely understood. The investigation of com-
plex models is of great importance in understanding the
nature of critical and phase behavior of real ionic fluids
which demonstrate both the charge and size asymme-
try. The powerful tools for the study of multicomponent
continuous systems are those based on the functional
methods. In many cases the partition function of mul-
ticomponent models (see, e.g. [1]) can be re-expressed
as a functional integral after performing the Hubbard-
Stratonovich transformation [2, 3], a simple device pro-
posed in the 1950s. Nearly at the same time another
method, the method of collective variables (CVs), that
allows in an explicit way to construct a functional repre-
sentation for many-particle interacting systems was de-
veloped [4,5]. The method proposed initially in the 1950s
[4-6] for the description of the classical charged many
particle systems and developed later for the needs of the
phase transition theory [7—10] was in fact one of the first
successful attempts to address the problems of statisti-
cal physics using the functional integral representation.
Recently, the rigorous scalar field KSSHE (Kac—Siegert—
Stratonovich-Hubbard-Edwards) theory [11,12], which
uses the Stratonovich-Hubbard transformation, was de-
veloped to describe the phase equilibria in simple and
ionic fluids. As was shown [13,14], both groups of theo-
ries are in close relation.

In [13] the CV representation of simple (one-
component) fluids was reexamined from the point of view

of statistical field theory. Our goal here is to derive the
exact functional representation for the grand canonical
partition function of a non-homogeneous multicompo-
nent fluid. We reformulate the method of CV in real
space and derive the CV action that depends on two sets
of scalar fields: the fields {p,} connected to the densities
of the ath species and the fields {w, } conjugate to {pq}-
We study the correlations between these fields as well as
their relations to the density correlations of the fluid.

The CV method is based on: (i) the concept of collec-
tive coordinates being appropriate for the physics of the
system considered (see, for instance, [15]) and (ii) the
integral identity allowing to derive an exact functional
representation for the configurational Boltzmann factor.
Being applied to the continuous system the CV method
uses the idea of the reference system (RS), one of the ba-
sic ideas of the liquid state theory [16]. The idea consists
in the splitting of an interparticle interaction potential
into two parts: the potential of a short-range repulsion
which describes the mutual impenetrability of the par-
ticles and the potential describing mainly the behaviour
at moderate and large distances. The equilibrium prop-
erties of the system interacting via a short-range repul-
sion are assumed to be known. Therefore, this system
can be regarded as the “reference” system. The remain-
der of the interaction is described in the phase space of
CVs (collective coordinates). The fluid of hard spheres is
most frequently used as the RS in the liquid state theo-
ry since its thermodynamic and structural properties are
well known. In this paper we derive the functional rep-
resentation for the grand canonical partition function of
a multicomponent fluid which includes both short-range
and long-range interactions.

*This paper is dedicated to Professor Ivan Vakarchuk on the occasion of his 60th birthday
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The paper is organized as follows. In Section II
we obtain the exact expression for the functional of
the grand partition function of a multicomponent non-
homogeneous mixture. Section I1I is devoted to the study
of the correlations of CVs fields and their relation to the
density correlation functions of a multicomponent fluid.
In Section IV we formulate the perturbation theory. The
MEF level of the theory is considered in detail.

II. THE FUNCTIONAL REPRESENTATION
OF THE GRAND PARTITION FUNCTION

A. The model

Let us consider a classical m-component system con-
sisting of N particles among which there exist N; par-
ticles of species 1, Ny particles of species 2, ...and Ny,
particles of species m. The potential energy of the system
is assumed to be of the form

m N
ZZUaﬁ )+ DD valet
B i#j a=1i=1
where Uyg(r?, J) denotes the interaction potential of
two particles and the second term is the potential ener-
gy due to external forces.

We present the pair interaction potential Uyg(r$ ,rf )
as
Uap(xf,v]) = o05(r, v)) + wap (g, xf), (2)

where v 5(rd, rf ) is a potential of a short-range repulsion
that can be chosen as an interaction between two hard
spheres of respective diameters o, and og, respective-
ly we call the m-component system with the interaction
vgﬁ( ¢ ,rf ) a reference system (RS). The thermodynam-
ic and structural properties of the RS are assumed to be

known. weg(rd 7er ) is some potential which can describe

both repulsion (e. g. soft repulsion) and attractive inter-

actions. In general,w,g(rg, r? ) can be presented in the

form

where wgﬁ( 2 ,r? ) and w} ﬁ( 0 ,rf ) are repulsive and at-
tractive parts of the interaction potential wqg(rs ,r? ).

Since wag(r?,r?) are arbitrary in the core, i.e. for r <

0ap = (00 +03)/2, we assume that the wqg(r?, rj’g) have
been regularized in such a way that their Fourier trans-
forms weg(k) are well-behaved functions of k; and that
wa3(0) are finite quantities. We denote by € the domain
of volume V occupied by particles.

We present the potential energy Uy, ., as follows

1
UN, Ny = VR N, + 5 (PalwaslPs)
+ <wa|ﬁo¢> - Noz’/ou (3)
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where

a(r) =Y alr —x7) (4)

is the microscopic density of the ath species in a giv-
en configuration and 1, (r) is some external one-body
potential acting on particles of species . The following
notations are introduced in (3): V]%ISM n,, 1s the contribu-
tion from an m-component RS, v5 is the self-energy of
the ath species

1
Vo = 5%aa(0). (5)

In (3) we have also introduced Dirac’s brackets notations

(Paltas|Ps) = / e Pa(r)was(rs, 28)75(x0),

(olpa) = /Q Ar o (£3)Pa(x9).

In the above formulas summation over repeated indices
is meant.

The system under consideration is at equilibrium in
the grand canonical (GC) ensemble, = 1/kgT is the
inverse temperature (kg Boltzmann constant), u, is the
chemical potential of the ath species. Then, the GC par-
tition function can be written as

PO PR

N12>0 N2>0

X exp [ﬂvj%ls

E{va}] = ZN'/dF

Ny, 20

B N R
Ny — 5<Pa|waﬂ|pﬂ> + <Va|pa> ,

where 7, (r) = V4 + 15 — B14(r) is the local chemical po-
tential of the ath species and v, = B —3In Ay, AJT =
(2mma S~ /h?)/? is the inverse de Broglie thermal wave-
length. (dT") =[], dI'x,,, dT'n, = dr{drg ... drg; is the
element of the configurational space of N particles.

For a given volume V', Z[v,] is a function of the tem-
perature T and a log-convex functional of the local chem-
ical potentials v, (r®).

B. The collective variables representation

We introduce the collective variable p,(r) which de-
scribes the field of the number particle density of the
ath species. To this end we use the identity

o (5 (lulp)) = [ ool 5)
<o (3. )

In (7) the functional “delta function” dz [p] is defined
as [17]
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el = [ D exp (i (ulp) (8)

Using (8) we can present the Boltzmann factor which
does not include the RS interaction in the form

exp (; <ﬁawaﬁ|f’5>) ~ [Dopo
py)) O

1 .
x exp (5 (palwaslps) +i(wal {pa -
Inserting equation (9) in definition (7) of the GC parti-
tion function Z[v,] one obtains

=ltval] = [ P exp (=5 paluaslos)
< Tl{par)] (10)

where the Jacobian

T Pa:Tat] = /Dw exp (i{wapa))

X Zrs[{Va — iwa}] (11)

allows one for the passage from the microscopic vari-
ables r® (the Cartesian coordinates of particles) to the
collective variables p, (r) (fields of the number density of
particles). In (11) Egg[{Va — iwa }] = Ers[Z*] is the GC
partition function of an m-component RS

=nsl2') = Y 1y ZN2 ;N'/dl“

N1 >0 N2>0
HZ r;), (12)

where Z*(r) =[], Zi(r) = exp(v}(r)). Z}, is the activi-
ty of the species « associated with the dimensionless local
chemical potential v} (r) = 7,(r) — iws(r). It should be
noted that J[{pa, Vs }] does not depend on the pair inter-
action wqg(r;, r;) but only on the GC partition function
of the RS Egg[Z*] which is supposed to be known.

Equation (10) can also easily be recast in the form of
a standard statistical field theory, i.e. as

1

X exp

= [{va)] = / DpDw exp (~H[{Varpowa)]) . (13)

where the action H[{Vq, pa,wa}] of the CV field theory
reads as

H s paral] = 5 {paltvaslos) — i (walp)
— InZERgs [{Ua - iwa}] . (14)

Functional integrals which enter the above-mentioned
formulas can be given a precise meaning in the case where
the domain  is a cube of side L ( V = L3) with periodic
boundary conditions. This means that we restrict our-
selves to the fields p, (r) and w, (r) which can be written
as Fourier series

1 ikr
pa(r) = ﬁ Z Pk,a € k ) (15)

keA

and

1 .
=— Z Wico €5, (16)

keA

where A = (2m/L) Z? is the reciprocal cubic lattice.
The reality of p, (and w,) implies that, for k # 0
P—ka = Pi o (W_k o = wf ), Wwhere the star means com-
plex conjuéation. Then the normalized functional mea-
sure Dp (and Dw) is defined as [18]

pp=T] [] T2 (")

a keA
dpk,ozdpfk,a =2 d%pk,a dc\\fpk’a, k 75 0. (].8)
Equation (17) can be rewritten as
dpo,a dRpg,a dSpg,a
Dp = — 19
p H 11 - (19)

V2rV gy %

where the sum in the r.h.s. runs over only the half A*
of all the vectors of the reciprocal lattice A. We have for
Duw, respectively

dwy, dRwq.o dSw
Dw:” o ||—q°‘ L 20
V2V qeA TV (20)

Now let us present action (14) for the isotropic inter-
action potential wag(r) as follows

LI

a,f k

1> Y wkapra — MERs[{Fa — iwa}], (21)
a k

[{Vav Pas wa} pk,apfkﬁ

Here CV py o describes the kth mode of number densi-
ty fluctuations of the ath species. ®,5(k) = gﬁag(k),
where Wqg(k) is the Fourier transform of the interaction
potential wag(r).

In order to obtain another equivalent representation of
the action H[{Va, pa,wa}] we first distinguish the chem-
ical potential 0 of the particle of the species a in the
RS. To this end we put

Ty — iwe(r) = 12 —iw,/(r) (22)
and obtain
iwa (1) = Av, + 1w, (r)
with Av, = 7, — ). As a result, the action (or the

Hamiltonian) (21) can be written as
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1 ~ . - .
H[{Vaa Pas Woz}} = - Z Ayapkzﬂ,a + 5 Z Z (paﬂ(k)pk,ap—k,ﬁ - IZ Z CUk,oz/pk,oz —In :RS[{Vg - lwa/}}- (23)
a a k

a,0 k

We have obtained the exact representations of the grand partition function of a multicomponent system (egs.
(13)—(14), (21) and (23)) in terms of CVs p,(r), which are number density fields of the ath species particles (or
fluctuation modes of the ath species number density) We also stress that p,(r) and w,(r) are two real scalar fields
and that eqs. (13)—(14) (as well as eqgs. (21) and (23)) are valid for repulsive, attractive as well as arbitrary pair
interactions.

Besides the usual GC average (A)gc of a dynamic variable we introduce statistical field averages of the type

<A[{pa7wa}]>cv :E[{Va}}il /DPDW A{pa,watlexp (—H [{Va, pas wa }]) , (24)

where A [{pa,ws}] is a functional of the two CV fields p, and wy,.

III. CORRELATION FUNCTIONS
A. General relations

Let us write some important relations. First, according to [20,21] we introduce the ordinary and truncated (or
connected) density correlation functions

G o )1, ) = <H ﬁai<z’>> - TP

GC

(n),T _ 0" IOgE[{VOt}]

Gal..‘ozn [{VO&}](]" e 7n) - (SVal (1) L 61/0% (TL) . (25)
Our notation emphasizes the fact that the correlation functions (connected and not connected) are functionals of
the local chemical potential v, (r) and functions of the coordinates (1,2,...,n) = (r1,ra,...,r,). For the sake of
simplicity, we omit below the notations which indicate the functional dependence of the correlation functions of
Ve (r). In standard textbooks of liquid theory [16] the n-particle correlation functions are more frequently defined as
functional derivatives of = or log = with respect to the activities Z, = exp(v,) rather than with respect to the local
chemical potentials

,n) 1

pal...an(la 27 s

Z: (1)22,(2)... Zz_(n)

(e

pgl,..an(172v~-~vn) 1

Zr (0Z:,2)... 25 (n)  E625,(1)625,(2)...025 (n)°

We also define the partial distribution function
Jos...a, (1,2,...,n) and the partial correlation functions
hay..on(1,2,...,n) [20]

n) _ pal...an(l,z,...,n)
7 Pay (1)pas(2) - - - pa, ()

ga1...(x"(1,27... (28)

and

T
pa e (1,2,...’71)
hOé Ol 172,...7’]7, = 1 n ) 29
1 ( ) Pal(l)f’w@)--ﬂan(n) ( )

Expressions (25) and (28)—(29) differ by the terms
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onE
== 2
2625 (1)02;,(2)...0Z5 (n)’ (26)
6"InZ= (27)

(

involving products of delta functions. For instance, for
n = 2 and for a homogeneous system one has

G&%(LQ) = pappdas(1,2) + padasd(1,2),

G%’T(l,?) = papphas(1,2) + padasd(1,2), (30)

where p,, is the equilibrium density of the species a.. Be-
sides, functions heg(r) and g.s(r) are connected by the
relation hag(r) = gap(r) — 1 for a homogeneous case.
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B. CV field correlations Gor (. m) =G (1,..,n)
. . - GimT i
Let us consider the correlations of fields p, and w,. Z,L[n Pay - Zl’ vim)

We start with the definitions of the correlation functions ()T (
Wary - Way

am
| IO )| [N )

m<n

17""”):G(n) wan(17"'7n)

Weq oo

(n) vo}](1,...,n) = Wa, (i . (31
PerLan [{ra)] ) H @ ov (3D where the sum of products is carried out over all possible
partitions of the set (1,...,n) into subsets of cardinality

and their truncated (connected) parts m < n.

a. Correlation functions G,,a1 pa, - Now we introduce the modified partition function
=" {va. Ja}] = [ DoDw exp(~Hoy [{vas ] + (Falpa)) (33)

where J, is a real scalar field and Z! [{v,, J,}] is the generator of field correlation functions G(PZ)1~~~Pan [19]. As a
result, we have

1 5" E {Va, Ju}]
G (L. n) = © T
gt el ) = 1 3 ST o
5" 1log 2 {va, Ja )]
G T v l(1,...,n) = w o ) 34
Paq---Pan [{ }]( ) 5']041(1) B -5Jan (n) Jay=0 ( )
The simplest way to obtain the relations between the G(") wopan {Va }](1, ..., n) and the density correlation functions
is to start from definition (25). One has
1 0" E[{va}] 1 / 1
Govan (b0 = Z 50y v ) — Siay) ] PP o0 (g palialos)

o ERS[{va — iwa}]

+i{Walpa)) (;Zilzi)[{yaéuiwfn};] {Va /DPDw exp ( <Pa|waﬁ|ﬂﬁ> <wa|Pa>) (i)néwm(l) - dwe ()

where we introduce the notation w3 = —fwas and use the equality

0" Ers[{Pa — iwa )] — G 00" Ers[{Ta — iwa }]
o, (1)... 01y, (n) (©) dwe, (1) ... 0w, (n) (35)

Performing now n integral by parts yields

{Va} /Dpr exp (; <pa|w2ﬁ|/76> +InErs {70 — iwa}]> 5(45;; e(XII; <1 <‘:;Zapa(>n))

= <H Pa; (Z)> :
i=1 cv

We have just proved the expected result

ng?)an [{Voc}] (17 e ,Tl) = G(pz)l...pan [{Voz}] (1’ s 7”) . (36)

am o (1,...,n)=

a1...0n

Obviously, the following relation is also valid for the truncated (connected) correlation functions

Ggi).i.j;vn {va}](1,...,n) = E)Z)lT {va}l (1,...,n). (37)
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b. Correlation functions Gwa1 wa,, - Let us define the modified partition function
22 [{va, Ja}] = /DPDW exp (=Hov {Vas pa; wa}] + (Jalwa)) (38)
where J,, is a real scalar field. =2 [{v,, J. }] is the generator of the functions G‘(ﬂ)l___wan and we thus have

. 1 8" E2[{Va, Ja }]
G el ) = ey oy T )

8" log Z2[{Va, Ju }]
0Jay(1)...0J,, (1)

)

Jo, =0
i

o Va1, n) = (39)

(4}(11

Ja; =0

In order to relate the correlation functions Gﬁ,’;)l‘,,wan and Ggﬁ)man(l, ...,n) we perform the change of variables

Pa — Pa+1J, in Eq. (38). The functional Jacobian of the transformation is of course equal to unity and one obtains
the relation

- 1 . — -
E2 {Va, Ju}] = —5 <Ja|waﬂ|J5> +In=! [{I/a,lwaﬁ *Jg}} , (40)

where the star x means space convolution and Z! is defined in (33). The idea is to perform now n successive functional
derivatives of both sides of Eq. (40) with respect to J,. Since it follows from expression (34) that

6™ log ' [{va, w5 * J5}]

—in 1,1 G T o
5Ja1(1) Ce (SJan (n) I —o ! alal’( ) O‘no‘ (n n ) PoysPa, [{1/ }]( )’
(41)
one obtains
<w(¥1(1)>CV =iw ozlal/ (1 1 ) <p041' (1l)>CV ’
£J2o?1T g [{V }] ( ) 041042(1 2) alalz (]‘ ]' ) 042042/ (27 2/)’ GE)%);,’J;QT [{I/a}] (1/’ 2/) ’

GOt a1 (1) =" w0, (L)l o (0, )G T e} (1), n> 3.

IV. THE PERTURBATION THEORY 7,(1) =M (1) = pBS[{7, — iwa }](1),
A. Mean-field theory i (1) = @ap(1, 2)?@(2)7 (44)
Let us consider the functional of the GC partition func-  where pZ9[{D, — iw,}](i) denotes the ath species num-

tion (13) with the action given by Eq. (21) for the case  ber density of the RS fluid with the chemical potentials
of an isotropic interaction potential was(r). At the MF {7, —iw, }. For a homogeneous system (44) can be rewrit-

level one has [19] ten in the form
Zrl{va}] = exp(—H[{Va, P Ta ), (12) Po = PP = pRS[{1 — @a}),
where, for p, and w,, the action is stationary, i.e. .
0o = pPas(0), (45)
§ H[{va: pa,wal] 6 H[{va, pa, wa ]
g = g = It follows from the stationary condition (43) that the MF
PR _ Wa _ L
(Poa) (Po:a) density is given by
=0. (43) MFE [{1/ }] (1) _ (ShlEMF [{V(XH

Replacing the CV action by its expression (21) in o (1)
Eq. (43) leads to implicit equations for p,, and W,: = P {74 —iwa}] (1), (46)
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and that the MF grand potential reads

In ZpmF [{Va}] = InZ=Rg [{Pa - iwa}]
+ § (P Twasloy™) - (47)

The MF Kohn-Scham free energy of a multicomponent
system defined as the Legendre transform

BAvr [{pa}] = Sup {(palva) —InEmr [{ral}l},  (48)

has the following form in the MF approximation

5t [{pa}] = FAns [{pa)] ()
5 alaslp) =5 [ dr wan(O)palr).

Using the formulas

(5 hl:MF [{Va}}
5’/&1( ) 0y (2)

O\t s [P} (1,2) = _m 7

where (1,2,...,n) = (r1,r2,...,Ty), one can get the
well-known expressions for the partial pair correlation
and vertex (or direct correlation) functions in the MF

2),T
Gt o v} (1,2)

approximation. Cl(v?%’al% [{pa}] (1,2) is obtained readily
from expression (49)

2 (2),T-1
CIE/II)?,aﬁ(l’Q) = _GM%F B (1 2)

= CSS@,B(L 2) - waﬁ(la 2),

where CI({ZS) aﬂ(172) means the exact two-point proper
vertex of the RS fluid at the mean field density pMF.
The two-point vertex function C’MF ap 18 connected to

the usual direct correlation function of the theory of lig-
uids CMF,aﬂ(l 2)

Cls/?l):‘,aﬁ(172) = cmF,ap(1,2) — 0apd(1,2).

1
Pa(l)

In order to calculate Gﬁ?ﬂﬁ(l, 2) we start with equation

_ Opa " {7 — i@a})(1)
Ivp(2)
_ e {7 — wa}](1)
Ivp(2) '

pR5[{v4}] depends on v, directly but also through the
mean field @, . Therefore, one has

(50)

RSIUD, — iw,
OpS {7 —iwa}](1)]| 0w, (3)
* 9%, (3) o2, Y

Taking into account (44) and (50) we obtain finally

Gt 5(1,2) = GRT 1(1,2)

2),T
= BN oy (13353, 4)Glis 59(4,2)- (52)
(52) can be rewritten in a matricial form as [12]

GO (1,2) =GR (.2)

— GO (1,3)w3,4G0 T (4,2),  (53)

where GMF(RS (i,7) denotes the matrix of elements

Gl(\iF(RS aﬁ(l,j) and w(i, j) that of elements Swags(%, j).
The formal solution of Eq. (53) is then

1
G 1,2) = (L+wxGRT) «GRT (12, (54)

“ 77

where 1 = §,30(1,2) is the unit operator and the
denotes a convolution in space.

B. Beyond the MF approximation

In order to take into account fluctuations we present
CVs p, and w,, in the form:
Pa(l) =Po +0pa(l), wa(l) =Wa + dwa(l),

where the quantities with a bar are given by (44).

The function In Ers[{7,; —iws }]| in (14) can be presented in the form of the cumulant expansion

InERrs[{Ta — wa}] = Z % Z

n>1

where My, . 0, (1,...

,n) is the nth cumulant defined by

/d1.../dnmm,__%(1,...,n)awal(l)...aw%(n), (55)
1 0"InZrs{Va —iwa}]
= 0 000, (1) -0ty (1) |, o %6)
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As is seen from (56) and (25), the nth cumulant is equal to the n-particle partial truncated (connected) correlation
function at w, = w,. The expressions for the several cumulants given in the Cartesian coordinate phase space are as
follows

Mo, (1) = pay (1), (57)
Maas(1,2) = pa, (1)Pas (2)haras (1,2) + pay (1)da,a,0(1,2)], (58)
Masazas (1,2, 3) = pay (1)Pas (2)Pas (3)harazas (1,2, 3) + pay (1) pas (2)hayas (15 2)0a1a46(1,3)
+001 (1) pas(3)hasas (1,3)0a,a:0(1,2) 4+ pas (2)pas (3) Pagas (2:3)darasd(1,2)

+Pay (1)0a;050a:a50(1,2)4(1,3), (59)

ma1a2a3a4(1’2»374) = pal(1)/’a2(2)pa3(3)pa4(4)ha1azasa4 (1,2,3,4) Z Pa; (i pa] pak(k)haioéjak(i?j? k)

i,7,k,1
X 00,0 Z Pai (1) pay () ha;an, (i, k)da;a;0aya,0(1, 7)0(k, 1) + Z Pa; (1) pay (1)
,3,k;1 i,4,k,1
X haga (15 1)000, 00000 (3,7)0(0, k) + pay (1)0a; 05001 050010,0(1,2)(1,3)5(1, 4). (60)

In the above formulas p,, (i) is the local density of the a;th species in the RS and hq,..q, (1,...,n) is the n-particle
partial correlation function of an m-component RS, defined in the GC ensemble (see Egs. (28)—(29)):

ha1a2(17 2) = ga1a2(17 2) — Yoy (1).9(12 (2)7

hoé1042043 (]-7 2, 3) = Yajazas (]-7 2, 3) — Jajan (17 2)9&3 (3)
— Joras(1,3)905(2) = Jasas (253)9as (1) + 290, (1)gas (2)gas (3)

ha1a2a3a4(17 2a 3a 4) = ga1a2a3a4(17 27 37 4) T e (61)

In the case of a homogeneous system a Fourier image of the nth cumulant can be presented in the form

mal"~a'rL (k17 s 7kn) = (<N0t1>’ s <Nan>)1/n5a1~~~an(k1’ R kn)6k1+m+kn7 (62)

where So, . o, (k1,...,k,) is the n-particle partial structure factor of the RS.
Substituting (55) in (13) one can obtain

Z[{va}] = Zns [{Fa — i@a)] / DépDiw

X E)JTalman(L...,n)éwal(l)...5wan(n)} . (63)
Integrating in (63) over dw,, (i) we have in the homogeneous case

E{va}] = EmrE’ /(d5p eXP{ Z > Lap()dpradp-tcs + Y Haldpa) } (64)

a,0 k n>3
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c. Gaussian approzimation. In the Gaussian approx-
imation, which corresponds to taking into account in
(64) only the terms with n < 2 (H, = 0), we have
Lopg(k) = Cop(k), where Cop(k) are the Fourier trans-
forms of the partial direct correlation functions. Af-
ter integrating in (64) we arrive at the GPF of an m-
component system in the random phase approximation
(RPA).

Using the Gaussian averages one can develop a loop
expansion of Z[{v,}] in the CV representation as it was
done recently for a one-component fluid [13].

V. CONCLUSION

Using the CV method we have reconsidered the basic
relations of statistical field theory of a multicomponent

non-homogeneous fluid that follow from this approach.
Contrary to the KSSHE theory [12] the corresponding
CV action depends on two sets scalar fields: the field p,
connected to the number density of the ath species par-
ticles and the field w, conjugated to p,. We derive the
explicit expressions for the CV field correlations and ob-
tain their relation to the density correlation functions of
a multicomponent system.

Contrary to the theories based on the Stratonovich—
Hubbard transformation [2,3], the CV representation has
some important advantages which could be very useful
for more complicated models of fluids. In particular, it is
valid for an arbitrary pair potential (including the pair
interaction wqg(1,2) which does not possess an inverse)
and is easily generalized for the case of n-body interpar-
ticle interactions with n > 2.
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CTATUCTUKO-IIOJIBOBA TEOPIA OJId BATATOKOMIIOHEHTHOTO IIJIVTHY:
METO/J KOJIEKTUMBHMX 3MIHHUX

O. Hanaran®, I. Mpuraox®!, 2K.-M. Kaiioss>
L Inemumym gisuru xondencosarux cucmem HAH Yrpairnu
eys. Ceenuiuyvkoeo, 1, JIveis, 79011, Ykpaina
2 JTa6opamopis meopemuunoi @isuru,
Vuisepcumem Ilapi-Crod, 91405, Opcet, Pparuyis

BukopucroBytoun Mero); kKojnekTuBHux 3MiHHuX (K3), po3risiHyTo OCHOBHI CHIBBIJHOIIEHHSI CTATHUCTUKO-

MOJIBOBOT TEOPil GaraTOKOMIIOHEHTHOI HEOMHOPiHOI cuctemu. [lokazano, 1o [ist, oTrpuMaHa B mpezcTaBiaeHHi K3,

3aJIeXKUTh BiJl BOX HAOOPIB CKAJIAPHUX IOJIB, & caMe, IOJIB pPq, AKI OMUCYIOTH (DIIIOKTYAIll JOKAJIBHOI I'yCTH-
HU YaCTHHOK COPTY (¢ 1 IOJIB Wy, CHPSIPKEHUX JI0 Po. SHANJEHO sIBHI BUPa3W JJIsl KOPEJAIIHHUX (DYHKIH OB
K3, a Takox ix 3B’s130K i3 KopensmiftauMu dyHKIisSsMu rycTuHu. ChopMyIb0BaHO TEOpio 30ypeHb 1 JeTaJabHO

PO3TJIAHYTO HaOJIN>KEeHH S CepeaHboro I10Jid.
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