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Using the collective variables (CV) method the basic relations of statistical field theory of a
multicomponent non-homogeneous fluids are reconsidered. The corresponding CV action depends
on two sets of scalar fields: the fields ρα connected to the local density fluctuations of the αth species
of particles and those ωα conjugated to ρα. Explicit expressions for the CV field correlations and
their relation to the density correlation functions are found. The perturbation theory is formulated
and a mean field level (MF) of this theory is considered in detail.
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I. INTRODUCTION

In recent years much attention has been focused on
an issue of the phase transitions in multicomponent flu-
id mixtures, especially in ionic fluids. In spite of signif-
icant progress in this field, such systems are far from
being completely understood. The investigation of com-
plex models is of great importance in understanding the
nature of critical and phase behavior of real ionic fluids
which demonstrate both the charge and size asymme-
try. The powerful tools for the study of multicomponent
continuous systems are those based on the functional
methods. In many cases the partition function of mul-
ticomponent models (see, e. g. [1]) can be re-expressed
as a functional integral after performing the Hubbard-
Stratonovich transformation [2, 3], a simple device pro-
posed in the 1950s. Nearly at the same time another
method, the method of collective variables (CVs), that
allows in an explicit way to construct a functional repre-
sentation for many-particle interacting systems was de-
veloped [4,5]. The method proposed initially in the 1950s
[4–6] for the description of the classical charged many
particle systems and developed later for the needs of the
phase transition theory [7–10] was in fact one of the first
successful attempts to address the problems of statisti-
cal physics using the functional integral representation.
Recently, the rigorous scalar field KSSHE (Kac–Siegert–
Stratonovich–Hubbard–Edwards) theory [11, 12], which
uses the Stratonovich–Hubbard transformation, was de-
veloped to describe the phase equilibria in simple and
ionic fluids. As was shown [13, 14], both groups of theo-
ries are in close relation.

In [13] the CV representation of simple (one-
component) fluids was reexamined from the point of view

of statistical field theory. Our goal here is to derive the
exact functional representation for the grand canonical
partition function of a non-homogeneous multicompo-
nent fluid. We reformulate the method of CV in real
space and derive the CV action that depends on two sets
of scalar fields: the fields {ρα} connected to the densities
of the αth species and the fields {ωα} conjugate to {ρα}.
We study the correlations between these fields as well as
their relations to the density correlations of the fluid.

The CV method is based on: (i) the concept of collec-
tive coordinates being appropriate for the physics of the
system considered (see, for instance, [15]) and (ii) the
integral identity allowing to derive an exact functional
representation for the configurational Boltzmann factor.
Being applied to the continuous system the CV method
uses the idea of the reference system (RS), one of the ba-
sic ideas of the liquid state theory [16]. The idea consists
in the splitting of an interparticle interaction potential
into two parts: the potential of a short-range repulsion
which describes the mutual impenetrability of the par-
ticles and the potential describing mainly the behaviour
at moderate and large distances. The equilibrium prop-
erties of the system interacting via a short-range repul-
sion are assumed to be known. Therefore, this system
can be regarded as the “reference” system. The remain-
der of the interaction is described in the phase space of
CVs (collective coordinates). The fluid of hard spheres is
most frequently used as the RS in the liquid state theo-
ry since its thermodynamic and structural properties are
well known. In this paper we derive the functional rep-
resentation for the grand canonical partition function of
a multicomponent fluid which includes both short-range
and long-range interactions.

∗This paper is dedicated to Professor Ivan Vakarchuk on the occasion of his 60th birthday
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The paper is organized as follows. In Section II
we obtain the exact expression for the functional of
the grand partition function of a multicomponent non-
homogeneous mixture. Section III is devoted to the study
of the correlations of CVs fields and their relation to the
density correlation functions of a multicomponent fluid.
In Section IV we formulate the perturbation theory. The
MF level of the theory is considered in detail.

II. THE FUNCTIONAL REPRESENTATION
OF THE GRAND PARTITION FUNCTION

A. The model

Let us consider a classical m-component system con-
sisting of N particles among which there exist N1 par-
ticles of species 1, N2 particles of species 2, . . . and Nm

particles of speciesm. The potential energy of the system
is assumed to be of the form

UN1...Nm =
1
2

m∑
α,β

N∑
i 6=j

Uαβ(rα
i , r

β
j ) +

m∑
α=1

N∑
i=1

ψα(rα
i ), (1)

where Uαβ(rα
i , r

β
j ) denotes the interaction potential of

two particles and the second term is the potential ener-
gy due to external forces.

We present the pair interaction potential Uαβ(rα
i , r

β
j )

as

Uαβ(rα
i , r

β
j ) = v0

αβ(rα
i , r

β
j ) + wαβ(rα

i , r
β
j ), (2)

where v0
αβ(rα

i , r
β
j ) is a potential of a short-range repulsion

that can be chosen as an interaction between two hard
spheres of respective diameters σα and σβ , respective-
ly we call the m-component system with the interaction
v0

αβ(rα
i , r

β
j ) a reference system (RS). The thermodynam-

ic and structural properties of the RS are assumed to be
known. wαβ(rα

i , r
β
j ) is some potential which can describe

both repulsion (e. g. soft repulsion) and attractive inter-
actions. In general,wαβ(rα

i , r
β
j ) can be presented in the

form

wαβ(rα
i , r

β
j ) = wR

αβ(rα
i , r

β
j ) + wA

αβ(rα
i , r

β
j ),

where wR
αβ(rα

i , r
β
j ) and wA

αβ(rα
i , r

β
j ) are repulsive and at-

tractive parts of the interaction potential wαβ(rα
i , r

β
j ).

Since wαβ(rα
i , r

β
j ) are arbitrary in the core, i. e. for r ≤

σαβ ≡ (σα +σβ)/2, we assume that the wαβ(rα
i , r

β
j ) have

been regularized in such a way that their Fourier trans-
forms w̃αβ(k) are well-behaved functions of ki and that
wαβ(0) are finite quantities. We denote by Ω the domain
of volume V occupied by particles.

We present the potential energy UN1...Nm as follows

UN1...Nm
= VRS

N1...Nm
+

1
2
〈ρ̂α|wαβ |ρ̂β〉

+ 〈ψα|ρ̂α〉 −Nαν
S
α , (3)

where

ρ̂α(r) =
Nα∑
i=1

δ(r− rα
i ) (4)

is the microscopic density of the αth species in a giv-
en configuration and ψα(r) is some external one-body
potential acting on particles of species α. The following
notations are introduced in (3): VRS

N1...Nm
is the contribu-

tion from an m-component RS, νS
α is the self-energy of

the αth species

νS
α =

1
2
wαα(0). (5)

In (3) we have also introduced Dirac’s brackets notations

〈ρ̂α|wαβ |ρ̂β〉 =
∫

Ω

drα
1 drβ

2 ρ̂α(rα
1 )wαβ(rα

1 , r
β
2 )ρ̂β(rβ

2 ),

〈ψα|ρ̂α〉 =
∫

Ω

drα
1 ψα(rα

1 )ρ̂α(rα
1 ).

In the above formulas summation over repeated indices
is meant.

The system under consideration is at equilibrium in
the grand canonical (GC) ensemble, β = 1/kBT is the
inverse temperature (kB Boltzmann constant), µα is the
chemical potential of the αth species. Then, the GC par-
tition function can be written as

Ξ[{να}] =
∑

N1≥0

1
N1!

∑
N2≥0

1
N2!

. . .
∑

Nm≥0

1
Nm!

∫
(dΓ) (6)

× exp
[
−βVRS

N1...Nm
− β

2
〈ρ̂α|wαβ |ρ̂β〉+ 〈να|ρ̂α〉

]
,

where να(r) = να +νS
α −βψα(r) is the local chemical po-

tential of the αth species and να = βµα−3 ln Λα, Λ−1
α =

(2πmαβ
−1/h2)1/2 is the inverse de Broglie thermal wave-

length. (dΓ) =
∏

α dΓNα , dΓNα = drα
1 drα

2 . . .dr
α
Nα

is the
element of the configurational space of N particles.

For a given volume V , Ξ[να] is a function of the tem-
perature T and a log-convex functional of the local chem-
ical potentials να(rα).

B. The collective variables representation

We introduce the collective variable ρα(r) which de-
scribes the field of the number particle density of the
αth species. To this end we use the identity

exp
(

1
2
〈 ρ̂|w|ρ̂ 〉

)
=

∫
Dρ δF [ρ− ρ̂ ]

× exp
(

1
2
〈 ρ|w|ρ 〉

)
. (7)

In (7) the functional “delta function” δF [ρ] is defined
as [17]
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δF [ρ] ≡
∫
Dω exp (i 〈ω|ρ〉) , (8)

Using (8) we can present the Boltzmann factor which
does not include the RS interaction in the form

exp
(

1
2
〈ρ̂α|wαβ |ρ̂β〉

)
=

∫
DρDω

× exp
(1

2
〈ρα|wαβ |ρβ〉+ i 〈ωα| {ρα − ρ̂α}〉

)
. (9)

Inserting equation (9) in definition (7) of the GC parti-
tion function Ξ[να] one obtains

Ξ [{να}] =
∫
Dρ exp

(
−β

2
〈ρα|wαβ |ρβ〉

)
× J [{ρα, να}] , (10)

where the Jacobian

J [{ρα, να}] =
∫
Dω exp (i〈ωα|ρα〉)

× ΞRS [{να − iωα}] (11)

allows one for the passage from the microscopic vari-
ables rα (the Cartesian coordinates of particles) to the
collective variables ρα(r) (fields of the number density of
particles). In (11) ΞRS[{να − iωα}] = ΞRS[Z∗] is the GC
partition function of an m-component RS

ΞRS[Z∗] =
∑

N1≥0

1
N1!

∑
N2≥0

1
N2!

. . .
∑

Nm≥0

1
Nm!

∫
(dΓ)

× exp
(
−βVRS

N1...Nm

) ∏
i

Z∗(ri), (12)

where Z∗(r) =
∏

α Z
∗
α(r) = exp(ν∗α(r)). Z∗α is the activi-

ty of the species α associated with the dimensionless local
chemical potential ν∗α(r) = να(r) − iωα(r). It should be
noted that J [{ρα, να}] does not depend on the pair inter-
action wαβ(ri, rj) but only on the GC partition function
of the RS ΞRS[Z∗] which is supposed to be known.

Equation (10) can also easily be recast in the form of
a standard statistical field theory, i. e. as

Ξ [{να}] =
∫
DρDω exp (−H[{να, ρα, ωα}]) , (13)

where the action H[{να, ρα, ωα}] of the CV field theory
reads as

H [{να, ρα, ωα}] =
β

2
〈ρα|wαβ |ρβ〉 − i 〈ωα|ρα〉

− ln ΞRS [{να − iωα}] . (14)

Functional integrals which enter the above-mentioned
formulas can be given a precise meaning in the case where
the domain Ω is a cube of side L ( V = L3) with periodic
boundary conditions. This means that we restrict our-
selves to the fields ρα(r) and ωα(r) which can be written
as Fourier series

ρα(r) =
1
L3

∑
k∈Λ

ρk,α e
ikr , (15)

and

ωα(r) =
1
L3

∑
k∈Λ

ωk,α e
ikr , (16)

where Λ = (2π/L) Z3 is the reciprocal cubic lattice.
The reality of ρα (and ωα) implies that, for k 6= 0
ρ−k,α = ρ?

k,α (ω−k,α = ω?
k,α), where the star means com-

plex conjugation. Then the normalized functional mea-
sure Dρ (and Dω) is defined as [18]

Dρ ≡
∏
α

∏
k∈Λ

dρk,α√
2πV

(17)

dρk,αdρ−k,α = 2 d<ρk,α d=ρk,α, k 6= 0 . (18)

Equation (17) can be rewritten as

Dρ =
∏
α

dρ0,α√
2πV

∏
q∈Λ?

d<ρq,α d=ρq,α

πV
, (19)

where the sum in the r. h. s. runs over only the half Λ?

of all the vectors of the reciprocal lattice Λ. We have for
Dω, respectively

Dω =
∏
α

dω0,α√
2πV

∏
q∈Λ?

d<ωq,α d=ωq,α

πV
. (20)

Now let us present action (14) for the isotropic inter-
action potential wαβ(r) as follows

H[{να, ρα, ωα}] =
1
2

∑
α,β

∑
k

Φ̃αβ(k)ρk,αρ−k,β

−i
∑
α

∑
k

ωk,αρk,α − ln ΞRS[{ν̄α − iωα}], (21)

Here CV ρk,α describes the kth mode of number densi-
ty fluctuations of the αth species. Φ̃αβ(k) = β

V w̃αβ(k),
where w̃αβ(k) is the Fourier transform of the interaction
potential wαβ(r).

In order to obtain another equivalent representation of
the action H[{να, ρα, ωα}] we first distinguish the chem-
ical potential ν0

α of the particle of the species α in the
RS. To this end we put

να − iωα(r) = ν0
α − iωα

′(r) (22)

and obtain

iωα(r) = ∆να + iωα
′(r)

with ∆να = να − ν0
α. As a result, the action (or the

Hamiltonian) (21) can be written as
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H[{να, ρα, ωα}] = −
∑
α

∆ναρk=0,α +
1
2

∑
α,β

∑
k

Φ̃αβ(k)ρk,αρ−k,β − i
∑
α

∑
k

ωk,α
′ρk,α − ln ΞRS[{ν0

α − iωα
′}]. (23)

We have obtained the exact representations of the grand partition function of a multicomponent system (eqs.
(13)–(14), (21) and (23)) in terms of CVs ρα(r), which are number density fields of the αth species particles (or
fluctuation modes of the αth species number density) We also stress that ρα(r) and ωα(r) are two real scalar fields
and that eqs. (13)–(14) (as well as eqs. (21) and (23)) are valid for repulsive, attractive as well as arbitrary pair
interactions.

Besides the usual GC average 〈A〉GC of a dynamic variable we introduce statistical field averages of the type

〈A [{ρα, ωα}]〉CV = Ξ [{να}]−1
∫
DρDω A [{ρα, ωα}] exp (−H [{να, ρα, ωα}]) , (24)

where A [{ρα, ωα}] is a functional of the two CV fields ρα and ωα.

III. CORRELATION FUNCTIONS

A. General relations

Let us write some important relations. First, according to [20, 21] we introduce the ordinary and truncated (or
connected) density correlation functions

G(n)
α1...αn

[{να}](1, . . . , n) =

〈
n∏

1=1

ρ̂αi
(i)

〉
GC

=
1

Ξ[να]
δn Ξ[{να}]

δνα1(1) . . . δναn
(n)

,

G(n),T
α1...αn

[{να}](1, . . . , n) =
δn log Ξ[{να}]

δνα1(1) . . . δναn(n)
. (25)

Our notation emphasizes the fact that the correlation functions (connected and not connected) are functionals of
the local chemical potential να(r) and functions of the coordinates (1, 2, . . . , n) ≡ (r1, r2, . . . , rn). For the sake of
simplicity, we omit below the notations which indicate the functional dependence of the correlation functions of
να(r). In standard textbooks of liquid theory [16] the n-particle correlation functions are more frequently defined as
functional derivatives of Ξ or log Ξ with respect to the activities Zα = exp(να) rather than with respect to the local
chemical potentials

ρα1...αn
(1, 2, . . . , n)

Z∗α1
(1)Z∗α2

(2) . . . Z∗αn
(n)

=
1
Ξ

δnΞ
δZ∗α1

(1)δZ∗α2
(2) . . . δZ∗αn

(n)
, (26)

ρT
α1...αn

(1, 2, . . . , n)
Z∗α1

(1)Z∗α2
(2) . . . Z∗αn

(n)
=

1
Ξ

δn ln Ξ
δZ∗α1

(1)δZ∗α2
(2) . . . δZ∗αn

(n)
. (27)

We also define the partial distribution function
gα1...αn

(1, 2, . . . , n) and the partial correlation functions
hα1...αn

(1, 2, . . . , n) [20]

gα1...αn
(1, 2, . . . , n) =

ρα1...αn
(1, 2, . . . , n)

ρα1(1)ρα2(2) . . . ραn
(n)

(28)

and

hα1...αn(1, 2, . . . , n) =
ρT

α1...αn
(1, 2, . . . , n)

ρα1(1)ρα2(2) . . . ραn(n)
. (29)

Expressions (25) and (28)–(29) differ by the terms

involving products of delta functions. For instance, for
n = 2 and for a homogeneous system one has

G
(2)
αβ(1, 2) = ραρβgαβ(1, 2) + ραδαβδ(1, 2),

G
(2),T
αβ (1, 2) = ραρβhαβ(1, 2) + ραδαβδ(1, 2), (30)

where ρα is the equilibrium density of the species α. Be-
sides, functions hαβ(r) and gαβ(r) are connected by the
relation hαβ(r) = gαβ(r)− 1 for a homogeneous case.
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B. CV field correlations

Let us consider the correlations of fields ρα and ωα.
We start with the definitions of the correlation functions

G(n)
ρα1 ...ραn

[{να}](1, . . . , n) =

〈
n∏

i=1

ραi
(i)

〉
CV

,

G(n)
ωα1 ...ωαn

[{να}](1, . . . , n) =

〈
n∏

i=1

ωαi
(i)

〉
CV

, (31)

and their truncated (connected) parts

G(n),T
ρα1 ...ραn

(1, . . . , n) = G(n)
ρα1 ...ραn

(1, . . . , n)

−
∑ ∏

m<n

G(m),T
ρα1 ...ραm

(i1, . . . , im) ,

G(n),T
ωα1 ...ωαn

(1, . . . , n) = G(n)
ωα1 ...ωαn

(1, . . . , n)

−
∑ ∏

m<n

G(m),T
ωα1 ...ωαm

(i1, . . . , im) , (32)

where the sum of products is carried out over all possible
partitions of the set (1, . . . , n) into subsets of cardinality
m < n.

a. Correlation functions G(n)
ρα1 ...ραn

. Now we introduce the modified partition function

Ξ1 [{να, Jα}] =
∫
DρDω exp (−HCV [{να, ρα, ωα}] + 〈Jα|ρα〉) , (33)

where Jα is a real scalar field and Ξ1 [{να, Jα}] is the generator of field correlation functions G(n)
ρα1 ...ραn

[19]. As a
result, we have

G(n)
ρα1 ...ραn

[{να}](1, . . . , n) =
1

Ξ1[{να}]
δn Ξ1[{να, Jα}]

δJα1(1) . . . δJαn
(n)

∣∣∣∣
Jαi

=0

,

G(n),T
ρα1 ...ραn

[{να}](1, . . . , n) =
δn log Ξ1[{να, Jα}]
δJα1(1) . . . δJαn(n)

∣∣∣∣
Jαi

=0

. (34)

The simplest way to obtain the relations between the G(n)
ρα1 ...ραn

[{να}](1, . . . , n) and the density correlation functions
is to start from definition (25). One has

G(n)
α1...αn

(1, . . . , n) =
1

Ξ[{να}]
δn Ξ[{να}]

δνα1(1) . . . δναn
(n)

=
1

Ξ[{να}]

∫
DρDω exp

(
1
2

〈
ρα|w∗αβ |ρβ

〉
+i 〈ωα|ρα〉)

δn ΞRS[{να − iωα}]
δνα1(1) . . . δναn

(n)
=

1
Ξ[{να}]

∫
DρDω exp

(
1
2

〈
ρα|w∗αβ |ρβ

〉
+ i 〈ωα|ρα〉

)
(i)n δ

n ΞRS[{να − iωα}]
δωα1(1) . . . δωαn

(n)
,

where we introduce the notation w∗αβ = −βwαβ and use the equality

δn ΞRS[{να − iωα}]
δνα1(1) . . . δναn

(n)
= (i)n δ

n ΞRS[{να − iωα}]
δωα1(1) . . . δωαn

(n)
. (35)

Performing now n integral by parts yields

G(n)
α1...αn

(1, . . . , n) =
(−i)n

Ξ[{να}]

∫
DρDω exp

(
1
2

〈
ρα|w∗αβ |ρβ

〉
+ lnΞRS[{να − iωα}]

)
δn exp (i 〈ωα|ρα〉)
δωα1(1) . . . δωαn

(n)

=

〈
n∏

i=1

ραi (i)

〉
CV

.

We have just proved the expected result

G(n)
α1...αn

[{να}] (1, . . . , n) = G(n)
ρα1 ...ραn

[{να}] (1, . . . , n) . (36)

Obviously, the following relation is also valid for the truncated (connected) correlation functions

G(n),T
α1...αn

[{να}] (1, . . . , n) = G(n),T
ρα1 ...ραn

[{να}] (1, . . . , n) . (37)
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b. Correlation functions G(n)
ωα1 ...ωαn

. Let us define the modified partition function

Ξ2 [{να, Jα}] =
∫
DρDω exp (−HCV [{να, ρα, ωα}] + 〈Jα|ωα〉) , (38)

where Jα is a real scalar field. Ξ2 [{να, Jα}] is the generator of the functions G(n)
ωα1 ...ωαn

and we thus have

G(n)
ωα1 ...ωαn

[{να}](1, . . . , n) =
1

Ξ2[{να]}
δn Ξ2[{να, Jα}]

δJα1(1) . . . δJαn
(n)

∣∣∣∣
Jαi

=0

,

G(n),T
ωα1 ...ωαn

[{να}](1, . . . , n) =
δn log Ξ2[{να, Jα}]
δJα1(1) . . . δJαn(n)

∣∣∣∣
Jαi

=0

. (39)

In order to relate the correlation functions G(n)
ωα1 ...ωαn

and G
(n)
α1...αn(1, . . . , n) we perform the change of variables

ρα → ρα + iJα in Eq. (38). The functional Jacobian of the transformation is of course equal to unity and one obtains
the relation

ln Ξ2 [{να, Jα}] = −1
2

〈
Jα|w∗αβ |Jβ

〉
+ lnΞ1

[
{να, iw∗αβ ? Jβ}

]
, (40)

where the star ? means space convolution and Ξ1 is defined in (33). The idea is to perform now n successive functional
derivatives of both sides of Eq. (40) with respect to Jα. Since it follows from expression (34) that

δn log Ξ1[{να, iw∗αβ ? Jβ}]
δJα1(1) . . . δJαn

(n)

∣∣∣∣∣
Jαi

=0

= inw∗α1α1′ (1, 1
′) . . . w∗αnαn′ (n, n

′)G(n),T
ρα1′ ...ρα

n′
[{να}](1′, . . . , n′),

(41)

one obtains

〈ωα1(1)〉CV = i w∗α1α1′ (1, 1
′)

〈
ρα1′ (1′)

〉
CV

,

G(2),T
ωα1ωα2

[{να}] (1, 2) = −w∗α1α2
(1, 2)− w∗α1α1′ (1, 1

′)w∗α2α2′ (2, 2
′), G(2),T

ρα1′ ρα2′
[{να}] (1′, 2′) ,

G(n),T
ωα1 ...ωαn

[{να}] (1, . . . , n) = in w∗α1α1′ (1, 1
′) . . . w∗αnαn′ (n, n

′)G(n),T
ρα1′ ...ρα

n′
[{να}] (1′, . . . , n′), n ≥ 3.

IV. THE PERTURBATION THEORY

A. Mean-field theory

Let us consider the functional of the GC partition func-
tion (13) with the action given by Eq. (21) for the case
of an isotropic interaction potential wαβ(r). At the MF
level one has [19]

ΞMF[{να}] = exp(−H[{να, ρα, ωα}]), (42)

where, for ρα and ωα, the action is stationary, i. e.

δ H [{να, ρα, ωα}]
δρα

∣∣∣∣
(ρα,ωα)

=
δ H [{να, ρα, ωα}]

δωα

∣∣∣∣
(ρα,ωα)

= 0 . (43)

Replacing the CV action by its expression (21) in
Eq. (43) leads to implicit equations for ρα and ωα:

ρα(1) = ρMF
α (1) = ρRS

α [{ν̄α − iωα}](1),

iωα(1) = Φαβ(1, 2)ρβ(2), (44)

where ρRS
α [{ν̄α − iωα}](i) denotes the αth species num-

ber density of the RS fluid with the chemical potentials
{ν̄α−iωα}. For a homogeneous system (44) can be rewrit-
ten in the form

ρα = ρMF
α = ρRS

α [{ν̄α − iωα}],

iωα = ρβΦ̃αβ(0), (45)

It follows from the stationary condition (43) that the MF
density is given by

ρMF
α [{να}] (1) =

δ ln ΞMF [{να}]
δνα(1)

= ρRS
α [{να − iωα}] (1) , (46)
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and that the MF grand potential reads

ln ΞMF [{να}] = ln ΞRS [{να − iωα}]

+
β

2
〈
ρMF

α |wαβ |ρMF
β

〉
. (47)

The MF Kohn-Scham free energy of a multicomponent
system defined as the Legendre transform

βAMF [{ρα}] = sup
να

{〈ρα|να〉 − ln ΞMF [{να}]} , (48)

has the following form in the MF approximation

βAMF [{ρα}] = βARS [{ρα}] (49)

+
β

2
〈ρα|wαβ |ρβ〉 −

β

2

∫
Ω

dr wαα(0)ρα(r) .

Using the formulas

G
(2),T
MF,α1α2

[{να}] (1, 2) =
δ2 ln ΞMF [{να}]
δνα1(1) δνα2(2)

,

C
(2)
MF,α1α2

[{ρα}] (1, 2) = − δ2βAMF [{ρα}]
δρα1(1) δρα2(2)

,

where (1, 2, . . . , n) ≡ (r1, r2, . . . , rn), one can get the
well-known expressions for the partial pair correlation
and vertex (or direct correlation) functions in the MF
approximation. C(2)

MF,α1α2
[{ρα}] (1, 2) is obtained readily

from expression (49)

C
(2)
MF,αβ(1, 2) = −G(2),T−1

MF,αβ (1, 2)

= C
(2)
RS,αβ(1, 2)− wαβ(1, 2),

where C
(2)
RS,αβ(1, 2) means the exact two-point proper

vertex of the RS fluid at the mean field density ρMF
α .

The two-point vertex function C
(2)
MF,αβ is connected to

the usual direct correlation function of the theory of liq-
uids cMF,αβ(1, 2)

C
(2)
MF,αβ(1, 2) = cMF,αβ(1, 2)− 1

ρα(1)
δαβδ(1, 2).

In order to calculate G(2),T
MF,αβ(1, 2) we start with equation

G
(2),T
MF,αβ(1, 2) =

∂ρMF
α [{ν̄α − iωα}](1)

∂νβ(2)

=
∂ρRS

α [{ν̄α − iωα}](1)
∂νβ(2)

. (50)

ρRS
α [{να}] depends on να directly but also through the

mean field ωα. Therefore, one has

G
(2),T
MF,αβ(1, 2) =

∂ρRS
α [{ν̄α − iωα}](1)

∂νβ(2)

∣∣∣∣
ω

+
∂ρRS

α [{ν̄α − iωα}](1)
∂ωγ(3)

∣∣∣∣
νγ

∂ωγ(3)
∂νβ(2).

(51)

Taking into account (44) and (50) we obtain finally

G
(2),T
MF,αβ(1, 2) = G

(2),T
RS,αβ(1, 2)

− βG
(2),T
MF,αγ(1, 3)wγδ(3, 4)GT

RS,δβ(4, 2). (52)

(52) can be rewritten in a matricial form as [12]

G
(2),T
MF (1, 2) = G

(2),T
RS (1, 2)

− G
(2),T
MF (1, 3)w(3, 4)G(2),T

RS (4, 2), (53)

where G
(2),T
MF(RS)(i, j) denotes the matrix of elements

G
(2),T
MF(RS),αβ(i, j) and w(i, j) that of elements βwαβ(i, j).

The formal solution of Eq. (53) is then

G
(2),T
MF (1, 2) =

(
1 + w ? G

(2),T
RS

)−1

? G
(2),T
RS (1, 2) , (54)

where 1 = δαβδ(1, 2) is the unit operator and the “?”
denotes a convolution in space.

B. Beyond the MF approximation

In order to take into account fluctuations we present
CVs ρα and ωα in the form:

ρα(1) = ρα + δρα(1), ωα(1) = ωα + δωα(1),

where the quantities with a bar are given by (44).

The function ln ΞRS[{να;−iωα}] in (14) can be presented in the form of the cumulant expansion

ln ΞRS[{να − iωα}] =
∑
n≥1

(−i)n

n!

∑
α1,...,αn

∫
d1 . . .

∫
dnMα1...αn(1, . . . , n)δωα1(1) . . . δωαn(n), (55)

where Mα1...αn
(1, . . . , n) is the nth cumulant defined by

Mα1...αn
(1, . . . , n) =

1
(−i)n

∂n ln ΞRS[{να − iωα}]
∂δωα1(1) . . . ∂δωαn(n)

∣∣∣∣
δωαi

=0

. (56)
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As is seen from (56) and (25), the nth cumulant is equal to the n-particle partial truncated (connected) correlation
function at ωα = ωα. The expressions for the several cumulants given in the Cartesian coordinate phase space are as
follows

Mα1(1) = ρα1(1), (57)

Mα1α2(1, 2) = ρα1(1)ρα2(2)hα1α2(1, 2) + ρα1(1)δα1α2δ(1, 2)], (58)

Mα1α2α3(1, 2, 3) = ρα1(1)ρα2(2)ρα3(3)hα1α2α3(1, 2, 3) + ρα1(1)ρα2(2)hα1α2(1, 2)δα1α3δ(1, 3)

+ρα1(1)ρα3(3)hα1α3(1, 3)δα1α2δ(1, 2) + ρα2(2)ρα3(3)hα2α3(2, 3)δα1α2δ(1, 2)

+ρα1(1)δα1α2δα1α3δ(1, 2)δ(1, 3), (59)

Mα1α2α3α4(1, 2, 3, 4) = ρα1(1)ρα2(2)ρα3(3)ρα4(4)hα1α2α3α4(1, 2, 3, 4) +
∑

i,j,k,l

ραi
(i)ραj

(j)ραk
(k)hαiαjαk

(i, j, k)

× δαiαl
δ(i, l) +

∑
i,j,k,l

ραi
(i)ραk

(k)hαiαk
(i, k)δαiαj

δαkαl
δ(i, j)δ(k, l) +

∑
i,j,k,l

ραi
(i)ραl

(l)

× hαiαl
(i, l)δαiαj

δαiαk
δ(i, j)δ(i, k) + ρα1(1)δα1α2δα1α3δα1α4δ(1, 2)δ(1, 3)δ(1, 4). (60)

In the above formulas ραi
(i) is the local density of the αith species in the RS and hα1...αn

(1, . . . , n) is the n-particle
partial correlation function of an m-component RS, defined in the GC ensemble (see Eqs. (28)–(29)):

hα1α2(1, 2) = gα1α2(1, 2)− gα1(1)gα2(2),

hα1α2α3(1, 2, 3) = gα1α2α3(1, 2, 3)− gα1α2(1, 2)gα3(3)
− gα1α3(1, 3)gα2(2)− gα2α3(2, 3)gα1(1) + 2gα1(1)gα2(2)gα3(3)

hα1α2α3α4(1, 2, 3, 4) = gα1α2α3α4(1, 2, 3, 4)− . . . . (61)

In the case of a homogeneous system a Fourier image of the nth cumulant can be presented in the form

Mα1...αn(k1, . . . ,kn) = (〈Nα1〉, . . . 〈Nαn〉)1/nSα1...αn(k1, . . . , kn)δk1+...+kn , (62)

where Sα1...αn
(k1, . . . ,kn) is the n-particle partial structure factor of the RS.

Substituting (55) in (13) one can obtain

Ξ [{να}] = ΞRS [{να − iωα}]
∫
DδρDδω

× exp

−β2 〈δρα|wαβ |δρβ〉+ i 〈δωα|δρα〉+
∑
n≥2

(−i)n

n!

∑
α1,...,αn

∫
d1 . . .

∫
dn

× Mα1...αn
(1, . . . , n)δωα1(1) . . . δωαn

(n)

}
. (63)

Integrating in (63) over δωαi(i) we have in the homogeneous case

Ξ[{να}] = ΞMFΞ′
∫

(dδρ) exp
{
− 1

2!

∑
α,β

∑
k

Lαβ(k)δρk,αδρ−k,β +
∑
n≥3

Hn(δρα)
}
. (64)
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c. Gaussian approximation. In the Gaussian approx-
imation, which corresponds to taking into account in
(64) only the terms with n ≤ 2 (Hn ≡ 0), we have
Lαβ(k) = Cαβ(k), where Cαβ(k) are the Fourier trans-
forms of the partial direct correlation functions. Af-
ter integrating in (64) we arrive at the GPF of an m-
component system in the random phase approximation
(RPA).

Using the Gaussian averages one can develop a loop
expansion of Ξ[{να}] in the CV representation as it was
done recently for a one-component fluid [13].

V. CONCLUSION

Using the CV method we have reconsidered the basic
relations of statistical field theory of a multicomponent

non-homogeneous fluid that follow from this approach.
Contrary to the KSSHE theory [12] the corresponding
CV action depends on two sets scalar fields: the field ρα

connected to the number density of the αth species par-
ticles and the field ωα conjugated to ρα. We derive the
explicit expressions for the CV field correlations and ob-
tain their relation to the density correlation functions of
a multicomponent system.

Contrary to the theories based on the Stratonovich–
Hubbard transformation [2,3], the CV representation has
some important advantages which could be very useful
for more complicated models of fluids. In particular, it is
valid for an arbitrary pair potential (including the pair
interaction wαβ(1, 2) which does not possess an inverse)
and is easily generalized for the case of n-body interpar-
ticle interactions with n > 2.
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СТАТИСТИКО-ПОЛЬОВА ТЕОРIЯ ДЛЯ БАГАТОКОМПОНЕНТНОГО ПЛИНУ:
МЕТОД КОЛЕКТИВНИХ ЗМIННИХ

O. Пацаган1, I. Мриглод1, Ж.-М. Кайоль2

1Iнститут фiзики конденсованих систем НАН України
вул. Свєнцiцького, 1, Львiв, 79011, Україна

2Лабораторiя теоретичної фiзики,
Унiверситет Парi-Сюд, 91405, Орсей, Францiя

Використовуючи метод колективних змiнних (КЗ), розглянуто основнi спiввiдношення статистико-
польової теорiї багатокомпонентної неоднорiдної системи. Показано, що дiя, отримана в представленнi КЗ,
залежить вiд двох наборiв скалярних полiв, а саме, полiв ρα, якi описують флюктуацiї локальної густи-
ни частинок сорту α i полiв ωα, спряжених до ρα. Знайдено явнi вирази для кореляцiйних функцiй полiв
КЗ, а також їх зв’язок iз кореляцiйними функцiями густини. Сформульовано теорiю збурень i детально
розглянуто наближення середнього поля.
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