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We briefly review some issues of the nilpotent objects in theoretical physics using simple models
as an illustration. Nilpotent elements appear at quantum and classical level in several ways. On the
one hand there are celebrated BRST operators, external derivative and related with them cohomolo-
gy theory, on the other hand there are dual numbers which are a less known structure than complex
numbers but important in many approaches, then there are commuting nilpotent variables, some-
how generalizing the nilpotent but anticommuting Grassmann variables used in super-mathematics
and SUSY models. As an interesting fact we note that nilpotent variables demand the use of the
generalized light-cone geometry with the metric of the null signature.
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I. INTRODUCTION

Despite the fact that nilpotent objects are more dif-
ficult to handle than regular invertible ones, they play
an important role in theoretical physics. It used to be a
customary way in constructing structures, to get rid of
nilpotents. Null divisors complicate life. That is why in
the standard approaches in mathematics or physics we
avoid nilpotents. However, there are spectacular theories
where nilpotent elements are crucial. The BRST formal-
ism is the best example were the nontrivial nilpotent
operator Q,

Q2 = 0 (1)

together with the appropriate space allows to quantize a
gauge field theory system. This highly nontrivial formal-
ism was being intensively developed in the 90s of the last
century. We can say that the meaning of the trivial, at
the first sight, nilpotency relation strongly depends on
the way it is realized. In the case of the BRST theory
we construct a sophisticated robust structure to repre-
sent a simple relation of nilpotency. Obviously there are
other strong demands like hermiticity, etc. Another well
known example gives the supersymmetry theory, where
the anticommuting variables are commonly used. Here
nilpotency is a byproduct of the anticommutativity of
the Grassmannian variables representing fermionic de-
grees of freedom.

θθ′ = −θ′θ ⇒ θ2 = 0. (2)

A reach branch of mathematics i. e. super-mathematics
(superalgebra, superanalysis, supergometry) and a vivid
bundle of physical theories, like super-Yang–Mills, super-
gravity, supersymmetric quantum mechanics, have been

developed since the 50s of the 20th century when the
first appearance of Grassmanian variables in theoreti-
cal physics was noted [1–3]. However, one can look for
the realization of the nilpotency condition in the simple
commutative structure, not in the graded-commutative
or noncommutative one. A possibility is given by the
construction invented by Clifford [4]. He introduced the
“nilpotent unit”

ι2 = 0 (3)

and following the construction resembling complex num-
bers defined the so-called dual numbers D

z = x+ ι y, x, y ∈ R,C, (4)
z · z′ = x · x′ + ι(x · y′ + x′ · y), z ∈ D, (5)
z̄ = x− ιy, z−1 = |z|−2z̄, |z| = x, (6)

z = x(1 + ι
y

x
) = r(1 + ιϕ), Arg(z) =

y

x
. (7)

Such numbers and their generalization to the dual
quaternions have been known since the 80s of the 19th
century and they are related to the rotations and trans-
lations in the three dimensional Euclidean space. In the
case when rotation is composed with translation we get
the so-called screw motion [5, 6]. Dual numbers are a
common tool in the differential algebra formalism [7].
There is a very interesting model constructed by Wald
et al. [8–10] to study quantization of gravity where dual
numbers are present. This model avoids the obstruction
coming from the Coleman–Mandula theorem [11], so not
only supersymmetry is a solution for this obstruction.
In the following we will review some applications of the
dual numbers and discuss new issues of the commuting
nilpotent variables, with the nilpotency of the second
order. We do not review here the generalization known
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as paragrassmann relations where the nilpotency is of a
higher n-order i. e. ϑn = 0. We will not touch upon usual
supersymmetry and BRST formalism. The main goal of
this text is to call attention to the less known aspects of
the presence of nilpotent objects in physical theories.

II. DUAL NUMBERS IN THEORETICAL
PHYSICS

In the introduction we have recalled basic definitions
related to the dual numbers. As is easily seen, due to the
nilpotency of ι the geometry of the dual plane is different
from that of the complex plane. It is interesting to ob-
serve that a circle on the dual plane with the centre in z0
consists of the points of two vertical parallel lines locat-
ed symmetrically on both sides of z0. Dual numbers are
obviously nonarchimedean. Namely, let z = (x, y) ∈ D+,
when the first nonzero coordinate is positive. Then:

• z = 0, or z ∈ D+, or −z ∈ D+,

• x, y ∈ D+ ⇒ x+ y ∈ D+.

This allows to define the order inD in the following sense:
x < y ⇔ y − x ∈ D+. Now with respect to the order de-
fined by the sets D+ we see that the ι is infinitesimal
(infinitely small) in the sense that

ι < 1 ⇒ n · ι < 1, n ∈ N (8)

(n is a natural number). This observation gives justifi-
cation to the calculus of infintesimals used frequently in
physics when making linear approximations (product of
two infinitesimals is negligible). Dual numbers are a for-
mal structure behind this popular practice. This fact is
frequently neglected.

A. Dual functions

One can define dual (number) functions analogously
to the complex functions [12,13]

f(z) = u(x, y) + ιv(x, y),
f(z + h)− f(z) = f ′(z) · h+O (9)

and in this case analogs of the Cauchy–Riemann equa-
tions have the following form

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= 0, (10)

and the dual differentiable function has the following
simple form

f(z) = u(x) + ι(v(x) + y · u′(x)). (11)

For example, the dual exponent is ez = ex(1 + ιy) and
the trigonometric function is sin(z) = sin(x) + ιy cos(x)

B. Numerical differential algebra

Despite the simplicity of the form of dual differentiable
function these objects are of great use in practical explicit
calculations of derivatives for functions of real variables.
The area of applications of this kind is named Numerical
Differential Algebra and is used in accelerator physics
and optics for solving highly nonlinear systems [14]. In
the most general terms one considers an equation of the
type

zf = M(zi, a), (12)

where a denotes a set of parameters and z relevant fields
(zi — initial, zf — final). Parameters are from chosen
intervals and are known with some precision. The tran-
sition matrix ∂zM and sensitivity ∂aM are usually ob-
tained using computer analysis and the so-called TPSA
— Truncated Power Series Algebra. To explain this idea
let us consider a very simple example, namely Veronese
Algebra which is denoted by 1D1. Let for the elements
of 1D1 the multiplication be of the dual numbers’ type

(a0, a1)(b0, b1) = (a0b0, a0b1 + a1b0) (13)

and the derivation be given by

(D, ∂) : ∂(a0, a1) = (0, a1). (14)

We introduce a notion of standard functions F in the
form

F (a0, a1) = (f(a0), a1f
′(a0)) (15)

hence choosing a specific point (x, 1) for evaluation we
get

F (x, 1) = (f(x), f ′(x)). (16)

This gives a practical algoritm for the “algebraic” differ-
entiation.

Example: let f(x) = 1
1+ 1

x

, then

id(x, 1) ⇒ ((x, 1)−1 + (x, 1))−1

= ((
1
x
,− 1

x2
) + (x, 1))−1

=
(

1
1 + 1

x

,−
1− 1

x2

(1 + 1
x2 )2

)
. (17)

This idea can be generalized to the case of n-variables
and mth order of the derivative i. e. to the algebra mDn:

(f, ∂f, ∂2f, . . . , ∂mf), (18)

which is a very practical tool in computer analysis [14].
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C. Rotations and robotics

Kinematics is one of the oldest topics studied. For
many centuries it was regarded as one of the basic sci-
ences that explained observed physical phenomena. It
was used to engineer machines. Its recent developments
yield the application of the modern robot kinematics to
study biological systems and their functions at the mi-
croscopic level and to the engineering of new diagnos-
tic tools. Dual numbers are essential in describing and
solving the movements of rigid bodies especially in con-
structing the parallel or serial robots, were special con-
ditions on pivots and spatial constraints are assumed.
The finite screw displacement — combination of transla-
tion and rotation is a basic tool in the theoretical kine-
matics and its representation involves dual numbers. A
considerable theoretical development of the description
of rigid body displacements was taking place from the
early 19th century up till the late 20th century. One of
the classical results, the Chasles theorem states that the
most general rigid body displacement can be produced
by a translation along the line followed (or preceded) by
rotation about that line. Such a displacement is called a
screw motion. Other essential constructions involve Cay-
ley’s formula, Hamilton’s quaternions, the Clifford dual
quaternions and Study’s dual angle [5, 6]. The dual an-
gle θ̂, proposed in the late 19th century, is used in the
realization of the screw motion in R3

~p ′ = ~p+ s~u,

~s = s~u, (19)

θ̂ = θ + ιs,

where ~s denotes the translation vector from ~p to ~p′ and
s is its length, ~u is the unit vector and θ rotation an-
gle. The dual number θ̂ is called a dual angle. The screw
transformation is given in unique way by θ̂ and ~u. The
composition of screw transformations is realized by du-
al number multiplication. The explicit realization of the
idea of a screw motion is with the use of dual quater-
nions [4]. Let Q denote a set of quaternions. By the dual
quaternion we understand a dual number constructed
over quaternion algebra

q = q0 + ιq1, q0, q1 ∈ Q. (20)

The norm of dual quaternion can be written as

‖ q ‖=‖ q0 ‖ +ι
〈q0, q1〉
‖ q0 ‖

. (21)

As is well known, rotation in the R3 can be represented
by a unit quaternion, translations are naturally embed-
ded into the dual quaternions

R3 3 v −→ v = 1 + ι(v0i + v1j + v2k), (22)

where v = (v0, v1, v2) and i, j, k are quaternion units.
Now, the dual unit quaternion t = 1 + 1

2 ι(t0i+ t1j+ t2k)

represents translation. Again a composition of pure rota-
tion given by the unit quaternion q0 and pure translation
t gives a screw motion

tq0 = q0 +
1
2
ι(t0i + t1j + t2k) q0, (23)

that can be compactly written in the following form

q = cos
θ̂

2
+ s sin

θ̂

2
, (24)

where θ̂ = θ0+ιθ1 is, as before, dual angle and s = s0+ιs1

is a dual unit vector. Geometrically 1
2θ0 is the angle of

rotation around the axis s0 and 1
2θ1 is the translation

along this axis. The s1 is a unique moment of the axis,
giving position of the axis in affine space, for the giv-
en position vector p we have s1 = p × s0. A formalism
based on dual quaternions is widely used in robotics and
in computer 3D-simulations of body motion, it is easier
to implement, eliminates artifacts and is much faster.

There is a rich area of applications of a dual valued ob-
ject in practical computer analysis calculations and simu-
lations of movements of complicated rigid bodies [15–17].
But the formalism with the use of dual quaternions is ap-
plied as well in classical electrodynamics [18].

D. Dual numbers in field theory

As is well known, in local quantum field theory it is
impossible within the conventional structure, to combine
nontrivially space-time symmetries with internal ones.
This fact was recognized in 1967 in the famous Cole-
man and Mandula theorem [11]. A new kind of symme-
tries outside Lie group type were to be introduced. They
were uper symmetries. The work of Haag– Lopuszański–
Sohnius [19] showed that the graded algebra of genera-
tors of symmetries of the S matrix should be admitted
in QFT. It is little known that despite supersymmetry
there was considered another possibility to go around
the obstruction of the Coleman–Mandula theorem. In a
series of papers of Wald et al. [8–10] in the context of
the gravity theory a simplified model of the scalar λφ4

with the fields taking values in the dual numbers was
suggested.

φ(x) = ψ(x) + ιχ(x). (25)

The model given by the action

S[φ, χ] =
∫

(−∂aψ∂
aχ−m2ψχ− λψ3χ) (26)

exhibits interesting symmetry properties. The field equa-
tions for component fields are of the form{

�ψ −m2ψ − λψ3 = 0
�χ− (m2 + 3λψ2)χ = 0, (27)

where a nontrivial extension of the Poincaré group is in-
troduced. {

ψ → Pgψ
χ → Pgχ+ £hPgψ

. (28)
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This theory is consistent classically. However, as the au-
thors state: “Thus to summarize the result [. . . ], we find
that the conventional S-matrix theory, constructed using
the Feynman rules, for our model quantum field theo-
ry does not make sense, and there do not appear to be
any promising alternative approaches. This strongly sug-
gests that a similar conclusion will apply to the new class
of gauge theories for massless spin-2 fields, even though
at the classical level many of these theories have well-
posed initial value formulation and have asymptotically
well-behaved solutions to the equations of motion”. This
result indirectly supports the distinguished role of su-
persymmetry whose presence especially at the quantum
level is particularly fruitfull.

E. Dual mechanics

Dual number valued mechanical systems were consid-
ered in [20] as an on-shell limit of a supersymmetric sys-
tem. A more general formalism of dual classical mechan-
ics was considered there as well. Let us briefly discuss its
elements.

1. Lagrangian formalism

A general Lagrangian of a dual classical mechani-
cal system can be taken in the following form L =
L0 + ιLN . Assuming that time is double number valued
T = t+ι tN , one obtains the following general expansion
for coordinate functions

x (T) = x0 (T) + ι xN (T) . (29)

and expansion of dual valued velocity

dx (T)
dT

= ẋ0 (t) + ι [ẋN (t) + ẍ0 (t) tN ] . (30)

Finally the expanded Lagrangian has the form

L =
1
2

(
dx (T)
dT

)2

−U (x (T)) ,

U (x) = U0 (x) + ι UN (x) . (31)

When we restrict to the case with tN = 0 i. e., to the the-
ories with the usual time parameter, the above formulas
simplify to the following form

L0 =
1
2
ẋ2

0 (t)− U0 (x0 (t)) , (32)

LN = ẋ0 (t) ẋN (t)− xN (t)U ′
0 (x0 (t))

− UN (x0 (t)) . (33)

The relevant equations of motion take the form

ẍ0 + U ′
0 (x0) = 0, (34)

ẍN + xNU
′′
0 (x0) + U ′

N (x0) = 0. (35)

The nilpotent component can be integrated in particular

xN (x0) =
√
E0 − U0 (x0)

×

(
1
2

∫
dx0

EN − UN (x0)

(E0 − U0 (x0))3/2
+ C

)
. (36)

2. Hamiltonian formalism

For a dual mechanical system it is possible to perform
a passage to phase space. The dual number valued Hamil-
tonian H = H0 +ιHN has two components and there are
three dual component momenta p0, p1, pN therefore the
analogue of the Legendre transformation is more compli-
cated and we obtain

p0 =
∂L0

∂ẋ0
= ẋ0 =

∂LN

∂ẋN
= p1,

pN =
∂LN

∂ẋ0
= ẋN , (37)

H0 = p0ẋ0 − L0 =
p2
0

2
+ U0 (x0) , (38)

HN = pN ẋ0 + p0ẋN − LN = p0pN + xNU
′
0

× (x0) + UN (x0) . (39)

Hence finally we obtain six Hamiltonian equations of mo-
tion

ẋ0 = ∂H0
∂p0

, ẋ0 = ∂HN

∂pN
, ẋN = ∂HN

∂p0
,

ṗ0 = −∂H0
∂x0

, ṗN = −∂HN

∂x0
, ṗ0 = −∂HN

∂xN
.

(40)

One can introduce generalized Poisson brackets for both
sectors of the phase space [20]:

{A,B}0 =
(
∂A

∂x0

∂B

∂p0
− ∂A

∂p0

∂B

∂x0

)
(41)

{A,B}N =
(
∂A

∂x0

∂B

∂pN
− ∂A

∂pN

∂B

∂x0

)
,

+
(
∂A

∂xN

∂B

∂p0
− ∂A

∂p0

∂B

∂xN

)
. (42)

In the “nilpotent” sector of the phase space the Poisson
bracket is related to an unusual conjugation of canonical
variables

x0 ↔ pN and xN ↔ p0. (43)

The second type of the Poisson bracket { , }N needs an
additional quantization rule with dual partner ~N of the
Planck constant ~.
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III. NILPOTENT MECHANICS

A recently introduced formalism of the nilpotent clas-
sical mechanics is based on the nilpotent commuting
variables η [22, 23]. Contrary to the Grassmannian vari-
ables nilpotency is not automatical here and a relevant
differential calculus for the functions of η-variables dif-
fers from the usual one. In particular, the Leibniz rule
is with an additional term and then the properties of
the generalized Poisson brackets are not a direct conse-
quence of derivations. To obtain a nontrivial theory with
η-variables it is necessary to consider a particular form
of hyperbolic geometry [22], which is related directly to
the light cone formalism in spaces with the metric of a
zero signature i. e. diag (+,+,. . . +,−,−,. . . ,−) with the
same number of pluses and minuses. However, the only
admissible form of a metric in the so-called s-spaces is
off-diagonal e. g.

s =
(

0 In

In 0

)
; s2 = I2n; sT = s. (44)

The above matrix is strictly traceless and symmetric and
analogously to the antisymmetric matrix in superspace
it is a good “metric” in linear space (module) for vectors
with nilpotent commuting coordinates.

A. Configuration space

To define a mechanical system one introduces a La-
grangian with the terms being analogs of kinetic and
potential energy. Analogs only, because the s-form is not
positively definite and η coordinates are nilpotent and
commuting

L =
m

2
s(η̇, η̇)− V (η), (45)

V (x) =
mω

2
s(η, η) =

mω

2
sijη

iηj . (46)

One can obtain the Euler–Lagrange equations of motion
for the nilpotent mechanical system in the form [23]

∂L

∂ηk
− d

dt

(
∂L

∂η̇i

)
= 0. (47)

For the η-harmonic oscillator it gives

η̈i = −ω2ηi. (48)

B. Phase space

It appears that it is possible to make a passage to the
phase space via the Legendre transformation with the
definition of momenta

pk =
∂L

∂η̇k
. (49)

The generalization of the Hamiltonian function to the
nilpotent phase-space PN is conventional

H = pkη̇k − L (50)

and we get for this formalism the equations of motion
analogous to the standard Hamilton’s equations of mo-
tion

ṗk = − ∂H
∂ηk

, (51)

η̇k = ∂H
∂pk , (52)

that for the η-harmonic oscillator gives{
ẋi = 1

m (s−1)ijpj

ṗi = −mω2sijx
j . (53)

The extension of the time derivative to the phase-space
functions f(η, p) is given in the following form (we omit
here explicit time dependence)

d

dt
= η̇k∂

k + ṗk∂̄k, where ∂k =
∂

∂ηk

and ∂̄k =
∂

∂pk
. (54)

Defining the η-Poisson bracket as

{f(η, p), g(η, p)}0 = ∂̄kf(η, p) · ∂kg(η, p)
− ∂kf(η, p) · ∂̄kg(η, p) (55)

we can realize the time derivative in the following form

d

dt
f(η, p) = {H, f(η, p)}0. (56)

It is worth noting that for η-functions time derivative
does not fulfill the usual Leibniz rule. The η-Poisson
bracket has an analogous property,

(i) {f, g}0 = −{g, f}0, (57)

(ii) {f1 + f2, g}0 = {f1, g}0 + {f2, g}0, (58)

(iii) {f, g · h}0 = {f, g}0 · h+ g · {f, h}0
− 2♦(f |g, h), (59)

(iv)
∑
cycl

{f, {g, h}0}0 = 0, (60)

where the para-Leibniz term is of the form

♦(f |g, h) = ∂̄kf · ∇kg · ∂kh− ∂kf · ∇̄kg · ∂̄kh. (61)

It is worth noting that one of the consequences of the
“non-derivative” character of this bracket is violation of
the Jacobi identity. The Jacobiator J(f, g, h) is, in gen-
eral, not vanishing. It has the following form

J(f, g, h) = 2
∑
cycl

∑
i

(ηi{∂if, ∂ig}∂̄ih

− pi{∂̄if, ∂̄ig}∂ih). (62)
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CONCLUSIONS

We have briefly reviewed selected areas of theoretical
physics were the nilpotent object plays an essential role
and is not something that one usually wants to get rid
of. For the physical content it is very important how the
nilpotency is realized, the underlying structure can be

very complicated like in the case of the BRST theory
or fairy simple as for dual numbers. Nilpotent mechan-
ics provides an interesting example of the theory having
some properties of the supersymmetry, where only the
exclusion principle for fermions is realized by nilpotency
of relevant η-fields, but the anticommutativity condition
is relaxed.
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НIЛЬПОТЕНТНI ЕЛЕМЕНТИ У ФIЗИЦI

А. М. Фридришак
Iнститут теоретичної фiзики Вроцлавського унiверситету,

пл. М. Борна, 9, 50–204, м. Вроцлав, Польща

Подано короткий огляд деяких питань, що стосуються нiльпотентних об’єктiв у теоретичнiй фiзицi, для
iлюстрацiй використано простi моделi. Нiльпотентнi об’єкти виникають на квантовому i класичному рiвнях
у деяких випадках. З одного боку, iснують вiдомi BRST-оператори, зовнiшня похiдна та пов’язанi з ними
когомологiчнi теорiї. З iншого — дуальнi числа, якi є менш вiдомими структурами порiвняно з комплекс-
ними числами. Також є комутуючi нiльпотентнi змiннi, що певним чином узагальнюють нiльпотентнi, або
некомутуючi, ґрассмановi змiннi, якi використовують у суперматематицi та суперсиметричних моделях. Як
цiкавий факт вiдзначено, що нiльпотентнi змiннi вимагають використання узагальненої геометрiї свiтлового
конуса з метрикою з нульовою сиґнатурою.
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