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A new approach is proposed for the analytical description of effective grain potentials in dusty
plasmas. The basic idea is to describe absorption of electrons and ions by the macroparticle in terms
of effective point sinks introduced into the equations of plasma dynamics. The proposed approach
makes it possible to find explicit relations for the potential and particle densities distributions near
the grain. It is shown that plasma particle absorption results in the long-range asymptotics of the
effective grain potentials. The dynamical screening of the moving dust particle is considered as well.
The energy of the grain interaction with the induced charge produced by the grain and the force
acting on the moving dust particle are calculated. The possibility of negative friction for the moving
grain is shown.
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I. INTRODUCTION

The problem of nonlinear grain screening still remains
one of the most important issues of dusty plasma theo-
ry. It is of great importance for the description of such
interesting phenomena as dusty crystal formation, ex-
citation of dust acoustic waves, evolution of dust struc-
tures, etc. In spite of the fact that the screened potentials
have been studied for years the problem of macroparti-
cle screening still requires further studies. First of all
this concerns grain screening in low-temperature plasma
for which even the screening length is not determined
in the general case [1]. The problem is that in the case
of grain charging due to the absorption of electrons and
ions from plasma the effective potentials are crucially de-
pendent on the processes in plasma background, in par-
ticular, on the details of plasma regeneration. In view
of the importance of nonlinear effects and self-consistent
description of charging processes the problem of grain
(probe) screening is usually solved numerically [2–9].
Giving many details of the screening numerical results,
however, cannot be used for obtaining approximate an-
alytical relations. At the same time it is very important
to have such analytical approximations for the solution
of the problems mentioned above.

One more important problem is the description of the
moving grain screening. Such a description is necessary
for the solution of many interesting problems of dusty
plasma physics, in particular, for the understanding of
the physical mechanisms of energy exchange between the
grain and surrounding plasma leading to the anomalous
grain heating [10, 11]. As will be shown below the model
of the point sinks can be applied to the solution of this
problem as well.

The purpose of the present paper is to work out an an-
alytical description of the screened potentials of grains
(the case of the moving grain included) with regard to
their charging by plasma currents and to study the effects

produced by grain charging on the properties of effective
potentials.

We start from the formulation of the basic model
(point-sink model) for the simplest case of the immovable
grain. This model provides the analytical solution of the
problem, if the grain charge and the intensities of plasma
particle fluxes are known (Section II). Then we perform
necessary analysis of the obtained relations and compare
the results with the numerical solutions (Section III). In
Section IV we apply the proposed model for treatment
of screening of the moving grain. The results of calcu-
lations of the grain-plasma interaction energy and the
electric force acting on the moving grain are presented
in Section V.

II. POINT-SINK-MODEL. BASIC SET OF
EQUATIONS FOR IMMOVABLE GRAIN

Let us consider single grain embedded into infinite
weakly-ionized plasma. We assume that the grain ab-
sorbs all the encountered electrons and ions. In the sta-
tionary case the grain charge is maintained by electron
and ion fluxes which are equal to each other. In the case
under consideration plasma dynamics can be described
by the continuity equations which have the following
form:

div Γσ(r) = I0 − βne(r)ni(r), (1)

where

Γσ(r) = −eσµσnσ(r)∇Φ(r) − Dσ∇nσ(r), (2)

µσ is the plasma particle mobility, Dσ is the diffusion
coefficient, subscript σ (σ = e, i) labels plasma particle
species, I0 is the intensity of ionization sources, if present,
β is the coefficient of the electron-ion recombination, the
rest of notation is traditional.

The electric potential Φ(r) satisfies the Poisson equa-
tion
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∆Φ(r) = −4π
∑

σ

eσnσ(r). (3)

Eqs. (1)–(3) should be supplemented by the following
boundary conditions

nσ(r)
∣

∣

r=a
= 0,

∂Φ(r)

∂r
|r=a = −

q

a2
,

nσ(r)
∣

∣

r→∞
= nσ , Φ(r)|r→∞ = 0, (4)

where q is the stationary grain charge which is deter-
mined by the equation

eiΓi + eeΓe|r=a = 0, (5)

a is the grain radius, nσ is the unperturbed density of
particles of σ species. The later quantities are determined
by the conditions of plasma regeneration. They are de-
scribed by the relation

ne = ni =
√

I0/β ≡ n0, (6)

if external sources of ionization are present, or they are
assumed to be given, if the sources of plasma regenera-
tion are located at a large distance from the grain.

In view of the nonlinearity of the basic set of equations
it is usually solved numerically (see, for example, Refs.
[2, 3, 5–9]). However, it is quite difficult to obtain ana-
lytical relations for the screened potentials and plasma
particle distribution on the basis of the numerical so-
lutions. Therefore, it would be highly desirable to have
approximate analytical expressions for such quantities,
at least for their asymptotic behavior. This problem can
be solved taking into account that in many cases non-
linearity produces considerable effects at small distances
from the grain surface, only. Such a conclusion follows
from the analysis of the nonlinear numerical solutions
for equilibrium screening (no particle fluxes through the
grain surface [12]) and for the screening of grains charged
by plasma currents in the collisionless plasmas [4]. More-
over, in the case of grains of small sizes the nonlinearity
does not lead to a considerable deviation from the lin-
ear solution even in the vicinity of the grain, but on the
other hand, the plasma particle fluxes toward the grain
contribute to the changes of the potential asymptotics
[4]. Probably, it could be explained by the fact that in
the case of grain absorbing plasma particles the electron
and ion densities near the grain are small and thus the
influence of nonlinearity is not well pronounced. The pos-
sibility of using linearized equation for the analytic de-
scription of the asymptotic behavior of the effective grain
potentials in weakly-ionized plasma was also confirmed
by the estimates presented in Refs. [13, 14].

With regard to these arguments we propose to describe
screened potentials on the basis of the linearized version
of the point-sink model. In terms of such a model it is
assumed that the effects associated with plasma particle
absorption by the finite-size grain can be approximated
in a satisfactory fashion by the effective point sinks, i. e.
instead of Eq. (1) and the boundary conditions (4), (5)
we propose to use the equation

div Γσ(r) = I0 − βne(r)ni(r) − Sσδ(r), (7)

where Sσ is the intensity of the point sink

Sσ = −

∮

dsΓσ. (8)

The linearized version of Eqs. (2) and (7) is as follows

eσn0

Tσ

∆Φ + ∆δnσ =
βn0

Dσ

(δne + δni) +
Sσ

Dσ

δ(r) (9)

∆Φ = −4π (eeδne + eiδni) − 4πqδ(r), (10)

where δnσ(r) is the density perturbation. We also take
into account that in the absence of the grain the plasma
density is given by Eq. (6) and the sink intensities for
electrons and ions are equal to each other, i. e.

Se = Si = S. (11)

III. SCREENED POTENTIAL OF IMMOVABLE
GRAIN AND CHARGE DENSITY

DISTRIBUTION

The solution of Eqs. (9), (10) can be easily obtained
in the k-representation

δnik =
1

e∆

[

− k2
(

S̃i + k2
Diq
)

− qk4
0

− S̃ik
2
De − S̃ek

2
Di

]

, (12)

δnek =
1

e∆

[

− k2
(

S̃e − k2
Deq

)

+ qk4
0

− S̃ik
2
De − S̃ek

2
Di

]

, (13)

where

e = |ee| = ei;

∆ = k4 + k2
(

k2
D + k2

S

)

+ 2k4
0 ;

k4
0 = k2

Sek
2
Di + k2

Sik
2
De; k2

S = k2
Si + k2

Se;

k2
Sσ =

βn0

Dσ

, S̃σ =
eS

Dσ

k2
D = k2

De + k2
Di k2

Dσ =
4πe2

σnσ

Tσ

. (14)

The potential Φk is given by

Φk = 4π
q
(

k2 + k2
S

)

− k2
DS̃

k4 + k2 (k2
D + k2

S) + 2k4
0

, (15)

where
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S̃ =
eS

k2
D

(

1

Di

−
1

De

)

. (16)

In its turn Eq. (15) can be rewritten as

Φk =
4πQ1

k2 + k2
1

−
4πQ2

k2 + k2
2

, (17)

where

Q1,2 =
q
(

k2
1,2 − k2

S

)

+ k2
DS̃

k2
1 − k2

2

(18)

k2
1,2 =

1

2

(

k2
D+k2

S ±

√

(k2
D+k2

S)
2
−8k4

0

)

.

In the coordinate representation

Φ(r) = Q1
e−k1r

r
− Q2

e−k2r

r
, (19)

i. e. the effective potential is given by the superposition of
two screened potentials with different screening lengths.
Notice that these screening lengths were obtained for the
first time in Ref. [13]. At large distances the potential is
determined by the term with a larger screening length.
This result is in agreement with the numerical simulation
[5–8].

The induced charge density is

ρ(r) = Q̃1
e−k1r

r
− Q̃2

e−k2r

r
. (20)

Here

Q̃1,2 =
2qk4

0 − k2
1,2k

2
D(q + S̃)

k2
1 − k2

2

. (21)

If the plasma sources are located at a large distance
from the grain and recombination processes could be ne-
glected (β = 0)

Φ (r) =
(

q + S̃
) e−kDr

r
−

S̃

r
(22)

and

ρ (r) = −k2
D

(

q + S̃
) e−kDr

4πr
. (23)

As is seen, in the case under consideration the effec-
tive potential has the Coulomb-like asymptotics, but the
induced charge is determined by the screened part. The
quantity S̃ can be treated as an effective charge which
generates the Coulomb part of the potential. It cannot
be found within the present theoretical treatment. There-
fore, in what follows we take this quantity from the nu-
merical solution (see Fig. 1), which is taken from the

numerical data obtained in Ref. [6], assuming that S̃ is

proportional to real grain charge, i. e. S̃ = −αq.

Fig. 1. Dependence of dimensionless effective unscreened
charge Q̃/q on dimensionless grain radius kDa.

Fig. 2. Relative charge distribution corresponding to
Eq.(25), at various values of kDa (0.05, 0.1, 0.5, 2, 6.25).

Fig. 3. Relative charge distribution at kDa = 0.05; bold
line presents the data from [6], thin line corresponds to Eq.
(25).
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Fig. 4. Relative charge distribution at kDa = 0.158 and
various values of i0 = Ia5/Di (1) 1.15 · 10−2, (2) 2.5 · 10−3,
(3) 5 · 10−4, (4)10−4, dashed line corresponds to the case of
absence of bulk ionization and recombination.

Fig. 5. Relative charge distribution at kDa = 0.158 and
i0 = 5 · 10−4, bold line presents the data from [6], thin line
corresponds to Eq. (26).

To compare the obtained results with the numerical
simulation [6] it is convenient to use the following quan-
tity

Q (r) = q +

r
∫

0

dr′ρ (r′) (24)

which is the total charge distributed in the sphere of the
radius r. Substitution of Eq. (23) into Eq. (24) gives

Q(r) = αq + q(1 − α)e−kDr (1 + kDr) . (25)

The dependences of the quantity Q(r) on the dimension-
less distances r/a for different grain sizes are presented
in Fig. 2. They are in good agreement with those ob-
tained in Ref. [6]. The accuracy of the analytical esti-
mates is seen from Fig. 3 in which the charge distribu-
tions Q(r) calculated analytically (thin curve) and nu-
merically (bold curve) are presented. As is seen, in the

case under consideration (β = 0, I0 = 0) at large dis-
tances Q(r) approaches some constant values which are
nothing but the dimensionless effective charge α.

The situation is considerably changed, if the ionization
sources are present. In this case

Q (r) = q +
Q̃1

k2
1

[

1 − e−k1r (1 + k1r)
]

−
Q̃2

k2
2

[

1 − e−k2r (1 + k2r)
]

. (26)

Dependences of this quantity on the dimensionless dis-
tance for the different values of ionization intensity are
presented in Fig. 4. In this case the analytical estimates
are also in good agreement with the exact solution of the
nonlinear equations (see Fig. 5).

IV. SCREENING OF MOVING GRAIN

In the case of the moving grains the basic set of equa-
tions can be written as

∂nσ(r, t)

∂t
− divΓσ(r, t) = I0

−βne(r, t)ni(r, t) − Sσδ(r − vt), (27)

∆Φ(r, t) = − 4π
∑

σ

eσnσ(r, t) − 4πqδ(r − vt), (28)

where v is the velocity of the grain. We assume that
in the course of motion this velocity is not considerably
changed and thus, q and Sσ can be treated as constants
and Se = Si = S.

The linearization of Eqs. (27), (28) with respect to per-
turbations produced by the presence of the grain gives

∂δnσ(r, t)

∂t
− Dσ

eσn0

Tσ

∆Φ(r, t) − Dσ∆δnσ(r, t)

= −βn0

(

δni(r, t) + δne(r, t)

)

− Sδ(r − vt), (29)

∆Φ(r, t) = −4π

(

eeδne(r, t) + eiδni(r, t)

)

− 4πqδ(r − vt). (30)

The solution of these equations in k, ω-representation
has the form

Φkω =
4πqω

k2
+

4π

k2D(k, ω)

{

iωqω

(

k2
Di

De

+
k2

De

Di

)

(31)

−2qω

(

k2
Sek

2
Di + k2

Sik
2
De

)

− k2
(

qωk2
D + S̃iω − S̃eω

)

}

,

where

S̃σω =
eS

Dσ

2πδ(ω − kv), (32)

qω = 2πqδ(ω − kv), (33)
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D(k, ω) = −
ω2

DiDe

−
iω

De

(

k2
Di + k2 + k2

Si

)

−
iω

Di

(

k2
De + k2 + k2

Se

)

(34)

+ k4 + k2
(

k2
D + k2

S

)

+ 2
(

k2
Sek

2
Di + k2

Sik
2
De

)

.

For the sake of simplicity in what follows we disregard the ionization and recombination processes (β → 0). In this
case Eqs. (32), (34) reduce to

Φkω =
8π2δ(ω − kv)

k2D0(k, ω)

{

iωq

(

k2
Di

De

+
k2

De

Di

)

− k2k2
D(q + S̃)

}

+
8π2qδ(ω − kv)

k2
. (35)

Here,

D0(k, ω) = −
ω2

DiDe

− iω

(

k2
Di

De

+
k2

De

Di

)

− iωk2

(

1

De

+
1

Di

)

+ k4 + k2k2
D (36)

and S̃ is given by Eq. (16).
The second term in Eq. (35) is the potential of the point particle with the charge q in the absence of the surrounding

plasma, while the first term is the induced potential.
The inverse Fourier-transformation of Eq. (35) gives

Φ(r, t) =
1

2π2

∫

dk

k2
eik(r−vt)

{

q +
ikvq

(

k2

Di

De
+

k2

De

Di

)

− k2k2
D(q + S̃)

k4 + k2k2
D − (kv)2

DeDi

− ikv

(

k2

Di

De

+
k2

De

Di

)

− ikvk2
(

1
De

+ 1
Di

)

}

. (37)

In the case of nonabsorbing macroparticle (S = 0) Eq. (37) reduces to the potential of point particle moving in
weakly-ionized plasma

Φ(r, t) =
q

2π2

∫

dkeik(r−vt) 1

k2ε(k,kv)
, (38)

where

ε(k, ω) = 1 +
∑

σ

ik2
DσDσ

ω + ik2Dσ

. (39)

V. ENERGY OF GRAIN-PLASMA INTERACTION AND DYNAMICAL FRICTION FORCE

The energy of macroparticle interaction with the induced charge is

U(v) = q lim
r→vt

Φind(r, t) =
q

2π2

∫

dk

k2

ikvq
(

k2

Di

De

+
k2

De

Di

)

− k2k2
D(q + S̃)

k4 + k2k2
D − (kv)2

DeDi

− ikv

(

k2

Di

De

+
k2

De

Di

)

− ikvk2
(

1
De

+ 1
Di

) . (40)

After integration over angular variables one has

U(v) =
q2kD

π

∞
∫

0

dx

xṽ2(µ2 − µ1) d

{

[

iµ1ṽ
t + d

t + 1
− x(1 − α)

]

ln
µ1 − 1

µ1 + 1
−
[

iµ2ṽ
t + d

t + 1
− x(1 − α)

]

ln
µ2 − 1

µ2 + 1

]

}

, (41)

where

µ1,2 =
i
[

x2(1 + d) + t+d
t+1

]

±

√

4x2d(1 + x2) −
[

x2(1 + d) + t+d
t+1

]2

−2xṽd
,

(42)

ṽ =
v

DikD

, d =
Di

De

, t =
Ti

Te

, α = −
S̃

q
.
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At v = 0

U(0) = −q2kD(1 − α). (43)

A typical behavior of the reduced interaction energy

U(ṽ) =
U(ṽ) − U(0)

q2kD

on the dimensionless velocity ṽ is shown on Fig. 6. As
is seen the interaction energy is considerably dependent
on the sink intensities S. Plasma particle absorption by
grain results in the existence of the velocity domain in
which the interaction energy decreases with the velocity

growth (curves 2–4 on Fig. 6). Notice that in the case of
no fluxes through the grain surface (S = 0) the interac-
tion energy can be described by the quadratic velocity
dependence (curves 1, 5). However, this is not the case
for absorbing grains.

Notice that the possibility of the interaction energy de-
crease with the velocity growth indicates the possibility
of particle acceleration in the course of its motion and,
thus, it could be a reason of the grain heating. In fact,
the force acting on the grain due to the existence of the
induced potential is described by the relations

F(v) = −q lim
r→vt

∂Φ(r, t)

∂r
(44)

F(v) = −
iq

2π2

∫

dk

k2
k

ikv

(

k2

Di

De
+

k2

De

Di

)

− k2k2
D(q + S̃)

k4 + k2k2
D − (kv)2

DeDi

− ikv

(

k2

Di

De

+
k2

De

Di

)

− ikvk2
(

1
De

+ 1
Di

) , (45)

or after the integration over the angular variables

F (v) =
iq2k2

D

π

∞
∫

0

dx

ṽ2(µ1 − µ2)d

{

2iṽ
t + d

t + 1
(µ1 − µ2) + µ1

[

iµ1ṽ
t + d

t + 1
− x(1 − α)

]

ln
µ1 − 1

µ2 + 1

− µ2

[

iµ2ṽ
t + d

t + 1
− x(1 − α)

]

ln
µ2 − 1

µ2 + 1

}

, (46)

where µ1,2 is given by Eq. (42).

Fig. 6. Dependencies of the reduced energy U(ṽ) at
Te = Ti, Di = 0.01De for different values of α; 1 − α = 0,
2 − α = 0.05, 3 − α = 0.1, 4 − α = 0.2.

The dependencies of the reduced force F (ṽ)/q2k2
D on ṽ

are presented on Fig. 7. The curves shown on this figure
confirm our assumption about the possibility to observe
negative friction, i. e. it can be possible that the friction
force is directed along the particle velocity.

It is useful to compare the calculated values of the neg-
ative friction force with the friction force generated by
the grain collisions with neutral atoms. Estimates made
for isothermal plasma used in the typical experiments
show that the negative friction can exist.

Fig. 7. Dependencies of the dimensionless dynamical fric-
tion force F (ṽ)/q2k2

D on ṽ at Te = Ti, Di = 0.001De for
different values of α; 1 − α = 0, 2 − α = 0.03, 3 − α = 0.4,
5 − α = 0.5.
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VI. CONCLUSIONS

The model of a point-like sink is proposed to describe
the electric grain potential with regard to plasma parti-
cle absorption by grain. This makes it possible to obtain
analytical solution of the problem of grain screening and
to find an explicitly asymptotic behavior of the poten-
tial. With the appropriate choice of the parameters of
the model (grain charge q and sink intensity S) the pro-
posed approximation recovers numerical solutions of the
consistent nonlinear problems.

The proposed model turns out to be efficient for the
description of the screening of the moving grains. Ob-
tained analytical solutions for the grain potentials is used
to calculate the grain-plasma interaction energy and dy-
namical friction force. The calculations show a possibility
of the existence of negative friction.
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gram of Fundamental Research of the Department of
Physics and Astronomy of the National Academy of Sci-
ences of Ukraine and the Russian Fundation for Funda-
mental Research (grants 05-02-17258-a and 06-02-08230-
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Запропоновано новий пiдхiд, який дозволяє описати аналiтично ефективнi потенцiяли порошинок у

плазмi. Припускається, що врахування поглинання електронiв та йонiв порошинкою може здiйснюватися

за допомогою ефективних точкових стокiв у рiвняннях, якi описують динамiку плазми. Такий пiдхiд дає

змогу одержати явнi вирази для ефективного потенцiялу та розподiлу заряду. Показано, що поглинання

плазмових частинок порошинкою приводить до появи далекосяжної асимптотики ефективного потенцiялу.

Розглянуто також динамiчне екранування порошинки, що рухається. Розраховано енерґiю взаємодiї поро-

шинки з iндукованим нею зарядом та силу, яка дiє на порошинку, що рухається. Показано можливiсть

вiд’ємного тертя.
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