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A translation invariant system of interacting quantum anharmonic oscillators indexed by the
elements of a simple cubic lattice Zd is considered. The anharmonic potential is of a general type,
which in particular means that it might have no symmetry. For this system, we prove that the
global polarization (obtained in the thermodynamic limit) gets discontinuous at a certain value of
the external field provided d ≥ 3, and particle mass as well as interaction intensity are big enough.
The proof is based on the representation of local Gibbs states of the model in terms of path measures
and thereby on the use of the infrared estimates and the Garsia–Rodemich–Rumsey inequality.
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I. INTRODUCTION AND SETUP

The theory of phase transitions in quantum systems
has essential peculiarities, which distinguish it from the
corresponding theory of classical systems. In this con-
text, it suffices to mention that the existence of phase
transitions in the three-dimensional isotropic quantum
Heisenberg model has not been proven yet.

For lattice models, most of the results in this do-
main were obtained by means of quantum versions of
the method of infrared bounds developed in [1]. The
first publication in which the infrared estimates were ap-
plied to quantum spin models seems to be article [2].
After certain modifications this method had also been
applied to a number of models with unbounded Hamil-
tonians [3–7], the main characteristic feature of which
was the Z2-symmetry broken by the phase transition.
This symmetry allowed for obtaining an estimate crucial
for the method. However in classical models, for prov-
ing phase transitions by means of the infrared estimates,
symmetry was not especially important, see Theorem 3.5
in [1] and the discussion preceding this theorem. There
might be two explanations of such a discrepancy: (a) the
symmetry was the key element, but only of the methods
employed therein, and, like in the classical case, its lack
does not imply the lack of phase transitions; (b) the sym-
metry is crucial in view of e. g. quantum effects, which
stabilize the system, see [8–10]. So far, there has been no
possibility to check which of these explanations is true.
In this article, we employ new tools based on recent ad-
vances in stochastic analysis and prove that the system of
interacting quantum anharmonic oscillators without any

symmetry undergoes a phase transition if in particular
the oscillator mass is sufficiently big. In this case, the
oscillators are ‘close’ to their classical analogs and hence
quantum effects are not so strong, see [11]. As a conse-
quence, the dilemma mentioned above has been solved
in favor of explanation (a).

Infinite systems of interacting quantum anharmonic
oscillators possess many interesting properties and appli-
cations. If the oscillators are indexed by the elements of
a crystal lattice, the model is called (with a certain abuse
of terminology) a quantum anharmonic crystal. Mostly
such models are related with ionic crystals containing
localized light particles oscillating in the field created
by heavy ionic complexes. An example here can be a
KDP-type ferroelectric with hydrogen bounds in which
the particles are protons or deuterons performing one-
dimensional oscillations along the bounds. It is believed
that structural phase transitions in such ferroelectrics are
triggered by the ordering of the protons [12–14]. Thereby,
quantum anharmonic crystals may have direct applica-
tion to the theory of ferroelectrics with hydrogen bounds
and the development of their rigorous theory remains a
significant mathematical task.

To models of this kind the method of infrared esti-
mates was first applied in [3, 4], where the anharmonic
potential was Z2-symmetric and of φ4 type. These two
properties allowed for obtaining the crucial estimate by
means of a purely quantum tool — the Bogoliubov in-
equality. Afterwards in [5–7], the method of infrared es-
timates was extended to cover the case of Z2-symmetric
anharmonic potentials of the general type, which have
two sufficiently deep wells. This was achieved by means
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of a representation of the Gibbs states in the form of
imaginary-time Feynman path integrals. The approach
in quantum statistical physics based on this representa-
tion is called Euclidean due to its conceptual similarity
with the corresponding approach in quantum field theo-
ry, see [15, 16]. In the Euclidean approach, the model is
treated as a system of interacting classical spins, which
are infinite-dimensional and unbounded. Due to this fact
the method of [1] may be applied directly if the estimate
mentioned above is obtained.

In this article, we prove the existence of phase tran-
sitions in quantum anharmonic crystals with possibly
asymmetric anharmonic potentials. We employ an up-
dated version of the Euclidean representation used in
[5–7], combined with new techniques of the stochastic
analysis. Namely, we prove an analog of Lemma 3.4
of [1] by means of the Garsia–Rodemich–Rumsey lem-
ma, which then is used to prove an analog of Theorem
3.5 of [1].

A general version of the model we consider has the
following heuristic Hamiltonian

H = −1
2

∑
`,`′

J``′q`q`′ +
∑

`

H`, (1.1)

where the sums run through a crystal lattice L. For sim-
plicity we assume that L is a simple cubic lattice Zd, the
interaction is of the nearest-neighbor type and V` is in-
dependent of `, i. e., the model is translation invariant.
The displacement q` is a one-dimensional vector. The in-
teraction term in (1.1) is of the dipole-dipole type. The
Hamiltonian

H` = Hhar
` + V (q`)

def=
1

2m
p2

` +
a

2
q2` + V (q`), a > 0,

(1.2)

describes an isolated anharmonic oscillator of mass m
and momentum p`. The Hamiltonian Hhar

` corresponds
to a quantum harmonic oscillator of rigidity a. We as-
sume that J``′ = J > 0 if and only if |`−`′| = 1, which in
particular means that the model is ferroelectric. Regard-
ing the anharmonic potential, we assume that it contains
an external field h ∈ R in the form

V (x) = V0(x)− hx. (1.3)

Furthermore, V0 is a continuous real-valued function,
such that V0(0) = 0 and for all x ∈ R,

AV x
2r +BV ≤ V0(x), (1.4)

with certain constants r > 1, AV > 0, BV ∈ R. An
example of V to bear in mind is

V (x) =
2r∑

s=2

b
(s)
` xs − hx.

Thus, the heuristic Hamiltonian of the model we shall
consider is

H = −J
2

∑
`,`′: |`−`′|=1

q`q`′ +
∑

`

[
Hhar

` + V (q`)
]
. (1.5)

Like all objects of this kind, Hamiltonian (1.5) has no
direct mathematical meaning and is ‘represented’ by lo-
cal Hamiltonians corresponding to non-void finite sub-
sets Λ ⊂ L. To indicate this property of a given Λ we
write Λ b L; by |Λ| we denote the number of elements.
In the sequel, the adjective local will always mean the
property of being related to a certain Λ b L, whereas
global will refer to the whole lattice. If we say that some-
thing holds for all `, we mean it holds for all ` ∈ L;
sums like

∑
` mean

∑
`∈L. By (·, ·) and | · | we denote a

scalar product and the norm in the Euclidean space Rd,
respectively.

The set {Λ}ΛbL is countable; it is a net with the order
defined by inclusion. A linearly ordered sequence of sub-
sets Λ b L, which exhausts the lattice L, will be called a
cofinal sequence. The limit of a sequence of appropriate
AΛ taken along such a cofinal sequence L will be denot-
ed by limLAΛ; we write limΛ↗L AΛ if the limit is taken
along the net {Λ}ΛbL. The same notations will be used
in the case of lim sup and lim inf.

The local Hamiltonians, HΛ, are obtained by restrict-
ing the corresponding summations over ` and `′ to this
Λ. That is,

HΛ = −J
2

∑
`,`′∈Λ:|`−`′|=1

q`q`′+
∑
`∈Λ

[
Hhar

` + V (q`)
]
. (1.6)

A special kind of Λ b L is the box

Λ = (−L,L]d
⋂

L, L ∈ N, (1.7)

which can be turned into a torus by setting periodic con-
ditions on its boundary. The same can be done by equip-
ping Λ with the periodic distance |`− `′|Λ, the definition
of which is standard. By Lbox we denote the set of all
boxes, which obviously is a cofinal sequence.

For the box Λ, we set

Hper
Λ = −J

2

∑
`,`′∈Λ: |`−`′|Λ=1

q`q`′ +
∑
`∈Λ

[
Hhar

` + V (q`)
]
,

(1.8)

that is the periodic local Hamiltonian. In the sequel, by
writing expressions like Hper

Λ we tacitly assume that the
corresponding Λ is a box. Due to property (1.4), both
HΛ and Hper

Λ are self-adjoint operators in the physical
Hilbert space HΛ = L2(R|Λ|), such that for every β > 0,

ZΛ
def= trace [exp(−βHΛ)] <∞, (1.9)

Zper
Λ

def= trace [exp(−βHper
Λ )] <∞.

Thus, one can define the corresponding local Gibbs states

%Λ(A) = trace [A exp(−βHΛ)] /ZΛ, A ∈ CΛ, (1.10)
%per
Λ (A) = trace [A exp(−βHper

Λ )] /Zper
Λ .
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Here CΛ is the local algebra of observables, which is the
C∗-algebra of all bounded linear operators on HΛ. As
the main source on the ‘algebraic’ aspects of our theory
we mention monograph [17].

We study the dependence of the averages (1.10) on J ,
and h. Among them are local polarizations (magnetiza-
tions, in a ferromagnetic terminology), defined as follows

Mper
Λ (J, h) = %per

Λ (q`), (1.11)

MΛ(J, h) =
1
|Λ|

∑
`∈Λ

%Λ(q`), ` ∈ Λ.

One observes that the periodic polarization is indepen-

dent of ` in view of the corresponding invariance of the
Hamiltonian (1.8). Since the thermodynamic properties
of the model reveal themselves in the thermodynamic
limit, let us look at the asymptotic behavior of the net
{MΛ(j, h)}ΛbL and of the sequence {Mper

Λ (j, h)}Λ∈Lbox .
Here we present some relevant facts, the proof of which
will be discussed in the subsequent sections.

Proposition I.1 Both {MΛ(j, h)}ΛbL
and {Mper

Λ (j, h)}Λ∈Lbox are bounded.

In view of this fact, we define

M+(J, h) = max

{
lim sup

Λ↗L
MΛ(J, h) ; lim sup

Λ∈Lbox

Mper
Λ (J, h)

}
, (1.12)

M−(J, h) = min
{

lim inf
Λ↗L

MΛ(J, h) ; lim inf
Λ∈Lbox

Mper
Λ (J, h)

}
.

In the following, by a denumerable set we mean a set
which is void, finite, or countable. In the statements be-
low, if we do not mention β and J , we mean that the
statement holds for all possible values of these parame-
ters.

Proposition I.2 There exists a denumerable set R ⊂ R,
such that, for h ∈ Rc def= R \ R,

M−(J, h) = M+(J, h) def= M(J, h). (1.13)

The polarization M(J, h), as a function of h, is non-
decreasing on Rc; it is continuous on each of its open
connected components.

Note that by R we mean the smallest set with the prop-
erties stated.

Let us make some comments. By Proposition I.1, it fol-
lows that for a specific cofinal sequence L, which may al-
so be composed by boxes, the corresponding sequence of
local polarizations has a limit, which belongs to the inter-
val [M−(J, h),M+(J, h)]. By Proposition I.2, this interval
shrinks into a point if h ∈ Rc, which merely means that,
at such h, there exists a (global) polarization indepen-
dent of the sequence L along which the thermodynamic
limit has been taken. This polarization is continuous on
the interval (a−, a+) ⊂ Rc, where a± are two consecu-
tive elements of R. At such a±, M(J, h) is discontinuous.
Since M(J, h) ∈ [M−(J, h),M+(J, h)], the discontinuity
is of the first kind. Therefore, at each a ∈ R, such that
both (a− ε, a), (a, a+ ε) are subsets of Rc for a certain
ε > 0, one has

lim
h↑a

M(J, h) < lim
h↓a

M(J, h). (1.14)

At the same time, the set Rc may have empty interior;
hence, the global polarization may be nowhere continu-
ous.

Now we are ready to define the main notion of the
paper.

Definition I.3 The model considered undergoes a phase
transition (of first order) at certain β, J , and h∗ if the
global polarization, as a function of h at fixed β and J ,
is discontinuous at this h∗.

Note that this definition agrees with the known one giv-
en by L. Landau. Remarkably, we do not suppose that
the phase transition breaks any symmetry.

Recall that L = Zd and that m is the particle mass.
The result of the paper is contained in the following
statement.

Theorem I.4 For every d ≥ 3 and β > 0, there exist
m∗ > 0 and J∗ > 0 such that for every m > m∗ and
J > J∗, there exists h∗ ∈ R, possibly dependent on β, m,
and J , such that M(J, h) gets discontinuous at h∗, i.e.,
the model undergoes a phase transition.

In the next section, we give the proof of this theorem
based on a number of lemmas, which we prove by em-
ploying the representation of the local states (1.10) in
terms of path measures. In Section III, we give a brief
description of the corresponding approach — article [18]
may serve as the main source of details. The proof of the
lemmas is given in Section IV.

II. PROOF OF THE THEOREM

As the inverse temperature β plays no role in our con-
sideration, see the formulation of Theorem I.4, from now
on we set β = 1. We also set ~ = 1, which merely means
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that m = mph/~2, where mph is the physical mass of the
particle.

The proof of Theorem I.4 will be given at the end
of this section. It is based on a number of preparato-
ry statements – Propositions and Lemmas. The former
ones will be either taken from other sources or discussed
in the subsequent parts of the article. Some of them will
be proved here. Lemmas, which are more important and
nontrivial, will be proved in Section IV.

Keeping in mind the dependence of the partition func-
tions (1.9) on the interaction intensity and the external
field, we define

pΛ(J, h) = logZΛ/|Λ|; pper
Λ (J, h) = logZper

Λ /|Λ|. (2.1)

We call these functions the pressure and the periodic pres-
sure, respectively; up to the sign they coincide with the
free energy density corresponding to the free and period-
ic conditions on the boundary of Λ. The properties of the
pressure are described by the following statements. The
first one can be obtained directly from definition (2.1).

Proposition II.1 Each pΛ(J, h), pper
Λ (J, h) is an in-

finitely differentiable function of h ∈ R and J ∈ R. It
is also a convex function of both these parameters.

One can easily verify that

∂

∂h
pΛ(J, h) = MΛ(J, h),

∂

∂h
pper
Λ (J, h) = Mper

Λ (J, h),

(2.2)

and

∂2

∂h2
pΛ(J, h) =

1
|Λ|

∑
`,`′∈Λ

KΛ
``′(0, 0), (2.3)

∂2

∂h2
pper
Λ (J, h) =

1
|Λ|

∑
`,`′∈Λ

KΛ
``′(0, 0|per),

where for τ, τ ′ ∈ [0, 1], τ ≤ τ ′, we have set

KΛ
``′(τ, τ

′) = ΓΛ
``′(τ, τ

′)− %Λ(q`) · %Λ(q`) (2.4)
KΛ

``′(τ, τ
′|per) = ΓΛ

``′(τ, τ
′|per)− %per

Λ (q`) · %per
Λ (q`),

and
ΓΛ

``′(τ, τ
′) = %Λ {q` exp [−(τ ′ − τ)HΛ] q`′ exp [(τ ′ − τ)HΛ]} , (2.5)

ΓΛ
``′(τ, τ

′|per) = %per
Λ {q` exp [−(τ ′ − τ)H per

Λ ] q`′ exp [(τ ′ − τ)H per
Λ ]} .

Proposition II.2 It follows that for any 0 ≤τ ≤τ ′ ≤ 1,

KΛ
``′(τ, τ

′) ≥ 0, KΛ
``′(τ, τ

′|per) ≥ 0. (2.6)

The next statement clarifies the situation with the lim-
iting pressure.

Proposition II.3 For every J ≥ 0 and h ∈ R,

lim
Λ↗L

pΛ(J, h) = lim
Lbox

pper
Λ (J, h) def= p(J, h). (2.7)

Thereby, the limiting pressure always exists and is inde-
pendent of the way the limit has been taken. This fact
together with those established by Proposition II.1 yield
some important information regarding the properties of
the global polarizations.

We recall that for the function ϕ : R → R, the one-
sided derivatives are

ϕ′±(t) = lim
ε↓0

ϕ(t± ε)− ϕ(t)
±ε

.

It is known, see e. g., [25], pages 34–37, that

Proposition II.4 For a convex function ϕ : R → R,

(a) the one-sided derivatives ϕ′±(t) exist for every
t ∈ R; the set {t ∈ R | ϕ′+(t) 6= ϕ′−(t)}
is denumerable;

(b) the point-wise limit ϕ of a sequence of convex
functions {ϕn}n∈N is a convex function;
if ϕ and all ϕn’s are differentiable at the given t,
the sequence {ϕ′n(t)}n∈N converges to ϕ′(t).

The proof of Proposition I.2 readily follows from the con-
vexity of the pressure and the latter statement.

Next we introduce the so called Duhamel two-point
function — a traditional element of the theory of phase
transitions in quantum systems, see [2]. In our context,
it is

DΛ
``′ =

∫ 1

0

∫ 1

0

ΓΛ
``′(τ, τ

′|per)dτdτ ′ (2.8)

=
∫ 1

0

ΓΛ
``′(0 , τ |per)dτ, `, `′ ∈ Λ.

As follows from (2.8) and (2.6),

DΛ
``′ ≥ 0, (2.9)

for all boxes Λ and `, `′. By construction, DΛ
``′ is invari-

ant with respect to the translations of the torus Λ. To
employ this property we introduce the set Λ∗ (a Brillouin
zone) consisting of
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p = (p1, . . . , pd), pj = −π +
2π
L
sj , (2.10)

sj = 1, . . . , 2L, j = 1, . . . , d,

and thereby the Fourier transformation

D̂Λ
p =

∑
`′∈Λ

DΛ
``′ exp[ı(p, `− `′)], p ∈ Λ∗, (2.11)

DΛ
``′ =

1
|Λ|

∑
p∈Λ∗

D̂Λ
p exp[−ı(p, `− `′)].

Now we need to make a more formal definition of the
thermodynamic limit, c. f. Proposition I.1. Recall that
for a given Λ b L, CΛ is the algebra of local observables,
being the C∗-algebra of all bounded linear operators on
the physical Hilbert space HΛ. For Λ ⊂ Λ′, one can de-
fine the canonical embedding CΛ ↪→ CΛ′ , up to which CΛ

is a subalgebra of CΛ′ . Thereby, we define the algebra of
all local observables

Cloc =
⋃
ΛbL

CΛ. (2.12)

Equipped with the norm inherited from CΛ it becomes
a normed space, although not complete. Its completion,
C, is called the algebra of quasi-local observables. It is
also a C∗-algebra. One can show that the union in (2.12)
may be taken over any cofinal sequence L.

The local states (1.10) describe the properties of a por-
tion of the system, while the whole system is described
by the states defined on the algebra C.

Proposition II.5 For every J > 0 and h ∈ R, there ex-
ists a tendenly to infinity sequence {Ln}n∈N and hence
sequence {Λn}n∈N of the corresponding boxes (1.7), such
that sequence {%per

Λn
}n∈N of the states (1.10) converges to

a translation invariant state %per on the algebra C (called
a periodic state) in such a way that for every polynomial
P (q∆), ∆ b L, q∆ = (q`)`∈∆,

lim
n→+∞

%per
Λn

[P (q∆)] = %per[P (q∆)]. (2.13)

Furthermore, this convergence also yields that for every
`, `′,

ΓΛn

``′ (·, ·|per) → Γ``′(·, ·|per), (2.14)

uniformly on τ, τ ′ ∈ [0, 1].

Note that by (2.13), one has, c.f. (1.12),

%per(q`) = lim
n→+∞

Mper
Λn

(J, h). (2.15)

In view of (2.14), we set, c.f. (2.8),

D``′ =
∫ 1

0

Γ``′(0 , τ |per)dτ. (2.16)

By construction, Γ``′(·, ·|per), and hence D``′ , are invari-
ant with respect to the translations of Zd. Thus, one can
define

D̂p =
∑
`′

D``′ exp[ı(p, `− `′)], p ∈ (−π, π]d, (2.17)

D``′ =
1

(2π)d

∫
(π,π]d

D̂p exp[−ı(p, `− `′)]dp.

Proposition II.6 Suppose that for a given J > 0, there
exists h∗ such that

%per(q`) = 0 (2.18)

at h = h∗. Suppose in addition that at h = h∗ there exists
a sequence of boxes {Λk}k∈N such that

lim
k→+∞

1
|Λk|

∑
`′∈Λk

D``′ = lim
k→+∞

1
|Λk|2

∑
`,`′∈Λk

D``′ > 0.

(2.19)

Then the model undergoes the phase transition at these
J and h∗.

By (2.17) and (2.9) it follows that

D̂0 ≥
∑

`′∈Λk

D``′ ,

for any Λk mentioned in the above statement. Thus, if
(2.19) holds, then there exists c > 0 such that

D̂0 ≥ c|Λk|, for any k ∈ N. (2.20)

This means that D̂p is singular at p = 0 in this case.
On the other hand, by the second line of (2.17) this in-
frared singularity is integrable; hence, D̂p is a distribu-
tion. Thus, one can write it in the form

D̂p = (2π)dκδ(p) + g(p), (2.21)

where δ is the Dirac δ-function and g(p) is regular at
p = 0. By (2.9), g(p), for all p, and κ are nonnegative; κ
is positive if (2.19) holds. Note that (2.21) is similar to
the Källen–Lehmann representation known in quantum
field theory. For more on this subject, see Introduction
in [1].

By (2.17) and (2.21),

κ = D`` −
1

(2π)d

∫
(−π,π]d

g(p)dp; (2.22)

hence, in order to prove that κ > 0 one has to estimate
D`` from below and g(p) from above. The estimate of
g(p) is obtained in the next statement which we prove
by means of a method used in [2], see Example 4, pages
362–364.

Proposition II.7 Suppose there exists a continuous b :
(−π, π]d \ {0} → [0,+∞) satisfying the condition∫

(−π,π]d
b(p)dp <∞, (2.23)

and such that for all boxes Λ,

D̂Λ
p ≤ b(p), for all p ∈ Λ∗ \ {0}. (2.24)

Then the function g in representation (2.21) obeys the
estimate

g(p) ≤ b(p), for all p ∈ (−π, π]d \ {0}. (2.25)
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Proof: Let ψ : Zd → C be such that there exists ∆ b L,
for which ψ` = 0 for all ` ∈ ∆c = L \∆. We also assume
that ∑

`∈∆

ψ` = 0. (2.26)

Pick up the box Λ, such that ∆ ⊂ Λ. For this Λ, we set

ΨΛ =
∑

`,`′∈Λ

DΛ
``′ψ`ψ`′ =

1
|Λ|

∑
p∈Λ∗\{0}

D̂Λ
p

∣∣∣ψ̂(p)
∣∣∣2 , (2.27)

where

ψ̂(p) =
∑
`∈Λ

ψ` exp[ı(p, `)] =
∑
`∈∆

ψ` exp[ı(p, `)], (2.28)

which can obviously be defined for all p ∈ (−π, π]d. The
p = 0 term in the sum in (2.27) has been excluded in
view of (2.26). Then by (2.24) we have

lim
L→+∞

ΨΛL ≤ 1
(2π)d

∫
(−π,π]d

∣∣∣ψ̂(p)
∣∣∣2 b(p)dp. (2.29)

In view of (2.28) and the bound (2.24), the limit on
the left-hand side exists by Lebesgue’s dominated con-
vergence theorem, at least for a subsequence {Ln}. Then

1
(2π)d

∫
(−π,π]d

D̂p

∣∣∣ψ̂(p)
∣∣∣2 dp = lim

Ln→+∞
ΨΛLn

≤ 1
(2π)d

∫
(−π,π]d

∣∣∣ψ̂(p)
∣∣∣2 b(p)dp.

For every p∗ 6= 0, one can choose the function ψ in such

a way that
∣∣∣ψ̂(p)

∣∣∣2 is close to the δ-function concentrated
at this p∗. This yields (2.25). �

As was mentioned above, the proof of the theorem is
based on the infrared estimates. A detailed presentation
of this method in its application to quantum anharmon-
ic crystals can be found in [5–7, 18]. By means of it we
make estimate (2.24) precise.

Proposition II.8 For every box Λ, and any p ∈ Λ∗\{0},

0 < D̂Λ
p ≤ 1/JE(p), (2.30)

where

E(p) =
d∑

j=1

[1− cos pj ]. (2.31)

Note that the function 1/E(p) is integrable on (−π, π]d
for d ≥ 3.

Now we give the statements which finalize the prepa-
ration of the proof of the theorem.

Lemma II.9 For every m0 > 0, there exist h±(m0) ∈
R, h+(m0) > h−(m0), such that for all m > m0 and
J ≥ 0,

Mper
Λ (J, h) > 0, for all h > h+(m0); (2.32)

Mper
Λ (J, h) < 0, for all h < h−(m0).

The next statement is an analog of Lemma 3.4 of [1].

Lemma II.10 There exist positive numbers ε, δ, and
m∗ > m0, where m0 is as in Proposition II.9, such that
for all Λ and m > m∗,

pper
Λ (J, h)− pper

Λ (0, h) ≥ d(εJ − δ). (2.33)

Lemma II.11 Let m∗ be as above. Then for every Λ,
m > m∗, J > 0, and h ∈ R,

%per
Λ (q2` ) ≥ [pper

Λ (J, h)− pper
Λ (0, h)]/Jd. (2.34)

One observes that pper
Λ (0, h) does not depend on Λ. By

means of Lemmas II.10, II.11 we have

%per
Λ (q2` ) ≥ ε− δ/J, (2.35)

which can be used to estimateD`` from below, see (2.22).
To this end we use the Bruch–Falk inequality, see Theo-
rem 3.1 in [2] or Theorem IV.7.5, page 392 of [25]. Recall
that by (2.8) and (2.5),

DΛ
`` =

∫ 1

0

%per
Λ {q` exp[−τHper

Λ ]q` exp[−τHper
Λ ]}dτ.

Proposition II.12 (Bruch–Falk Inequality)
It follows that

DΛ
`` ≥ %per

Λ (q2` ) · f
(

1
4m%per

Λ (q2` )

)
, (2.36)

where the function f : [0,+∞) → [0, 1] is defined implic-
itly by

f(ξ tanh ξ) = ξ−1 tanh ξ, for ξ > 0; and f(0) = 1.

(2.37)

The function f is differentiable, convex and monotone
decreasing on (0,+∞), and such that

lim
ξ→+∞

ξf(ξ) = 1, (2.38)

see Theorem A.2 in [2]. As the right-hand side of (2.36)
is independent of Λ, one can pass here to the thermo-
dynamic limit along the same sequence of boxes as in
(2.15). Then

D`` ≥ (ε− δ/J)θ(J); θ(J) def= f(J/4m∗(εJ − δ)),

(2.39)

where m∗ is the same as in Lemma II.10 and J > δ/ε.

Proof of Theorem I.4: Suppose the model has no
phase transitions. Then by Proposition I.2 the set R is
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void and the polarization M(J, h) is a continuous func-
tion of h ∈ R for each J > 0. This yields, see (1.13) and
Lemma II.9, that for every J > 0, there exists h∗ ∈ R,
possibly depending on J , such that M(J, h∗) = 0. On
the other hand, by (2.39) and (2.30), (2.25), we have in
(2.22)

κ ≥ (ε− δ/J)θ(J)− Φ(d)/J , (2.40)

where

Φ(d) def=
1

(2π)d

∫
(−π,π]d

dp
E (p)

,

which exists for d ≥ 3, see (2.31). Note that the right-
hand side of (2.40) does not depend on h. Now we pick
up J∗ > 0 such that κ > 0 for all J > J∗. For such J and
m > m∗, D``′ does not tend to zero as |` − `′| → +∞,
see (2.17); hence, (2.19) holds. Then by Lemma II.6, we
get a contradiction with the supposition made at the be-
ginning of the proof. �

III. THE EUCLIDEAN APPROACH

States (1.10) define the thermodynamic properties of
the portion of the system located in Λ. The dynamics of

this portion is described by the time automorphisms

A 7→ aΛ
t (A) = exp (ıtHΛ)A exp (−ıtHΛ) , (3.1)

t ∈ R, Λ b L.

As both dynamics and thermodynamics are determined
by the same object — the local Hamiltonian HΛ — the
states (1.10) obey the KMS condition, see e. g. [20].

Let Mcont
Λ be the algebra of all multiplication oper-

ators by bounded continuous functions F ∈ Cb(Rν|Λ|).
One can prove, see [21], that the linear span of the opera-
tors aΛ

t1(F1) · · · aΛ
tn

(Fn) with all possible choices of n ∈ N,
t1, . . . , tn ∈ R, and F1, . . . , Fn ∈ Mcont

Λ , is dense in CΛ in
the topology in which the states (1.10) are continuous.
Therefore, such states are fully determined by their val-
ues on the mentioned products, i.e., by the local Green
functions

GΛ
F1,...,Fn

(t1, . . . , tn) = %Λ

[
aΛ

t1(F1) · · · aΛ
tn

(Fn)
]
, (3.2)

and the corresponding periodic local Green functions.
They can be looked upon, see [18, 22, 23], as the restric-
tions of functions GΛ

F1,...,Fn
analytic on the domains

Dn
β = {(t1, . . . , tn) ∈ Cn | 0 < =(t1) < · · · < =(tn) < β}, (3.3)

and continuous on their closures D̄n
β . For every n ∈ N,

the subset

{(t1, . . . , tn) ∈ Dn
β | <(t1) = . . . = <(tn) = 0}, (3.4)

is an inner set of uniqueness for functions analytic in
Dn

β , see [24], pages 101 and 325. This means that the
Matsubara functions

ΓΛ
F1 ,...,Fn

(τ1 , . . . , τn) def= GΛ
F1 ,...,Fn

(ıτ1 , . . . , ıτn), (3.5)

defined for 0 ≤ τ1 ≤ · · · ≤ τn ≤ β, uniquely determine
the corresponding Green functions and hence the states
%Λ. They have the property

ΓΛ
F1 ,...,Fn

(τ1 + ϑ, . . . , τn + ϑ) = ΓΛ
F1 ,...,Fn

(τ1 , . . . , τn),

where addition is of modulo β. This periodicity and the
analyticity of the Green functions imply the KMS prop-
erty of the state %Λ [20, 22,23].

This passage from real to imaginary values of time,
see (3.4), is conceptually similar with the Euclidean ap-
proach in quantum field theory, see e. g., [15], It allows
for employing the properties of the semi-groups of op-
erators exp(−τHΛ), where τ varies in the interval [0, β]
with the periodic condition at the endpoints. This semi-
group generates a β-periodic Markov process, see [20].
Its canonical realization is described by a probability
measure on a space of continuous paths. Thereby, the

Matsubara functions (3.5) can be written in the form of
integrals taken with respect to this measure, which opens
the possibility to apply here powerfull methods from the
stochastic analysis and measure theory. Our proof will
be based on some of them.

Now let us introduce the mentioned path spaces and
measures. For simplicity, we perform this for β = 1. In
view of the periodicity at the endpoints of the interval
[0, 1] we associate it with the circle S of unit length,
considered as a Riemannian manifold equipped with the
Lebesque measure dτ . Therefore, each such path can
be considered as a classical spin at `, though infinite-
dimensional. It takes values in the space C of all contin-
uous functions φ : S → R, which can also be considered
as continuous functions [0, 1] → R taking equal values
at the endpoints. We equip C with the usual supremum
norm | · |C , in which is becomes a Banach space. Along
with C we use also spaces of Hölder-continuous functions
φ : S → R. For such a function and σ ∈ (0, 1/2), we set

|φ|Cσ
= |φ|C + sup

τ,τ ′∈S, τ 6=τ ′

|φ(τ)− φ(τ ′)|
|τ − τ ′|σS

, (3.6)

where

|τ − τ ′|S
def= min{|τ − τ ′|; 1− |τ − τ ′|}. (3.7)

Then we set

Cσ = {φ ∈ C | |φ|Cσ <∞}. (3.8)
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Equipped with norm (3.6), Cσ becomes a Banach space
as well. Along with these spaces we shall use also the
real Hilbert space L2 def= L2(S,dτ), the scalar prod-
uct and norm of which are denoted by (·, ·)L2 and | · |L2 ,
respectively.

For Λ b L, we set

ΩΛ = {ωΛ = (ω`)`∈Λ | ω` ∈ C, for all ` ∈ Λ}. (3.9)
Thus, the representation of function (3.5) in the form of
the integral mentioned above is, c.f. (2.5),

ΓΛ
F1 ,...,Fn

(τ1 , . . . , τn) = trace [F1 exp(−(τ2 − τ1)HΛ) · · ·Fn−1 exp(−(τn − τn−1)HΛ)Fn exp(−(1− τn + τ1)HΛ)] /ZΛ

=
∫
Ω

F1(ωΛ(τ1)) · · ·Fn(ωΛ(τn))µΛ(dωΛ), (3.10)

where µΛ is the above-mentioned path probability mea-
sure, which we are going to construct now.

The Hamiltonian Hhar
` , see (1.2), generates a Gaus-

sian periodic Markov process, known as the Ornstein–
Uhlenbeck velocity process. Its canonical realization on
C is described by the path measure which one introduces
as follows. In L2, we define the self-adjoint (Laplace–
Beltrami type) operator

A = −m d2

dτ2
+ a. (3.11)

Its spectrum consists of the eigenvalues

λk = m(2πk/β)2 + a, k ∈ Z. (3.12)

Thus, the inverse A−1 is of trace class and the Fourier
transform∫

L2
β

exp[ı(φ, υ)L2 ]χ(dυ)= exp
{
−1

2
(A−1φ, φ)L2

β

}
,

φ ∈ L2
β (3.13)

defines a Gaussian measure χ on L2. Employing eigen-
values (3.12) one can show that for any k ∈ N,∫
L2

[ω(τ)− ω(τ ′)]2kχ(dω) ≤ 2kΓ(1/2 + k)
mkΓ(1/2)

· |τ − τ ′|kper,

(3.14)

which by Kolmogorov’s lemma, page 43 of [26], yields
that

χ(Cσ) = 1, for all σ ∈ (0, 1/2). (3.15)

Then χ(Cβ) = 1 and we redefine χ as a probability mea-
sure on C. An account of the properties of χ may be
found in [18].

The measure χ is the local Euclidean Gibbs measure
for a single harmonic oscillator. The measure µΛ which
corresponds to a portion of interacting anharmonic os-
cillators located in Λ b L is associated with a stationary
periodic Markov process defined as follows. The marginal
distributions of µΛ are given by the integral kernels of the
operators exp(−τHΛ), τ ∈ [0, 1]. This means that

trace[F1e
−(τ2−τ1)HΛF2e

−(τ3−τ2)HΛ · · ·Fne
−(τn+1−τn)HΛ ]/trace[e−HΛ ] =

∫
ΩΛ

F1(ωΛ(τ1) · · ·Fn(ωΛ(τn))µΛ(dωΛ), (3.16)

for all F1, . . . , Fn ∈ L∞(R|Λ|), n ∈ N and τ1, . . . , τn ∈ Sβ ,
such that τ1 ≤ · · · ≤ τn ≤ 1, τn+1 = τ1 + 1. And vice
verse, representation (3.16) uniquely, up to equivalence,
defines HΛ (see [20]). In the same way, one obtains the
connection between the periodic Hamiltonian (1.8) and
the measure µper

Λ . By means of the Feynman–Kac formu-
la µper

Λ is obtained as a Gibbs modification

µper
Λ (dωΛ) = exp {−Iper

Λ (ωΛ)}χΛ(dωΛ)/ZΛ, (3.17)

of the ‘free measure’

χΛ(dωΛ) =
∏
`∈Λ

χ(dω`). (3.18)

Here

Iper
Λ (ωΛ) =−J

2

∑
`,`′∈Λ: |`−`′|Λ=1

(ω`, ω`′)L2

+
∑
`∈Λ

∫ 1

0

V`(ω`(τ))dτ (3.19)

is the energy functional describing the system of inter-
acting paths ω` located in the torus Λ, whereas

Zper
Λ =

∫
ΩΛ

exp {−Iper
Λ (ωΛ)}χΛ(dωΛ), (3.20)

is the partition function, the same as in (1.9). The cor-
responding construction can be conducted for the local
Gibbs state %Λ. The Euclidean Gibbs measure µΛ will
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have representation (3.17), (3.19), (3.20) in which the
condition |`− `′|Λ = 1 is replaced by |`− `′| = 1.

We conclude this section by giving the path integral
representation of the local polarizations and Matsubara
functions (2.5). They are

Mper
Λ (J, h) =

∫
ΩΛ

ω`(0)µper
Λ (dωΛ), (3.21)

MΛ(J, h) =
1
|Λ|

∑
`∈Λ

∫
ΩΛ

ω`(0)µΛ(dωΛ),

ΓΛ
``′(τ, τ

′) =
∫
ΩΛ

ω`(τ)ω`′(τ ′)µΛ(dωΛ), (3.22)

ΓΛ
``′(τ, τ

′|per) =
∫
ΩΛ

ω`(τ)ω`′(τ ′)µ
per
Λ (dωΛ).

IV. COMMENTS AND PROOF
OF THE LEMMAS

A. Comments on Propositions

Here we discuss the proof of Propositions I.1, II.2, II.3,
II.5, II.6, and II.8.

By means of the Euclidean realization of states (2.1)
described in the previous section one can prove that the
net {%Λ}ΛbL, as well as the sequence {%per

Λ }Λ∈Lbox , are
relatively compact in the topology which guarantees the
convergences stated in the propositions under question.
The boundedness follows from the moment estimates
for Euclidean Gibbs measures proved in [19,27,28]. The
equalities in (1.12) can be obtained by means of Theorem
7.12 of [29]. The inequalities (2.6) follow from the FKG
inequality, for the Euclidean Gibbs measures proved in
[18, 19]. The proof of (2.7) was performed in [19], see
Lemma 6.4. If (2.19) holds, then the limiting periodic
Euclidean Gibbs states are nonergodic with respect to
the group of translations of L, which certainly means a
phase transition, see [19] and the references therein. Fi-
nally, estimate (2.30) is the infrared bound, the proof of
which is standard, see [5–7,18,19]. �

B. Proof of Lemma II.9

We start by proving the first line in (2.32). To
this end, we find a strictly increasing function φ :
[h+(m0),+∞) → R such that

pper
Λ (J, h) ≥ φ(h) for h ≥ h+(m0). (4.1)

Then we use the convexity of pper
Λ (J, ·) and get the result

in question by (2.2). Let us split the potential V0 into
even and odd parts

V0(x) = V e
0 (x) + V o

0 (x).

Thereby, for b > 0, we choose h > 0 such that, for
all h > h, hx` − V e

0 (x`) is an increasing function of
x` ∈ [−b, b]. Set, c.f. (3.9), (3.17),

Cb = {ω ∈ C | |ω|C ≤ b},
Ωb

Λ = {ωΛ = (ω`)`∈Λ | ω` ∈ Cb , ` ∈ Λ},

Zb
Λ(J, h) =

∫
Ωb

Λ

exp [−Iper
Λ (ωΛ)]χΛ(dωΛ). (4.2)

Obviously,

pper
Λ (J, h) ≥ 1

|Λ|
logZb

Λ(J, h). (4.3)

By the first GKS inequality, see e. g., Theorem 12.1 in
[26],

Zb
Λ(J, h) ≥ Zb

Λ(0, h) def= exp (|Λ|φ(h)) , for all h > h.

(4.4)

Here

exp [φ(h)] =
∫
Cb

exp
{∫ 1

0

[hω(τ)− V0(ω(τ))] dτ
}
χ(dω).

(4.5)

By Jensen’s inequality, for every h̃ > 0 and h ≥ h̃,

φ(h) ≥ (h− h̃)γ(m, h̃) + φ(h̃), γ(m,h) def= φ′(h).

(4.6)

By (3.14), one can show, see [18], that for any m0 > 0,
the family of the corresponding measures {χ}|m≥m0 is
tight as measures on C. On the other hand, the right-
hand side of (4.5) can be extended to the whole complex
plane as an entire ridge function of h with the ridge be-
ing the real axis. Thereby, for any m0 > 0, there should
exist h̃ such that

γ∗(h̃)
def= inf

m≥m0
γ(h, h̃) > 0.

Then for a fixedm0, we take h+(m0) = max{h̃, h}, which
yields (4.1) and hence the first part of (2.32). Since we
have not employed any property of V e

0 , the rest of the
lemma can be proved by changing the sign of h and all
ω`.

C. Main Estimate

The proof of Lemmas II.10, II.11 is based on the esti-
mate which we derive now.

The path measure νh corresponding to the anharmon-
ic oscillator (1.2) with the external field h is defined as
a probability measure on C by the following expression,
c. f. (1.3), (3.17)–(3.19),
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νh(dω) =
1
Nh

exp
[
h

∫ 1

0

ω(τ)dτ −
∫ 1

0

V0(ω(τ))dτ
]
χ(dω), (4.7)

where

Nh =
∫
C

exp
[
h

∫ 1

0

ω(τ)dτ −
∫ 1

0

V0(ω(τ))dτ
]
χ(dω). (4.8)

Let h±(m0) be as in Lemma II.9. Then for ε > 0 and

h ∈ [h−(m0)− ε, h+(m0) + ε], m > m0, (4.9)

by (3.14) we readily get ∫
C
[ω(τ)− ω(τ ′)]2kνh(dω) ≤ m−kQk · |τ − τ ′|kper, k ∈ N, (4.10)

which holds, uniformly in h and m obeying (4.9), with Qk depending on ε only. In the sequel, we always assume that
h and m are chosen according to (4.9).

Since the potential V0 is continuous and defined on the whole R, every one-dimensional projection of νh is non-
degenerate, which yields that for every n ∈ N, τ1, . . . , τn ∈ [0, 1], and c > 0 both sets

C±(τ1, . . . , τn; c) def= {ω ∈ C | ± ω(τj) ≥ c, for all j = 1, . . . , n} (4.11)

are such that νh[C±(τ1, . . . , τn; c)] > 0. By C±(n; c) we denote C±(τ1, . . . , τn; c) with τj = j/n, j = 1, . . . , n.

Lemma IV.1 For every integer n ≥ 2 and any ε > 0,
there exist m > m0, c >

√
ε, and B±

ε ⊂ C±(n; c), such
that for all m > m,

νh(B±
ε ) > 0, (4.12)

and for all ω ∈ B±
ε ,

∀ τ ∈ [0, 1] : ±ω(τ) ≥
√
ε. (4.13)

Proof: Let us fix p ∈ N \ {1}, α ∈ (0, p− 1), and set

λϑ(ω) = sup
{

[ω(τ)− ω(τ ′)]2p

|τ − τ ′|αper

| 0 < |τ − τ ′|per ≤ ϑ

}
,

ϑ ∈ (0, 1). (4.14)

Then by the Garsia–Rodemich–Rumsey lemma, see e. g.,
pages 202, 203 in [31], one has from (4.10)∫

C
λϑ(ω)νh(dω) ≤ 2α+6p+ς

p− α− 1

(
1 +

2
α

)
m−pQpϑ

p−α

def= m−pQp,αϑ
p−α, (4.15)

where ς > 0 is an absolute constant. Now we fix n ≥ 2
and for c >

√
ε, define

A(c; ε) = {ω ∈ C | λ1/n(ω) ≤ (c−
√
ε)2pnα},

B±
ε = A(c; ε)

⋂
C±(n; c).

Then for any τ ∈ [0, 1], one can pick up j/n, such that

|ω(τ)− ω(j/n)| ≤
[
λ1/n(ω)

]1/2p
n−α/2p,

which yields ±ω(τ) ≥
√
ε if ω ∈ B±

ε . To estimate νh(B±
ε )

we proceed as follows. By (4.13) and (4.15), and by the
Chebyshev inequality

νh [C \A(c; ε)] ≤ 1
(c−

√
ε)2pnα

∫
λ1/n(ω)νh(dω)

≤ m−p ·Qp,α/[n(c−
√
ε)2]p.

Now we set

σ(n; c) = min
{
νh

[
C+(n; c)

]
; νh

[
C−(n; c)

]}
. (4.16)

Thereby,

νh(B±
ε ) ≥ σ(n; c)− νh [C \A(c; ε)] (4.17)

≥ σ(n; c)−m−p ·Qp,α/[n(c−
√
ε)2]p,

which is positive for all

m > m
def= max

{
m0; [n(c−

√
ε)2]−1 · [Qp,α/γ(n; c)]1/p

}
.

(4.18)

�

Now we introduce

C × C 3 (ω, ω′) 7→ Y (ω, ω′) =
∫ 1

0

ω(τ)ω′(τ)dτ. (4.19)

Then, by (4.13)

∀ω, ω′ ∈ B±
ε : Y (ω, ω′) ≥ ε. (4.20)

D. Proof of the Lemmas

Proof of Lemma II.10: In the Euclidean approach,
the periodic pressure (2.1) has the following representa-
tion, see (3.20), (3.19), and (4.7),
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pper
Λ (J, h)− pper

Λ (0, h) = |Λ|−1 log

{∫
ΩΛ

exp [JYΛ(ωΛ)]
∏
`∈Λ

νh(dω`)

}
, (4.21)

where

YΛ(ωΛ) =
1
2

∑
`,`′∈Λ, |`−`′|Λ=1

Y (ω`, ω`′), (4.22)

and Y being as in (4.19). For ±h ≥ 0, we get from (4.21), (4.20)

pper
Λ (J, h)− pper

Λ (0, h) ≥ |Λ|−1 log

{∫
(B±

ε )|Λ|
exp [JY (ωΛ)]

∏
`∈Λ

νh(dω`)

}
≥ dJε+ νh

(
B±

ε

)
.

Now we fix ε, c, n, and α. Then for a given δ > 0, we denote by m∗ the value of m for which the second line in (4.17)
equals exp(−δ). Thereafter, the latter estimate turns into (2.33). �

Proof of Lemma II.11: First we write

pper
Λ (J, h)− pΛ(0, h) =

∫ J

0

(
∂

∂t
pper
Λ (t, h)

)
dt ≤ J

∂

∂J
pper
Λ (J, h),

since pper
Λ is a convex function of J . Then by (4.21), (4.22), (4.19),

∂

∂J
pper
Λ (J, h) =

1
2|Λ|

∑
`,`′∈Λ, |`−`′|Λ=1

∫
ΩΛ

ω`(0)ω`′(0)µper
Λ (dωΛ) (4.23)

≤ 1
4|Λ|

∑
`,`′∈Λ, |`−`′|Λ=1

∫
ΩΛ

{
[ω`(0)]2 + [ω`′(0)]2

}
µper

Λ (dωΛ)

=
1

4|Λ|
∑

`,`′∈Λ, |`−`′|Λ=1

{
%per
Λ

(
q2`

)
+ %per

Λ

(
q2`′

)}
= d%per

Λ

(
q2`

)
,

since %per
Λ

(
q2`

)
is independent of `. Here, c.f., (4.21),

µper
Λ (dωΛ) = exp [FΛ(J, h) + JYΛ(ωΛ)]

∏
`∈Λ

νh(dω`), (4.24)

FΛ(J, h) = |Λ| [pΛ(0, 0)− pper
Λ (J, h)]

is the Euclidean local Gibbs measure which corresponds to the Hamiltonian (1.8). Thereby, we employ (4.23) in
(4.23) and get (2.34). �
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ФАЗОВИЙ ПЕРЕХIД У КВАНТОВОМУ АНГАРМОНIЧНОМУ КРИСТАЛI

A. Kарґоль, Ю. Kозицький
Iнститут математики, Унiверситет Марiї Кюрi-Склодовської, 20–031, Люблин, Польща

Розглянуто трансляцiйно-iнварiянтну систему взаємодiючих квантових ангармонiчних осциляторiв, iн-
дексованих елементами d-вимiрної простої кубiчної ґратки. Ангармонiчний потенцiял є загального типу, що,
зокрема, означає вiдсутнiсть будь-якої симетрiї. Для цiєї системи ми доводимо, що ґлобальна поляризацiя
(одержана у термoдинамiчнiй границi) стає розривною для деякого значення зовнiшнього поля, якщо d ≥ 3,
a також маса частинки й iнтенсивнiсть взаємодiї є достатньо великими. Доведення зроблено на основi пред-
ставлення локальних станiв Ґiббса моделi у виглядi мiр на стежках, що дає змогу використати iнфрачервонi
оцiнки та нерiвнiсть Ґарсiї–Родемiха–Рамсея.
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