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The pseudospin–electron model with two orbital electron states per site is considered in this
work. This model can be employed for the description of the intercalation of ions in crystals. The
pseudospin formalism is used for describing the interaction of electrons with ions. The thermo-
dynamics of the model is studied in the mean field approximation. The possibility of the phase
transitions connected with the change of the concentration of intercalated ions and significant in-
crease of electrostatic capacity of the system is analyzed.
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I. INTRODUCTION

Transition metal oxides are intensively studied as hosts
for lithium insertion, they are promising electrode mate-
rials and can be used in batteries. One of such materials
is titanium dioxide, TiO2. Such systems are semiconduc-
tors, the gap being approximately 3 eV. These materials
have been the subject of intensive experimental and the-
oretical investigations in recent years.

The crystal structures of three lithium titanates
(Li0.5TiO2 — anatase, LiTi2O4 — spinel, obtained by
heating Li0.5TiO2 — anatase, and Li2Ti2O4) were inves-
tigated by neutron diffraction powder profile analysis [1].
It was found that inserted Li ions in Li0.5TiO2 occupied
octahedral interstices. In LiTi2O4, spinel lithium occu-
pied tetrahedral sites, while in Li2Ti2O4 lithium filled
the octahedral sites and was displaced from the tetra-
hedral sites [1]. In [2] quantum chemical Hartree–Fock
calculations were done to study lithium intercalation in
rutile and anatase. Equilibrium geometries and atomic
charges were calculated. It was established that Li lost
its valence electron (electron occupying Li 2s atomic or-
bital) which transferred to Ti ion (calculated Li charges
were ∼ 0.8). Li-induced local one-electron energy level
was found in the gap between the upper valence band
and the conduction band, this level was composed main-
ly of Ti 4s atomic orbitals. A conclusion was made that
lithium can be intercalated with larger probability in the
anatase structure than in rutile. Using pseudopotential
plane-wave formalism the calculations indicated a dis-
tinct preference for intercalation of lithium into the oc-
tahedral sites in anatase [3]. There was shown that fast
diffusion of lithium along c axes and slow diffusion in the
ab plane took place. In [4] density-functional calculations
were performed to investigate lithium intercalation into
rutile. It was shown that effective Li–Li interaction was
highly anisotropic, the computed lithium diffusion con-
stants were anisotropic also. The calculations revealed a
tendency of the valence band at narrowing and increasing
the band gap at the lithium intercalation.

The dynamics of lithium in lithiated anatase TiO2 was
also tackled (see [5]). The analysis of neutron diffrac-
tion data revealed two available Li-ion positions with-
in the oxygen octahedron in lithiated anatase [6], these

sites were never occupied at the same time (the distance
between the sites was 0.7–1.8 Å depending on lithium
concentration). The intra-octahedron dynamics was in-
vestigated using molecular dynamics method and quasi-
elastic neutron scattering [6]. The hopping of lithium be-
tween different octahedra was investigated too. It was
shown that lithium diffused more easily through the Li-
rich phase (activation energy for Li-rich phase was less
than activation energy for Li-poor phase). At intercala-
tion of lithium in anatase TiO2 phase separation in Li-
poor (Li∼0.01TiO2) and Li-rich (Li∼0.5−0.6TiO2) phas-
es occurred, Li-rich phase grew with the increasing of
content of lithium [6,7]. Such two-phase behaviour leads
to a constant value of electrochemical potential. In [8]
the structural properties of LixTiO2 spinel were inves-
tigated using a cluster expansion (based on pseudopo-
tential ground state energy calculations) and a Monte
Carlo simulation. The coexistence of two phases (when
1/2 < x < 1) Li 1

2

TiO2 (Li on tetrahedral sites) and

LiTiO2 (Li on octahedral sites) was established. The in-
sertion of Li first resulted in the filling of the tetrahe-
dral sites (which are energetically more favorable), when
x = 1/2 all tetrahedral sites are filled and at x > 1/2
additional Li filled octahedral sites occur. It was shown
that Li is fully ionized once intercalated. Electronic struc-
ture calculations revealed that in LiTiO2 the Fermi level
was situated near the bottom of the conduction band;
in the valence region the energy states are represented
by three sets of bands: the s-bands (dominated by O-2s
states), the p-bands (dominated by the O-2p states) and
the d-bands (dominated by the Ti-3d states).

The intercalation of lithium in cubic-spinel
Li[Ti5/3Li1/3]O4 was investigated in [9] with the help
of the Monte Carlo method. According to their model,
the Hamiltonian included interaction between Li ions.
They did not take into account the interaction between
Li ions and electrons. It was proposed that the potential
plateau indicated the coexistence of Li-poor and Li-rich
phases due to the repulsive interactions between lithium
ions.

The reconstruction of the electron spectrum in such
crystals upon intercalation means that the interaction
between lithium and conduction and valence electrons
may play an important role in such systems. In the cur-

195



T. S. MYSAKOVYCH, I. V. STASYUK

rent study we take into account the interaction of Li ions
with electrons and investigate the possibility of phase

transition, which is connected with lithium intercalation
and phase coexistence in such systems.

II. THE MODEL

The Hamiltonian of the model is defined as
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The pseudospin variable Sz
i takes two values, Sz

i = 1/2
when lithium ion is present in the site i and Sz

i = −1/2
when lithium is absent. We take into account two elec-
tron orbital states per site (conduction and valence band
electrons, the first and the second terms in (1), as usual,
c, a and c+, a+ are electron creation and annihilation op-
erators, respectively), their interaction with lithium ions
(gv and gc terms) and direct interaction between Li ions
(J-term); µ and h play the role of the chemical potentials
of electrons and Li ions, respectively.

The models of such a type were formulated a short
time ago and are intensively investigated in the theory
of the strongly correlated electron systems. For exam-
ple, they are used to take into account the presence of
the locally anharmonic structure elements in the high
temperature superconductors [10, 11]. There is a direct
connection between the pseudospin–electron model and
Falicov–Kimball model (for example, see [12]).

To investigate the thermodynamics of the model we
use the following approximation in the interaction terms

gniS
z
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here the pseudospin–electron and pseudospin–
pseudospin interactions are taken into account in the
spirit of the mean field approximation (MFA) through
internal self-consistent fields which act on electrons and
pseudospins. We suppose that direct interaction between
pseudospins and pseudospin–electron interaction is non-
local and may be long-ranged; this enables us to use
MFA. It should be noted that this approximation is
valid in the case when the concentration of intercalated
ions is not too low. In the last case one should take in-
to account the possibility of formation of local electron
states near impurities.

We will consider the uniform case (spatially uniform,
independent on the site number electron and ion concen-
tration): 〈

∑

σ niσ〉 = n, 〈Sz
i 〉 = η. The Hamiltonian of

the model in the MFA has the following form:
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here N is the number of the lattice sites. The electron
conduction and valence bands Ec

k
= εc

k
+ gc(η + 1

2 ),

Ev
k

= εv
k

+gv(η + 1
2 ) change their positions depending on

the average value of the pseudospin η. This means that
bands are shifted at intercalation (the parameter η +1/2
determines the concentration nLi of intercalated ions).

We will make the following substitution to take into
account the fact that the system can possess some elec-
trical potential at the presence of the field. Instead of the

chemical potentials of electrons and ions we wil use the
corresonding electrochemical potentials µ → µ∗ = µ−eϕ,
h → h∗ = h + eϕ (here µ∗, h∗ are the electrochemical
potentials, −e is an electron charge). Such substitution
follows from the fact that at the presence of external
field the terms qϕ (where q is a particle charge and ϕ is
a potential of the field) should be included in the Hamil-
tonian.

The mean values of the pseudospin and electron con-
centration obey the following equations:
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The grand canonical potential of the system can be
written as
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We take into account that at intercalation the chemical
potential µ is situated in the lower part (near the bot-
tom) of the conduction band (see, for example, [4, 8]).
This means that at room temperature the valence band
is fully occupied, nv = 2 (the band gap in titanium diox-
ide is approximately 3 eV).

III. THE PHASE TRANSITION AND PHASE
SEPARATION

We have solved the set of equations (4) using the
semielliptic density of states for the conduction band,
ρ(εc) = 2

πW 2

√

ε(2W − ε), 0 < εc < 2W , W is a half-
width of the conduction band (the width of the conduc-
tion band 2W = ∆Ec in titanium dioxide is approxi-
mately 3 eV, this band is created by Ti-3d states).

In Fig. 1 the dependence of the mean pseudospin
value η and electron concentration nc on the chemi-
cal potential of ions is shown (the regime of the fixed
chemical potential of electrons and fixed potential ϕ).
We have chosen the following set of parameter values:

gc = −0.5, gv = −0.7, J = 0.1, W = 1.5 (as was noted
above, 2W ∼ 3eV); here we suppose repulsion interaction
between lithium ions, J > 0. We have also taken into ac-
count that at intercalation the band gap increases (for
example, it was shown in [4] using density-functional cal-
culations that the gap increase ranges from 0.1 to 0.4 eV
depending on the lithium concentration). As was noted
above, the conduction band Ec

k
= εc

k
+ gc(η + 1

2 ) and

the valence band Ev
k

= εv
k

+ gv(η + 1
2 ) change their po-

sitions at intercalation and at the chosen values of pa-
rameters (gc = −0.5, gv = −0.7) the band gap increases
and at η = 1

2 this increase is of the order of 0.2 eV. From
Fig. 1 we can see that the system undergoes the first or-
der phase transition with jumps of the mean values of the
pseudospin (η1 and η2) and electron concentration (n1,
n2) at the change of the chemical potential of the ions
h. The phase transition point (dashed line) is calculated
using the Maxwell rule. In the regime of the fixed ion
concentration the phase separation into two phases with
different values (nLi1 = η1 +1/2 and nLi2 = η2 +1/2) of
ion concentration takes place.

In Fig. 2 the dependence of the total charge Q =
e(〈Sz〉 + 1/2 − n) on the chemical potential of ions is
shown. The dependence of the derivative dQ/dϕ on the
chemical potential of ions is also shown in this figure (it
should be noted that this derivative is connected with
the electrostatic capacity C of the system). We do not
consider here the regime when the system total charge
equals zero (the neutrality condition). Instead of that we
consider the regime of the fixed potential ϕ. If we con-
sider the regime of the fixed total charge (for example,
Q = 0) we can find the corresponding value of the po-
tential ϕ. From Fig. 2 we can see that a sharp increase of
the derivative dQ/dϕ occurs at the phase transition point
(at the change of the chemical potential of the ions). The
units in the figure are the following: the case dQ/dϕ = 1
corresponds to the capacity C ∼ 1.6 · 10−19 F (it is a ca-
pacity per site). The capacity connected with the change
of the ion charge only (such a capacity is in close connec-
tion with the capacity obtained in experimental studies)
can also be calculated (as derivative d(e〈Sz +1/2〉)/dϕ),
but here we will not dwell on this question.
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Fig. 1. Dependence of the mean pseudospin value (η + 1/2 = nLi) and electron concentration on the chemical potential of
the ions. The parameter values are: gc

= −0.5, gv
= −0.7, J = 0.1, W = 1.5, ϕ = 0.1, µ = 0.5, T = 0.01.
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Fig. 2. Dependence of the charge Q and derivative dQ/dϕ on the chemical potential of the ions. The parameter values are:
gc

= −0.5, gv
= −0.7, J = 0.1, W = 1.5, ϕ = 0.1, µ = 0.5, T = 0.01.
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Fig. 3. Dependence of the mean pseudospin value (η + 1/2 = nLi) and electron concentration on the chemical potential of
ions. The parameter values are: gc

= −0.5, gv
= −0.7, J = 0.1, W = 1.5, ϕ = 1.0, µ = 0.5, T = 0.01.
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Fig. 4. Dependence of the charge Q and derivative dQ/dϕ on the chemical potential of ions. The parameter values are:
gc

= −0.5, gv
= −0.7, J = 0.1, W = 1.5, ϕ = 1.0, µ = 0.5, T = 0.01.

Let us make some estimation of the capacity of the
system. It is known that for the localized noninteracting
particles C ∼ e2/T and for band noninteracting electrons

C ∼ e2ρ(EF) ∼ e2/2W (here ρ(EF) is density of states
at the Fermi level), which is of the order of 10−19 F.
Our results obtained in the case of the presence of ion-
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electron interaction considered above agree with such an
estimate. If we consider the “surface” capacity per 1 mm2,
we will obtain the value C ∼ 10−7 F (here we suppose
that the density of “active centres” is of the order of 1012

per 1 mm2). The “volume” capacity is then of the order of
10−1 F. Of course, such an enormously huge capacity is
unattainable in real systems due to different reasons (our
estimation works in the ideal case, when all “active cen-
tres” are uniformly distributed over the whole crystal).
Nevertheless, the increase of capacity due to the above
mentioned “volume effect” takes place in such systems.

In Figs. 3, 4 the dependences of the η, n, Q, dQ/dϕ
values on the chemical potential of ions are shown in the
case when the system does not undergo phase transition
(this can be realized by the appropriate change of the val-
ues of the model parameters). Unlike the previously con-
sidered case (when phase transition takes place and there
is a “plateau” in the dependence of the chemical potential
of the ions h on their concentration nLi = η + 1/2), the
system cannot effectively work now as battery because
the chemical potential of the ions changes continuous-
ly with the change of the ion concentration. We can see
that in this case a sharp increase of the derivative dQ/dϕ
does not take place, this dependence is smooth enough.
Nevertheless an increase of system capacity takes place
in the same value region of the chemical potential of ions.

IV. CONCLUSIONS

In this work the pseudospin–electron model of ion in-
tercalation in crystals is formulated. The thermodynam-
ics of the model is investigated in the mean-field ap-
proximation. It is shown that even at repulsion interac-
tion between lithium ions the first order phase transition
(and separation into phases with different values of ion
concentration) takes place. This effect is connected with
the effective interaction between ions which is formed
due to the pseudospin–electron interaction (the interac-
tion of lithium ions with the electron subsystem). It is
found that the total capacity of the system increases near
phase transition point. In general our results are in ac-
cordance with experimental data where the coexistence
of two phases was revealed [6, 7].

The obtained results can be considered as the first step
to the description of the Li+ ion intercalation in semicon-
ducting crystals. It should be noted that the ion transfer
was not taken into account in our model. This is the
task for future investigations. The problems of consid-
ering other regimes (for example, that of the fixed (e. g.
zero) total charge) and a more detailed description of
phase separation also remain unsolved. A possibility of
the formation of local states on lithium was not consid-
ered in our work either.
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ПСЕВДОСПIН-ЕЛЕКТРОННА МОДЕЛЬ IНТЕРКАЛЯЦIЇ

Т. С. Мисакович, I. В. Стасюк
Iнститут фiзики конденсованих систем,

вул. Свенцiцького, 1, Львiв, 79011, Україна

Розглянуто псевдоспiн-електронну модель iз двома орбiтальними станами на вузлi. Цю модель можна

застосувати для опису iнтеркаляцiї йонiв у кристали. Використано псевдоспiновий формалiзм для опису

взаємодiї електронiв з йонами. Дослiджено термодинамiку моделi в наближеннi середнього поля. Проаналi-

зовано можливiсть фазових переходiв, пов’язаних зi змiною концентрацiї iнтеркальованих йонiв та значним

зростанням електростатичної ємности системи.
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