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We discuss field-theoretical foundations of Landau’s quasi-particle concept for strongly interact-
ing Bosons. The historical development starting from Belyaev’s field theory up to modern renor-
malization group theory is briefly reviewed with a particular emphasis on the problem of infrared
divergences. It is shown in detail that the correlation functions obtained in Popov’s functional inte-
gral approach based on a hydrodynamic action agrees precisely with recent renormalization group
analysis. The phonon decay is also discussed.
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I. INTRODUCTION

Landau’s phenomenological theory for strongly inter-
acting Bose systems [1, 2] asserts that the low lying
excitations may be conveniently represented by non-
interacting quasi-particles. This bold assumption de-
scribes many experimental observations successfully. At
long wavelength, the quasi-particles are phonons with a
linear relation ω = c|q| between energy ω and momen-
tum q and the (first) sound velocity c (we use units such
that ~ = kB = 1). For superfluid 4He at larger momenta,
the quasi-particle spectrum is given by the well-known
maxon-roton dispersion relation.

How can this extremely successful phenomenological
description be understood from the underlying field the-
ory? In this paper we focus on this question with a par-
ticular emphasis on the phonon region. In fact, a field-
theoretical understanding of the response of interacting
Bose systems at small energies and momenta is surpris-
ingly difficult: The first important steps towards a field
theory for strongly interacting Bosons were made in the
1950’s by Bogoliubov [3], Belyaev [4,5], Hugenholtz and
Pines [6] and later by Gavoret and Nozières [7].

In order to take into account Bose condensation, which
is a macroscopic occupation of the zero momentum com-
ponent of the Bose field, Bogoliubov [3] suggested treat-
ing the corresponding field operator â0 as a c-number

â0 → 〈â0〉 =
√
n0 (1)

with n0 the condensate density. He was then able to ap-
proximately diagonalize the many-body Hamiltonian for
a weakly interacting gas of Bosons and obtained its quasi-
particle excitation spectrum

ω(q) =

[

q2

2m

(

q2

2m
+ 2n0V (q)

)]1/2

→ c|q| for q → 0 (2)

with c =
√

n0V (0)/m. This spectrum is acoustic for
small momenta. In order to obtain a stable spectrum,
the Bose particle interaction V (q) must fulfill the condi-
tion q2 > 4mn0V (q) with m the Boson mass.

While Bogoliubov’s theory was a great step forward
in the understanding of the low lying spectrum of in-
teracting Bosons, the theory is certainly not applica-
ble to strongly interacting systems like superfluid 4He.
However, the theory paved the way for many important
developments, e. g., the concept of symmetry breaking,
which plays such a prominent role in modern theoretical
physics, is implicitly introduced through Eq. (1). The
symmetry broken by Eq. (1) is the gauge symmetry, and
as a consequence, the particle number is not a conserved
quantity. As we shall see, the gauge symmetry break-
ing plays a very important role in the understanding of
the infrared structure of the Bose system. A very lucid
discussion of the concept of symmetry breaking and its
implications is given by Anderson in Ref. [9].

The many-body field theory for Bose systems was first
developed by Belyaev [4]. Since the Bose condensate acts
as a particle reservoir from which particles can be creat-
ed or into which particles may be lost, it was necessary
to introduce “anomalous” Green’s functions in order to
describe such processes. Therefore, the Dyson equation
for the Green’s functions

G = G0 +G0ΣG (3)

is turned into a 2 × 2 matrix equation. The diagonal el-
ements in this equation correspond to the conventional
Green’s functions, and the off-diagonal elements inG and
Σ are the anomalous Green’s functions and self-energies,
respectively.

The resulting set of equations may be easily solved,
e. g., for G11
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G11(ω,q) =
ω + q2/2m− µ+ Σ22

[ω − 1
2 (Σ11 − Σ22)]2 − [q2/2m− µ+ 1

2 (Σ11 + Σ22)]2 + Σ2
21

. (4)

Here we have used a free propagator (G0)
−1
11 = ω + q2/2m − µ with µ being the chemical potential. In order to

determine the spectrum, we must calculate the self energies. If one does this in the lowest order of perturbation
theory, Bogoliubov’s result (2) is reproduced exactly (see e. g. Ref. [10]). Furthermore, a finite value for Σ12(0) is
obtained. However, already in the second order of perturbation theory one obtains infrared divergent terms. An
example is shown in Fig. 1.

qk

22

1
2
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q q
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Fig. 1. Perturbative contribution to the anomalous Green’s function G12. This diagram diverges in 3 dimensions in the

infrared. It is calculated at T = 0 introducing a 4-momentum q = (ω/c,q).

The handling of these divergences in a satisfactory
manner is necessary in order to understand the infrared
response of a Bose system. It requires a suitable renor-
malization procedure. Unfortunately, this proves to be a
rather difficult problem.

Belyaev’s theory was reanalyzed and extended by
Hugenholtz and Pines [6]. Using the gauge invariance ar-
guments and a careful analysis of the perturbation series
they showed that the quasi-particle spectrum is gapless.
In particular, they obtained that

Σ11(0) − Σ12(0) = µ (5)

(Hugenholtz–Pines theorem). Inserting this theorem into
Eq. (4), it is easily established that the spectrum is gap-
less. It is now tempting to obtain the infrared behavior
of the Green’s functions directly from the Belyaev equa-
tions (4). Assuming the self-energy parts Σ11 and Σ12 to
be analytic at small momenta one obtains

G11(ω,q) =
Σ11(0) − µ

B(ω2 − c2q2)
= − Σ12(0)

B(ω2 − c2q2)
(6)

where B and c are constants involving derivatives of
the self-energies at q = 0. Here, one also finds that
Σ12(0) 6= 0. The argument just presented is given in more
detail in Ref. [10], and it indeed leads to a linear spec-
trum. However, it assumes analyticity of the self-energies
and Green’s functions at zero momentum, which appears
to be erroneous as will be discussed shortly.

The field theory for Bose systems as developed by
Belyaev and Hugenholtz and Pines was further extend-
ed by Gavoret and Nozières [7]. They established the
phonon character of the spectrum up to all orders in
perturbation theory. Furthermore, they successfully re-
lated the the sound parameter of the field theoretical
propagator with the macroscopic sound velocity c giv-
en by c2 = dp/dρ where p is the pressure and ρ the
mass density of the Bose system. The theory of Gavoret
and Nozières effectively sums up perturbation theory to
infinite order, but it does not solve the problem with

infrared divergences. It yields an anomalous self-energy
Σ12(0) 6= 0.

The first satisfactory attempt to handle the infrared
divergences of the Bosonic field theory was under-
taken by A. A. Nepomnyashchii and Yu. A. Nepom-
nyashchii [11] (NN). Their calculations are rather in-
volved and entail a partial summation of the perturba-
tion series. If this resummation of diagrams is done cor-
rectly then infrared divergences disappear from the the-
ory. As an important consequence of this diagrammatic
analysis one obtains that the long wavelength behavior
of the anomalous self-energy is actually nonanalytic at
q = 0,

Σ12(ω → 0,q → 0) ∼ 1

ln(q0/q)
. (7)

Here, q = (ω/c,q) and 1/q0 is the length of the order
of the interparticle distance. Eq. (7) is a very important
result, which makes Green’s functions G11 and G12 also
behave non-analytically at (ω,q) = 0. Obviously, Eq. (7)
leads to Σ12(0) = 0, which contradicts Eq. (6). NN con-
firmed that the spectrum remains acoustic despite the
non-analytic behavior of the correlation functions.

The method applied by NN in order to remove the
infrared divergences from the Bosonic field theory is cer-
tainly not very transparent. It would be desirable to be
able to construct a perturbation theory where infrared
divergences are eliminated from the outset. Such a per-
turbation expansion has been suggested by Popov [12,13]
starting from a functional integral approach. This ap-
proach yields the same perturbation expansion as the
conventional field theoretical approach but suggests a
more convenient method to eliminate infrared diver-
gences. Popov’s method is based on the separation of
the Bosonic fields into “fast” and “slow” components with
respect to a certain momentum q0. Integrating out the
“fast” fields, Popov was able to construct an effective ac-
tion for the “slow” fields only. Representing the “slow”
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fields by their amplitude and phase one obtains an effec-
tive hydrodynamic action. The diagram technique ob-
tained from this action is free of infrared divergences. It
is then straightforward to calculate the infrared struc-
ture of the various correlation functions. In the following
section we will present this development in some detail.
Popov and Serednyakov [14] were able to obtain Eq. (7),
which was first derived by NN, from the effective hy-
drodynamic action. It implies that the Green’s functions
obtained in Bogolubov’s theory are not correct despite
the fact that an acoustic spectrum is obtained.

While the method employed by Popov entails essen-
tial ideas of modern renormalization group theory, it still
contains a number of phenomenological elements. In par-
ticular a sharp separation of the fields into “slow” and
“fast” components at the given momentum q0 appears to
be somewhat artificial and, furthermore, the parameter
q0 is not really well defined. A full-fledged renormaliza-
tion group analysis of infrared behavior of the Green’s
functions of a Bose system was undertaken only recent-
ly by Pistolesi et al. [15, 16]. Within this theory it was
explicitly shown that the effective hydrodynamic action
proposed by Popov is indeed the correct infrared fixed
point of the renormalization group flow which starts at
the “bare” action of strongly interacting Bosons. To show
this, Pistolesi et al. write down a general form of the ac-
tion in terms of “running” couplings and find that all the
couplings that are present in the “bare” interaction but
not in the hydrodynamic action flow to zero or are ir-
relevant. This beautiful analysis confirms all the results
obtained in the NN and Popov approaches.

In order to expose the effects of the broken gauge sym-
metry on the Green’s functions, the Bose fields are sep-
arated into longitudinal and transverse components in
Ref. [15]. The gauge symmetry is broken in the longitu-
dinal component only. Using this formulation it is partic-
ularly easy to set up Ward identities, which relate various
vertices to each other. We develop Popov’s theory here
using an analogous separation of the fields into longitudi-
nal and transverse components. The Ward identities are
then used in order to obtain the vertices for the calcula-
tion of the density–density and current–current correla-
tion functions.

The vanishing of the anomalous self-energy Σ12(0) at
zero momentum has a definite physical origin and is not
just a peculiar mathematical result. In the framework of
broken symmetry, it is consistent with the general picture
proposed by Patashinskii and Pokrovskii [17] where di-
vergences, which arise in transverse correlation functions
connected with a Goldstone mode (zero mass phonon),
drive a divergence in the longitudinal propagators due
to the continuously broken symmetry. From this point
of view, the divergence of Green’s functions at zero mo-
mentum due to the vanishing of Σ12 is an immediate
consequence of the Goldstone mode.

In this paper, we show explicitly that the results of
the renormalization group analysis presented in Ref. [15]
and the Popov approach coincide. In order to do this, we
need to consider slight modifications to Popov’s original
work. Explicit formulas for the correlation functions will
be presented, and various applications will be discussed.

Besides the field-theoretical methods discussed in this
paper, there are various other methods that attempt to
provide a microscopic basis for Landau’s quasi-particle
concept. We will not enter into a comparison of these
methods here, but just mention a few of them for com-
pleteness: The hydrodynamic formulation by Hohenberg
and Martin [8] describes the infrared response without
the problem of spurious infrared divergences, but it does
not obtain the important result that Σ12(0) = 0. A very
good quantitative description of the response of superflu-
id 4He at long and intermediate wavelength is obtained
using numerical quantum Monte-Carlo. For a review see
Ceperley Ref. [18]. Finally, a very complete picture of
the excitations of Bose systems is obtained using “cor-
related bases functions”, a method based on a seminal
work by Feynman [19] and Feenberg [20], which is also
at the root of a recent theory of superfluid 4He by I. O.
Vakarchuk [21].

II. POPOV’S HYDRODYNAMIC APPROACH

We consider a system of strongly interacting neutral
bosons. The associated gauge invariant action is given
by [12, 15]

S[ψ∗, ψ, µ,A, J∗, J ] =

∫ β

0

dτ

∫

ddr
{

ψ∗(x)[∂τ + µ(x)]ψ(x)

− 1

2m
|(∇− iA)ψ(x)|2 − U

2
|ψ(x)|4 + ψ(x)J∗(x) + ψ∗(x)J(x)

}

. (8)

In this expression, x = (τ, r) is a vector with d + 1 dimensions. The imaginary time τ ranges from 0 to the inverse
temperature β. The bosonic field ψ(x) is periodic in the imaginary time, and U is a short-range two-body interaction
potential. The external sources J(x), µ(x) ≡ A0(x) and A(x) serve to generate the various connected correlation
functions by a functional differentiation of the free energy functional

F [µ,A, J∗, J ] = β ln

{∫

Dψ∗Dψ exp(−S[ψ∗, ψ, µ,A, J∗, J ])

}

. (9)

For details we refer e. g. to Ref. [22].
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The perturbation theory based on action (8) is plagued
by infrared divergent integrals. These divergences must
be removed by a suitable renormalization procedure as
was done in Ref. [15, 16]. Here instead, we will use
Popov’s hydrodynamic approach [12] and show that
it yields exactly the same correlation functions as the
renormalization group approach. As was already alluded
to in the introduction, Popov’s hydrodynamic approach
is based on a separation of the Fourier components of the
Bose field ψ(x) into “fast” ψf (x) and “slow” ψs(x) compo-
nents with respect to a fixed momentum q0. The “fast”
component of the field is integrated out, and one ob-
tains an effective (renormalized) action Sh[ψ∗

s , ψs] which
depends on the “slow” fields only. This effective action
will be called “hydrodynamic” in the following. The per-
turbation theory based on this effective action is free of
infrared divergences (in three dimensions) as shown in
Ref. [12] and easily confirmed by power counting.

It turns out to be convenient to express the “slow”
fields in terms of the modulus n(x) and the phase ϕ(x)

ψs(x) =
√

n(x)eiϕ(x), ψ∗
s (x) =

√

n(x)e−iϕ(x) (10)

since the Fourier transform of the effective action takes
a simple form in terms of these variables [12],

Sh[π, ϕ] =
1

2βΩ

∑

q

{

−
(pµ

m
q2 + pµµω

2
n

)

ϕ(q)ϕ(−q)

−2pµn0
ωnϕ(q)π(−q) +

(

pn0n0
− q2

4mn0

)

π(q)π(−q)
}

+
1

(βΩ)
3

2

∑

q1+q2+q3=0

q1 · q2

2m
ϕ(q1)ϕ(q2)π(q3). (11)

Here the variable π is defined by π(x) = n(x) − n0(q0),
where n0(q0) = n0 is the “bare” condensate, which is
determined from the condition pn0

= 0, and Ω is a
normalization volume. Furthermore, we introduce a 4-
momentum notation by q = (ωn/c, q), where c is the
speed of sound to be discussed below and the Bose-
Matsubara frequency ωn = 2πnβ−1 with n an integer.
For simplicity the gauge fields A(x) and µ(x) are set to
zero and the chemical potential µ, respectively.

The coefficients pµ, pµµ, pµn0
and pn0n0

are ther-
modynamic derivatives of the pressure p(µ, n0) =
Sh(µ, n0)/βΩ with respect to the chemical potential.

The quadratic part of the action determines the “unper-
turbed” Green’s functions G0. The cubic term (last term
in Eq. (11)) will be treated as a perturbation. This part
gives rise to the quasi-particle decay discussed in Sec-
tion II C. The average of a quantity O with respect to
the quadratic part of the action will be denoted by 〈O〉

0
.

The unperturbed correlation functions gππ(q) =
〈π(q)π(−q)〉

0
, gϕϕ(q) = 〈ϕ(q)ϕ(−q)〉0, gπϕ(q) =

〈π(q)ϕ(−q)〉
0

= −gϕπ(q) are easily calculated from
Eq. (11)

G0(q) =

(

gππ(q) gπϕ(q)
gϕπ(q) gϕϕ(q)

)

(12)

= −
(

pµ

m q2 + pµµω
2
n pµn0

ωn

−pµn0
ωn −pn0n0

+ q
2

4mn0

)

1

D(q)

with

D(q) =

(

q2

2m

)2
pµ

n0
+

pµµ

4mn0
q2ω2

n −
(

pn0n0
pµµ − p2

n0µ

)

×
(

ω2
n +

1

m

pn0n0
pµ

pn0n0
pµµ − p2

n0µ

q2

)

. (13)

The first two terms in D(q) represent a non-linear correc-
tion to the spectrum and can be neglected in the small
|q|, ωn limit. The ratio

1

m

pn0n0
pµ

pn0n0
pµµ − p2

µn0

=
n

m

dn

dµ
=

dp

dρ
= c2 (14)

can be identified with the square of macroscopic sound
velocity [7, 15]. Here, we used that pµ = n with n the
total density of the system. The quantity [15]

pµn0

pn0n0

= −dn0

dµ
(15)

is known as the “condensate” compressibility. Further-
more, it is easy to show that

pµµ

pn0n0

=
n

mc2
1

pn0n0

+

(

dn0

dµ

)2

. (16)

Using these relations the matrix of correlation functions
given in Eq. (12) may be written as

G0(q) = −





−
(

dn0

dµ

)2

ω2
n

dn0

dµ ωn

−dn0

dµ ωn 1





m

n

c2

ω2
n + c2q2

+

(

1
pn0n0

0

0 1
8nn0

1
pn0n0

)

. (17)

Obviously, gππ is finite at small q, while the other cor-
relation functions are infrared divergent. This is due to
the degeneracy of the Bose system in the ϕ direction due
to a Goldstone (massless) mode. This Goldstone mode is

related to a spontaneous gauge symmetry breaking. The
last term in Eq. (17) may be neglected at small q and
ω. Our result agrees with Popov’s [12] in the low density
limit, in which the various coefficients are given by
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pµ = n ≈ n0, pµµ = 0, pµn0
= 1, pn0n0

= −mc
2

n0
.

(18)

In the following subsections we use G0(q) to obtain the
single particle propagators, associated vertices, densities
and density-density correlation functions.

A. Single particle propagator and vertex functions

We now calculate Green’s functions G11(x, y) and
G12(x, y) which are defined in terms of the fields ψs(x).
The index s will be omitted in the following. As was al-
ready alluded to in the introduction, it is advantageous
to separate the fields into longitudinal and transverse
components ψl and ψt

ψ(x) = ψl(x) + iψt(x), ψl(x) =
√

n(x) cosϕ(x),

ψt(x) =
√

n(x) sinϕ(x), (19)

since the gauge symmetry is broken in the longitudinal
component only. Green’s functions are then written as

Gij(x, y) = 〈ψi(x)ψj(y)〉0 − 〈ψi(x)〉0〈ψj(x)〉0 (20)

for {i, j} ∈ {l, t}. Now we expand ψl(x) and ψt(x) into
a power series of π(x) = n(x) − n0 and ϕ(x),

ψl(x) =
√
n0 +

1

2
√
n0
π(x) − 1

2

√
n0ϕ

2(x) + . . . ,

ψt(x) =
√
n0ϕ(x) +

1

2
√
n0
π(x)ϕ(x) + . . . , (21)

and use that 〈ψl(x)〉0 =
√
n0 and 〈ψt(x)〉0 = 0. At

small momenta only the lowest powers in π and ϕ con-
tribute. Assuming translational invariance, we obtain for
the Fourier transform of Green’s functions at small q

Gll(q → 0) =
1

4n0
gππ(q)

− n0

2

∫

q2<q2

0

dd+1p

(2π)d+1
gϕϕ(p)gϕϕ(q − p),

Glt(q → 0) =
1

2
gπϕ(q), (22)

Gtt(q → 0) = n0gϕϕ(q),

where we used that at T = 0 the sum over the Matsubara
frequencies turns into an integral according to

1

β

∞
∑

n=−∞

=

∫

dω

2π
. (23)

Inserting the correlation functions Eq. (17) into Eqs. (22)
one finds for d = 3 the important results

Gll(q → 0) =
m

4n0n

(

dn0

dµ

)2
c2ω2

ω2 + c2q2

− n0

2

m2c

n2

1

8π2
ln
k0

q
,

Glt(q → 0) = −m

2n

dn0

dµ

c2ω

ω2 + c2q2
= Gtl, (24)

Gtt(q → 0) = −mn0

n

c2

ω2 + c2q2
.

We note that these results exactly agree with those ob-
tained in the renormalization group approach presented
in Ref. [15] (see their Eqs. (4.18), (4.19), and (4.27)). All
correlation functions are infrared divergent at (ω,q) = 0.
The longitudinal correlation function, which one would
expect to be finite in the infrared limit, acquires a diver-
gence due to the “coupling” to the phase fluctuations. In
3D this divergence is logarithmic. It has been identified
for the first time by NN Ref. [11] and was later confirmed
by Popov and Serednyakov in Ref. [14].

The normal and anomalous Green’s functions, G11 and
G12, are now easily calculated

G1j(q → 0) = ∓mn0

n

c2

ω2 + c2q2
(25)

− n0

2

m2c

n2

1

8π2
ln
k0

q
,

with the “−” sign for j = 1 and the “+” sign for j = 2,
and we kept only the divergent terms at small momen-
ta. The above result corresponds exactly to the one giv-
en by Nepomnyashchii Ref. [23] (Eq. (7)). In Ref. [7],
Eq. (4.15), the logarithmcally diverging term is missing.

An important quantity calculated from Greens’s func-
tion is the momentum distribution

n(q, β) = − 1

β

∞
∑

m=−∞

G11(iω,q). (26)

For T = 0 one immediately obtains the well-known re-
sult [24] from the first term in Eq. (25)

n(q → 0) =
mn0c

2n

1

|q| , (27)

where we used coth(x) ≈ 1 for large x. The contribution
of the second term is constant.

We will now briefly discuss the results for finite tem-
peratures: In the classical regime T > c|q| we replace
Eqs. (22) by

Gll(0,q → 0) = −n0

2β

×
∞
∑

n=−∞

∫

ddp

(2π)d
gϕϕ(ωn,p)gϕϕ(ωn,q− p)

Glt(0,q → 0) = 0 (28)

Gtt(0,q → 0) = −n0m

n

1

q2
.

Evaluating the Matsubara sum and the integral for d = 3
one finds

Gll(0,q → 0) = − 1

16

1

β|q|
m2n0

n2
, (29)
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and

G1j(0,q) = ∓n0m

n

1

q2
− 1

16

1

β|q|
m2n0

n2
, (30)

with the “−” sign for j = 1 and the “+” sign for j = 2.
From this result we find the momentum distribution

n(q → 0, β) =
1

β

mn0

n

1

q2
+

1

16β2

m2n0

n2

1

|q| . (31)

The last term originates from the gϕϕgϕϕ correction to
Gll. This term may be identified experimentally at very
small q.

Finally we calculate the vertex functions. The vertices
are generated from the Legendre transform of the free en-
ergy Eq. (9) (Gibb’s free energy) Γ[φi, Aν ] with respect
to the sources Ji, i.e. δΓ/δφi(x) = Ji(x) and i ∈ {l, t}.
For further technical details see Refs. [15, 22]. For the
various functional derivatives we use the notation intro-
duced in Ref. [15], i.e. Γi1...in;ν1,...νn

. The indices ik to
correspond a functional derivative with respect to φik

and the indices νk to functional derivatives with respect
to Aνk

. Specifically one finds

Γll(q → 0) = −16π2n
2

n0

1

m2c

1

ln(q0/q)
,

Γlt(q → 0) = 8π2n
2

n2
0

1

m2c

dn0

dµ

ω

ln(q0/q)
= −Γtl, (32)

Γtt(q → 0) = − n

n0

1

mc2
(ω2 + c2q2),

from which the standard vertices and the self-energy
Σ12(0) are derived,

Γ11(q → 0) = Γ12(q → 0) = Σ12(q → 0)

= −4π2n
2

n0

1

m2c

1

ln(k0/q)
. (33)

Obviously, Σ12 goes to zero for q → 0 with an infinite
slope at q = 0. Analogous results are easily derived for
T > c|q|.

B. Two-particle correlation functions

We now calculate the density–density and current-
density response using

G;αβ(q) = Γ;αβ(q) −
∑

i,j ∈ l,t

Γi;α(−q)Gij(q)Γj;β(q). (34)

Here we employ the notation defined in the previous sub-
section for the vertices and apply it in an analogous way
for Green’s functions. Green’s functions are functional
derivatives of the free energy Eq. (9), e. g. G;αβ repre-
sents a second order functional derivative of the free en-
ergy with respect to Aα(x) and Aβ(x). For α = β = 0
one obtains the density-density correlation function.

Using the Ward identities (see Ref. [15]) which follow
from the gauge invariance of the action (8) and defining
qν = (iω,q)

Γtl(q)
√
n0 − iqνΓl;ν(−q) = 0,

Γtt(q)
√
n0 − iqνΓl;ν(−q) = 0, (35)

Γt;0(q)
√
n0 + iqνΓ;νµ(−q) = 0,

we are are able to find vertices,

Γt;0(ω → 0,q = 0) = − n√
n0

ω

mc2
,

Γl;0(ω → 0,q = 0) = 0,

Γ;00(ω → 0,q = 0) =
n

mc2
,

Γl;α(ω = 0,q → 0) = 0,

Γt;α(ω = 0,q → 0) = −i n√
n0

qα

m
,

Γ;αβ(ω = 0,q → 0) = −δαβ
n

m
. (36)

Using these vertices and propagators (24) one obtains
for the density–density response

G;00(q) =
n

mc2
+

(

n√
n0

ω

mc2

)2(

−mn0

n

c2

ω2 + c2q2

)

=
n

m

q2

ω2 + c2q2
(37)

which is the expected result. The density–density re-
sponse is infrared finite. Analogously one finds for the
current–current response

G;αβ(q) = − n

m
δαβ +

n2

n0

qα

m

qβ

m

(

mn0

n

c2

ω2 + c2q2

)

= − n

m

(

δαβ − qαqβ
c2

ω2 + c2q2

)

. (38)

One immediately confirms current conservation, i.e.

qαqβG;αβ(q) = ω2G;00(q). (39)

These results show the overall consistency of the hydro-
dynamic approach.

C. Perturbative corrections

Up till now we only considered the quadratic part of
the hydrodynamic action given by Eq. (11). In order to
calculate perturbative corrections to the propagators giv-
en by Eq. (17) we now consider the cubic part of the
action. This leads to the phonon decay processes, i.e. a
finite phonon life-time, as well as a second sound branch
(See, e. g., Ref. [12]).

The diagrams corresponding to the corrections for
Green’s functions in the second order perturbation the-
ory are shown in Fig. 2.
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da c eb
Fig. 2. Self-energy corrections to hydrodynamical propagators given in Eq. (17). Graphs (a), (b) and (c) correspond to Σϕϕ,

graph (d) to the Σϕπ and graph (e) to Σππ .

All diagrams except (a) will provide finite corrections.
Diagram (a) equals zero since the intermediate gππ prop-
agator which connects the external propagator lines to
the loop carries zero momentum and energy. It is possi-
ble to construct other diagrams of the type (a), however
they all vanish.

We calculate the imaginary part of the spectrum at
T = 0 using the unperturbed Green’s functions G

0
(17)

according to

detG−1(q) = det(G−1
0

(q) − Σ(q)) = 0. (40)

For explicit calculations it is more convenient to use the
unperturbed Green’s function in the form of Eq. (12).
After analytical continuation, iω → E, Eq. (40) takes
(in the limit q → 0) the form of a quadratic equation

E2

[

1 + Σππ(E)mc2
pµµ

pn0n0
pµ

]

− 2iE Σϕπ(E)
mc2

n

pµn0

pn0n0

− c2q2

[

1 − Σππ(E)
1

pn0n0

+ Σϕϕ(E)
mc2

pµq2

]

= 0. (41)

It is not possible to solve this equation exactly, therefore we have to look for an approximate solution assuming that
Σ is small for small energy and momentum. This assumption will be justified a posteriori. To this end we expand
Σ(E) around the unperturbed solution E = ε(q) = c|q|. This allows us, using Eqs. (15) and (16) with pµ = n, to
write a solution of this equation in the form

E1,2(q → 0) = −imc
2

n

dn0

dµ
Σϕπ(ε(q)) ± c|q|

[

1 − 1

2
Σππ(ε(q))

mc2

n

(

dn0

dµ

)2

− 1

2
Σϕϕ(ε(q))

m

n

1

q2

]

. (42)

The imaginary part of Eq. (42) is given by the following expression

Im E1,2(q → 0) = ∆(q → 0) = −mc
2

n

dn0

dµ
Re Σϕπ(ε(q))

∓ c|q|
[

mc2

2n

(

dn0

dµ

)2

Im Σππ(ε(q)) +
m

2n

1

q2
Im Σϕϕ(ε(q))

]

. (43)

The expressions for the self-energies Σϕπ(iω), Σϕϕ(iω) and Σππ(iω) are obtained from the corresponding graphs
on Fig. 2 using the Feynman rules. According to these rules each internal line corresponds to a free propagator of
(17), and for small momenta we may neglect the constant terms ∼ 1/pn0n0

. One must integrate over all internal
momenta and sum over all internal Matsubara frequencies. As an example, the full expression for Σϕπ is given by

Σϕπ(iω,q) =
T

(2π)3m2

∫

d3q2 d
3q3(q · q3)(q2 · q3)

∑

ω2,ω3

η(q, q2, q3)gϕϕ(q2, iω2)gπϕ(q3, iω3) (44)

with

η(q, q2, q3) ≡ δ(q ± q2 ∓ q3)δω±ω2,±ω3
+ δ(q − q2 − q3)δω−ω2,ω3

. (45)

Note, that η contains three summands, the first term corresponding to the upper signs and the second to the lower
signs. The Matsubara sum is executed by an integration in the complex plane over the contour shown in Fig. 3 by
virtue of the residue theorem

∞
∑

n=−∞

f(iωn) =
1

2πi

∫

c

dz nB(z)f(z), nB(z) = (eβz − 1)−1. (46)

Here, f(z) corresponds to the product of the unperturbed Green’s functions in Eq. (44).

206



INFRARED BEHAVIOR OF THE RESPONSE OF STRONGLY INTERACTING BOSE SYSTEMS

0)(Im i

zIm

0Im

Fig. 3. The contour of integration in the complex z-plane.

After the contour integration and summation over all possible directions of the 4-momenta in the diagrams one
finds expressions for the real and imaginary parts of the self-energies at ω = ε(q)

Im Σϕϕ(ε(q)) =
c2(1 − e−βε(q))

32π2n2

(

dn0

dµ

)2 ∫

d3q2 d
3q3 ε2ε3n2n33

(q · q3)
2

q2
3

[

2δ(1 + 2 − 3)eβε3 + δ(1 − 2 − 3)eβε
]

(47)

+
(q · q3)(q2 · q3)

|q2||q3|
[

2δ(1 + 2 − 3)e−βε3 − δ(1 − 2 − 3)eβε(q)
]

,

Im Σππ(ε(q)) =
c2(1 − e−βε(q))

32π2n2

∫

d3q2 d
3q3 ε2ε3n2n33

(q2 · q3)

q2
2q

2
3

[

2δ(1 + 2 − 3)eβε3 + δ(1 − 2 − 3)eβε1

]

,

Re Σϕπ(ε(q)) =
(1 − e−βε(q))

32π2n2

dn0

dµ

∫

d3q2 d
3q3 ε1ε2ε3n2n3

(q · q3)(q2 · q3)

|q||q2|q2
3

[

2δ(1 + 2 − 3)eβε3 + δ(1 − 2 − 3)eβε1

]

,

with

δ(1 ± 2 − 3) ≡ δ(q ± q2 − q3)δ(ε± ε2 − ε3),

ni ≡ (eβεi − 1)−1, εi = c|qi|.

In the above equations we assume that (qi · qj)/|qi||qj | ∼ 1 at small momenta. The angle θ between the momenta
of two particles is small in this limit, and we may take cos θ = 1. Using this approximation we are now able to find
the imaginary part of the spectrum. Using Eqs. (43) and (47) we find

∆(q) =
9mc2(1 − e−βε(q))

128π2n3

(

dn0

dµ

)2 ∫

dq32 dq
3
3 ε1

ε
2
ε
3
n2n3

[

2δ(1 + 2 − 3)eβε
3 + δ(1 − 2 − 3)eβε

1

]

. (48)

In the low density limit this result coincides with the
expression obtained by Popov [12], which at zero tem-
perature (β → ∞) corresponds to Belyaev’s result [5]

∆(q) =
3q5

640πρm
. (49)

III. DISCUSSION AND CONCLUSIONS

The determination of the infrared response of a strong-
ly interacting Bose system from the microscopic field the-
ory is plagued by infrared divergences of various inte-
grals. This calls for a systematic renormalization, which

has been performed recently in Ref. [15]. The essen-
tial results of this procedure are equivalent to Eqs. (24)
obtained using Popov’s hydrodynamic approach. This
shows that Popov’s approach correctly identifies the in-
frared fixed point of the renormalized effective action.

The transverse correlation function shows a “physical”
divergence for q, ω → 0, which is due to a Goldstone
mode related to massless phase fluctuations. The loga-
rithmic divergence exhibited by the longitudinal corre-
lation function in a long wavelength limit may be unex-
pected at first since the longitudinal correlations are de-
termined primarily by a massive mode. This logarithmic
divergence stems from phase fluctuations as well, which
contribute to the longitudinal response in the second or-
der.
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These features can all be understood physically us-
ing the picture of symmetry breaking as discussed by
Patashinskii and Pokrovskii [17] in an analogous mag-
netic system. Technically, the observed divergences of the
correlation functions are directly related to the vanish-
ing of Σ12 at zero momentum and energy. More precisely,
Σ12 vanishes non-analytically with an infinite slope at ze-
ro momentum. This is a very important fact, which pre-
cludes an expansion of the correlation functions around
q = 0.

We apply the hydrodynamic formalism in order to find
expressions for the density–density response as well as
the density–current response, which are infrared finite.
We also calculate the quasi-particle density for T � c|q|
and T � c|q|. Well-established results are confirmed.

The hydrodynamic action proposed by Popov contains
a cubic term in the phonon fields. This term, which re-
sembles the residual interaction of the quasi-particles,
describes a quasi-particle decay. In this paper we used
this residual interaction in order to calculate the intrin-
sic width of the phonon response in the second order
perturbation theory. In the low density limit our result
agrees with Popov’s result given in Ref. [12].

The parameters of the hydrodynamic action are relat-
ed to the bare coupling constants through the renormal-
ization flow. The renormalization group analysis shows
that the bare action flows into a unique fixed point, the
parameters of which are given by macroscopic observ-
ables like the speed of first sound or compressibility. How-

ever, no quantitative relation between the bare interac-
tion and the renormalized action and its parameters is
established.

At larger momenta and energies even the structure of
the response depends on the details of the interaction.
Phenomenologically it is described by the maxon-roton
response, and it is a real challenge to relate this response
to the microscopic action. To our best knowledge a con-
vincing quantitative connection between the observed re-
sponse and the microscopic action at larger energy and
momentum transfer has only been achieved using numer-
ical methods, e. g. quantum Monte Carlo [18].

Field theoretical methods have been used in order to
explain the maxon-roton spectrum [25–27], but these at-
tempts do not seem to be fully convincing. For instance,
the Nepomnyashchii–Pashitskii approach [25, 26] does
not implement gauge symmetry breaking in a satisfac-
tory way so that e. g. Σ12(0) is predicted to be finite. It
is a major challenge to reformulate this and similar ap-
proaches in such a way that the gauge symmetry break-
ing is built in satisfactorily.
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IНФРАЧЕРВОНА ПОВЕДIНКА ВIДГУКУ

ДЛЯ СИЛЬНОВЗАЄМОДIЮЧИХ БОЗЕ-СИСТЕМ
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Обговорено теоретико-польовi основи квазiчастинкового пiдходу Ландау для сильновзаємодiючих бозо-

нiв. Коротко висвiтлено iсторичний розвиток мiкроскопiчної теорiї, починаючи з польової теорiї Бєляєва

й закiнчуючи сучасною теорiєю ренорм-групи, особливу увагу придiлено проблемi iнфрачервоних розбiж-

ностей. Показано докладно, що кореляцiйнi функцiї, якi отримав за допомогою методу функцiонального

iнтеґрування Попов на основi гiдродинамiчної дiї, збiгаються з останнiми результатами теорiї ренорм-групи.
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