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Isochoric thermal conductivity of rare gas solids is analyzed within Debye approximation. The
temperature dependences of isochoric thermal conductivity of solid Ar, Kr, and Xe are explained
in the framework of a model where heat is transferred by phonons and above phonon mobility edge
by “diffusive” modes migrating randomly from site to site. The mobility edge ω0 is determined from
the condition that the phonon mean free path restricted by the Umklapp processes cannot become
smaller than half the phonon wavelength.
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I. INTRODUCTION

At present, there is no generally accepted theory that
would adequately describe the experimental thermal con-
ductivity of dielectric crystals in the high temperature
region. Heat transfer in a dielectric solid, where the elec-
trons are tightly bound to the atomic nuclei, is realized
through the transport of phonons, quanta of energy as-
sociated with lattice vibrations. It is usually admitted
that at temperatures close to or above the Debye tem-
perature thermal conductivity of perfect crystals is deter-
mined mainly by phonon-phonon interactions. However,
with the rising of complication of crystalline structure
new types of thermal motions appear, which are able to
affect thermal conductivity and complicate the analysis
of its temperature dependence [1]. In this respect, the
solidified inert gases are very convenient objects to com-
pare the experimental results with theory, since in this
case, the lattice dynamics is not complicated by the con-
tribution of optical phonons, librons, and effects related
to structural disorder. Theoretical models of heat trans-
fer in solid dielectrics have predicted the lattice thermal
conductivity behaviour Λ ∝ 1/T at the temperatures
T ≥ ΘD (ΘD is the Debye temperature) [1]. To obey
the 1/T law, the volume of the crystals should remain
invariable, because the modes would otherwise change
and so would the temperature dependence of thermal
conductivity. Nevertheless, isochoric studies of thermal
conductivity of rare gas solids (RGS) show considerable
deviations from the above dependence [2].

The aim of this work is to study the basic features
of high-temperature heat transfer in solidified inert gas-
es under isochoric conditions. This study attempts the
following — to analyze isochoric thermal conductivity in
the framework of the Debye model by using the concept
of the lower limit of thermal conductivity and to define
possible effect of the heat transfer by “diffusive” modes.

II. CALCULATION RESULTS AND
COMPARISON WITH THE EXPERIMENT

The RGS are the simplest objects in the physics of
solids and are therefore used traditionally for compari-
son of experimental and calculated data. In the solidified
inert gases Ar, Kr and Xe the phonon-phonon interac-
tions is the main mechanism determining the value and
temperature dependence of thermal conductivity Λ(T )
at the Debye temperature and higher (He and Ne melt
at temperatures much below ΘD [3]). If the scattering
is not too strong and the model of elastic waves is ap-
propriate, theory predicts that a high-temperature iso-
choric thermal conductivity should vary as Λ ∝ 1/T [4].
In actual fact, the experiment at the constant volume
revealed appreciable deviations from this dependence at
the highest temperatures, with the conductivity vary-
ing slower than 1/T [2]. Figure 1 shows the isochoric
thermal conductivity of Ar, Kr, and Xe (black squares)
[2,5]. As is seen in Fig. 1 the isochoric thermal con-
ductivity decreases with the increasing of temperature
as ΛAr

p ∝ T−0.93,ΛKr
p ∝ T−0.90, and ΛXe

p ∝ T−0.86.
The latter qualitatively conforms to the case of strong
phonon scattering when mean-free path of vibrational
modes are substantially limited and approaches phonon
wavelength. To provide an explanation for such temper-
ature dependence of the isochoric thermal conductivity
we used the Debye model and concept of the lower limit
of thermal conductivity [6]. According to this model the
lattice thermal conductivity is determined by integrating
over all angular frequencies ω [7]:

Λ =
kB

2π2υ2

ωD∫
0

l(ω)ω2dω, (1)

where ωD is the Debye frequency (ωD =
(
6π2

)1/3
υ/a),

l(ω) is the phonon mean free path, υ is the polarization-
averaged speed of sound, and a is the lattice parameter.
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Fig. 1. Isochoric thermal conductivity of solid Ar (a), Kr
(b), and Xe (c). Solid lines are the fitting curves for iso-
choric thermal conductivity. Λph and Λdif are contributions
of phonons and “diffusive” modes to heat transfer, respective-
ly. The lower limit of thermal conductivity Λmin is calculated
according to equation (3).

The concept of the minimal thermal conductivity as-
sumes that the phonon mean free path decreases with
temperature, but it cannot become smaller than half the
phonon wavelength λ/2. If all vibrational modes scatter
for the distance of λ/2, thermal conductivity reaches its
lower limit Λmin and can be written as [8]

Λmin =
(π

6

)1/3

kBn2/3υi

(
T

Θi

)2
Θi/T∫
0

x3ex

(ex − 1)2
dx, (2)

for one polarization with the speed of sound υi, where
Θi is the Debye cut-off frequency for each polarization
in Kelvins: (Θi = υi (~/kB)

(
6π2n

)1/3), n = 1/a3 is the
number of atoms per volume unit [2,5]. To get the total
thermal conductivity, we add the contributions from two
transverse and one longitudinal oscillatory modes. In the
limit of high temperatures, T > ΘD, Eq. (2) becomes [8]

Λmin =
1
2

(π

6

)1/3

kBn2/3 (υ` + 2υt) , (3)

where υt and υ` are transverse and longitudinal speeds
of sound, respectively [9,10].

The phonon mean free path limited by three phonon
scattering processes equals

lu (ω) = υ
/
ATω2, (4)

A =
18π3

√
2

kBγ2

ma2ω3
D

, (5)

where the Grüneisen parameter γ = − (∂ lnΘD/∂ lnV )T ,
V is the volume, and m is the average atomic weight.

When the temperature rises, the phonon scattering
length decreases and can become comparable with the
phonon wavelength. In this case expression (4) is not ap-
plicable. Proceeding from [6] it is possible to assume that
the mean free path is restricted to a distance close to half
the phonon wavelength αλ/2 = απυ/ω, where α is the
numerical coefficient of the order of unity. In this case the
lattice vibrations is separated into two types: presenting
the phonons (mean free path larger than αλ/2) and “dif-
fusive” (mean free path reaches αλ/2) modes, and then
equation (4) becomes

l (ω) =
{

υ/Aω2T 0 ≤ ω ≤ ω0,
απυ/ω ω0 < ω ≤ ωD,

(6)

The “diffusivity” edge ω0 can be expressed from the con-
dition

υ

ATω2
0

=
απυ

ω0
, (7)

as

ω0 = 1/απAT, (8)

If ω0 > ωD, the mean free path of all modes exceeds λ/2
and thermal conductivity is determined solely by the pro-
cesses of phonon scattering, and we have the known 1/T
law. At ω0 ≤ ωD the integral of thermal conductivity (1)
is subdivided into two parts describing the contributions
to the heat transfer from the low-frequency phonons Λph

and high-frequency “diffusive” modes Λdif

Λ = Λph + Λdif , (9)

Substituting (6) in (1) we have:

Λph =
kBω0

2π2υAT
, (10)

Λdif =
αkB

4πυ

(
ω2

D − ω2
0

)
, (11)

The average (according to Debye) speed of sound υ at a
specified temperature was computed from the relation-
ship

3
υ3

=
1
υ3

`

+
2
υ3

t

, (12)
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In the present study, we do not separate relative con-
tributions of transverse and longitudinal phonons to the
total heat transfer. They can be determined as the cor-
responding contribution from transverse and longitudi-
nal oscillatory modes which propagate in crystal with υt

and υ`, respectively. Here, we concentrate our attention
on high temperature thermal conductivity as a function
of two main (in our opinion) mechanisms of heat trans-
fer: phonon heat transfer and heat transfer by “diffusive”
modes.

Substances a, υ, A, α ωD,

10−10 m m/s 10−16 s/K 1012 s−1

Ar 1.93 1021.5 2.90 2.45 11.8

Kr 2.18 843.2 2.85 3.20 9.18

Xe 2.16 804.2 2.20 2.65 8.06

Table 1. The quantities used in the theoretical simulation.

The computer fitting of thermal conductivity using
Eqs. (9)–(11) was performed by the least square tech-
nique by varying the coefficients A and α. The best agree-
ment with experiment was obtained with parameters of
the model for thermal conductivity and fitted values A
and α listed in Table 1. The fitting to smoothed exper-
imental isochoric thermal conductivity is shown in Fig.
1 (solid line). The same figure shows the contributions
(dot-and-dash lines) to the heat transfer from the low-
frequency phonons Λph and the high-frequency “diffu-
sive” modes Λdif [calculated by Eqs. (10,11)]. The dotted
line shows the lower limit of thermal conductivity Λmin

calculated according to Eq. (3). As temperature rises the
amount of heat transferred by “diffusive” modes increas-
es. The solid curves calculated with fitting parameters
(Fig. 1) adequately describe the behavior of the tem-
perature dependencies of isochoric thermal conductivity
and agree with the results of direct investigations into
isochoric thermal conductivity of Ar, Kr, and Xe [2] for
the same conditions (P, V, T ).

The phonon mobility edge ω0 for RGS calculated by
Eq. (8) is presented in Fig. 2. As the temperature rises,
the “diffusivity” edge decreases for all crystals. It is seen
that “diffusive” behavior of the high-frequency oscillato-
ry modes in solids Ar, Kr, and Xe appears above 40K,
37K, and 65 K, respectively. During our calculation we
proceeded from the assumption that the minimal phonon
mean-free path equals one half of the wavelength. But it
should be noted that this is only one of possible assump-
tions. For example, Slack [4] supposed that scattering
length equals the phonon wavelength.
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Fig. 2. Temperature dependence of the “diffusivity” edge
ω0 of solid Ar (a), Kr (b), and Xe (c), ωD is the Debye fre-
quency.

III. CONCLUSIONS

The results obtained in the present study demon-
strate that the isochoric thermal conductivity of RGS
can be described in a model where heat is transferred by
phonons and above phonon mobility edge by “diffusive”
modes migrating randomly from site to site. Our calcu-
lations data show that with the temperature rises the
amount of heat transferred by “diffusive” modes increas-
es. It seems, therefore, warranted to conclude that the
main reason for essential deviations of isochoric thermal
conductivity of RGS from the 1/T dependence is heat
transfer by “diffusive” modes.
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ВНЕСОК “ДИФУЗНИХ” МОД В IЗОХОРНУ ТЕПЛОПРОВIДНIСТЬ КРИСТАЛIВ
IНЕРТНИХ ГАЗIВ

О. I. Пурський
Черкаський державний технологiчний унiверситет

бул. Шевченка, 460, Черкаси, 18006, Україна

Iзохорну теплопровiднiсть кристалiв iнертних газiв проаналiзовано в наближеннi Дебая. Температурну
залежнiсть iзохорної теплопровiдности твердих Ar, Kr та Xe пояснено в межах моделi, у якiй тепло перено-
ситься фононами, а вище вiд межi рухливости фононiв — “дифузними” модами. Межу рухливости фононiв
знаходимо з умови, що довжина вiльного пробiгу фонона, яка визначається U-процесами, не може стати
меншою вiд половини довжини хвилi.
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