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The coherence length (ξ) of quark Cooper pairs for two flavors is studied numerically within the
framework of a modified QCD-like gauge field theory with the lattice-QCD-based gluon propaga-
tor, which is derived from the lattice QCD data. The propagator is considered to include all the
nonperturbative effects in the quenched QCD. We find that the coherence length in our model ξ(A)
is smaller than that in the QCD-like theory with the tree-level gluon propagator ξ(B). We find that
ξ(A)/d < 1 at µ < 0.65 GeV, while ξ(B)/d < 1 at µ < 0.45 GeV (d: interquark distance, µ: quark
chemical potential). Accordingly, Cooper pair in our model is rather bosonic in low to moderate µ
region where two-flavor color superconducting phase is possibly realized.
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I. INTRODUCTION

A lot of studies based on the effective models of QCD
such as the Nambu–Jona–Lasinio model [1–4], the in-
stanton vacuum model [5,6] and the QCD-like theo-
ry [7–10] suggest that, at sufficiently high temperature
(T ) and/or quark chemical potential (µ), a system with
quarks and gluons makes a phase transition from a chiral
symmetry broken (CSB) phase to the chirally symmetric
one (quark–gluon plasma or color superconductor, which
is a condensed state of quark pairs). In the color super-
conducting phase, color symmetry is spontaneously bro-
ken. At T = 0, it is believed that a phase transition
occurs between a CSB phase and the one of the color
superconducting phases [two-flavor color superconduct-
ing phase (2SC), color-flavor locking phase (CFL), LOFF
state, etc.] [4], [9–13]. This phase transition is considered
to occur at moderate µ (µ ∼ 0.4 GeV) [2,5,6]. In high-µ
region, strangeness is important. As the value of µ de-
creases, strangeness becomes unimportant. Accordingly,
in low to moderate-µ region, especially near the chiral
symmetry restorating point, chirally symmetric quark
matter may lie in a 2SC phase that is made up of only
up and down quarks.

In cold quark matter, if quark-quark interaction is
strong enough, two quarks of a Cooper pair (quark–quark
pair) may exist close to each other, in consequence, Coop-
er pairs may be in Bose–Einstein condensation (BEC).
In BEC phase, coherence length (ξ), which is the squared
mean distance of two paired particles, is smaller than the
averaged interparticle distance (d) of relevant particles
(ξ/d < 1). Because of the asymptotic freedom of QCD,
quark–quark coupling strength subsides as µ grows. Ac-
cordingly, realizability of quark-BEC increases as µ de-
creases. Therefore, the vicinity of the chiral symmetry
restorating point is the most probable area for the quark

BEC. Recently, some studies have been reported con-
cerning ξ and spatial structure of quark Cooper pairs in
2SC based on the Schwinger–Dyson equation (S–D eq.)
in the ladder approximation [14,15]. In these studies, the
tree-level gluon propagator is used. This simplification
may result in neglecting possible nonperturbative effects.
It is shown in Ref. (9) that the S–D eq. for the effective
mass in the ladder approximation can be derived within
the QCD-like theory with the tree-level gluon propaga-
tor, which is the usual choice in the theory. We can also
show that the S–D eq. for diquark energy gap in the lad-
der approximation can be derived within the same the-
ory. In the QCD-like theory, the one-loop running cou-
pling (ḡ) is introduced instead of the coupling constant
(g) for the quark–gluon vertex. By this improvement, the
asymptotic freedom of QCD is satisfied.

The main goal of the present study is, making use
of the lattice-QCD-based gluon propagator instead of
the tree-level one, to calculate the coherence length ξ
within the framework of the QCD-like gauge field theo-
ry in mean-field approximation and to estimate the ef-
fect of the lattice-QCD-based gluon propagator on the
coherence length. The lattice-QCD-based gluon propa-
gator, which is derived from the lattice QCD data, ex-
hibits infrared vanishing and strong enhancement at the
intermediate-energy region p ∼ 1 GeV (p : transfer mo-
mentum) [16,17]. The propagator is considered to include
all the nonperturbative effects in the quenched QCD.
The intermediate energy region is demonstrated to be
the most important region for dynamical chiral symme-
try breaking [17]. Assuming that the nonperturbative ef-
fects are important in quark–quark (q–q) pairing as well
as antiquark–quark (q–q) pairing, we combine the QCD-
like theory and the lattice-QCD-based gluon propagator
for the investigation. Hereafter, we refer to the QCD-
like theory with the lattice-QCD-based gluon propagator
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and to the theory with the tree-level one as model A and
the model B, respectively. We estimate the effect of the
lattice-QCD-based gluon propagator on ξ by comparing
values of ξ in model A with those in the model B.

Throughout the paper, we restrict ourselves to Nf = 2,
corresponding to a system of up and down quarks. The
q−q interaction is most attractive in the Lorentz scalar,
total spin singlet (J = 0), color anti-triplet (3) and flavor
anti-symmetric channel. Consequently, nonzero diquark
condensate 〈qCγ5q〉 breaks color SU(3) symmetry down
to SU(2) symmetry [11].

The outline of the paper is as follows. In the next Sec-
tion, we combine the lattice-QCD-based gluon propaga-
tor and the QCD-like gauge field theory and derive the
gap equation for momentum-dependent diquark energy
gap ∆p in the mean-field approximation. In Section III,
we give the equation for coherence length. In Section IV,
we solve the gap equation and compute Cooper pair wave
function and the coherence length, and present the nu-
merical results. Section V is devoted to conclusions.

II. GAP EQUATION

In this section, we combine the lattice-QCD-based glu-
on propagator and the QCD-like gauge field theory and
derive the gap equation for momentum-dependent di-
quark energy gap ∆p in the mean-field approximation.
Let us start with an effective Hamiltonian (H) with glu-
on exchange interaction:

H = H0 + HI, (1)

where

H0 =

∫

d3xΨ(x)(i /∇− m)Ψ(x), (2)

HI =

∫

d3xd3y
g2

2
Ψ(x)γµ

λA

2
Ψ(x)

× D(x − y)Ψ(y)γµ λA

2
Ψ(y), (3)

with current quark mass m, the coupling constant g2 and
the color SU(3) matrices λA. Here, the gluon propagator
D(x − y) is given by

D(x − y) =

∫

d3p

(2π)3
d(p2)

p2
e−ip(x−y), (4)

where d(p2) is the polarization factor.
In this study, we adopt the polarization factor of the

lattice-QCD-based gluon propagator which is derived us-
ing the quenched lattice QCD data. The usual choice of
the polarization factor in the QCD-like theory is that of
the tree-level gluon propagator, i. e., d(p2) = 1.

The polarization factor d(p2) of the lattice-QCD-based
gluon propagator is well described by the following ana-
lytic function [16,17]:

d(p2) = Zg

p4 + ap2

p4 + αp2 + β
, (5)

where a = 7.887 GeV2, α = 1.254 GeV2, β = 0.7175
GeV4 and Zg = 0.7172 (Fig. 1).
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Fig. 1. The polarization factor d(p2) of the lat-
tice-QCD-based gluon propagator as a function of transfer
momentum p exhibits the infrared vanishing and strong en-
hancement at the intermediate-energy region p ∼ 1 GeV.

In this study, we concentrate on the Lorentz scalar
qCγ5q(qC

†γ5q) bilinears in two-flavor quark matter. In
the 2SC phase, a diquark condensate consists of only two
of the three colors [11].

Then, the Fierz-rearranged Hamiltonian in 3-moment-
um space for two flavors is given by

Ĥ = Ĥ0 + ĤI, (6)

where

Ĥ0 ≡
∑

p

epC†α,s
R (p)Cα,s

R (p) + R → L, (7)

ĤI ≡ −
1

2
g′2

∑

p,p′

D(p,p′)Cα,s†
R (p)

× Cβ,t†
R (−p)Cγ,i

R (−p
′)Cδ,j

R (p′)

× εαβ3εγδ3εstεij + R → L, (8)

with

D(p,p′) =
d(|p − p

′|2)

|p− p′|2

=
Zg

(

|p− p
′|2 + a

)

|p− p′|4 + α|p − p′|2 + β
. (9)

Here C†α,s

R(L)/Cα,s

R(L) denotes the creation/annihilation op-

erator of a right(left)-handed particle with color α and

flavor s, ep ≡
√

|p|2 + m2, g′2 = 1
6g2, α, β, γ, δ denote

color indices, i, j, s, t denote flavor indices.
We assume that the Fermi sphere of the quarks bear-

ing the third color is intact, and choose a wave function
for the ground state |Ψg〉 of the form,

|Ψg〉 = Ψ†
LΨ†

R|0〉, (10)

where
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Ψ†
R =

∏

p

[up + vpC†α,s
R (p)C†β,t

R (−p)εαβ3εst], (11)

Ψ†
L = R → L. (12)

Here, the color indices α and β run from 1 to 2, and the
parameters obey the constraint that

|up|
2 + |vp|

2 = 1. (13)

We find that the diquark condensate is calculated as

〈Ψg|C
†α,s
R (p)C†β,t

R (−p)εαβ3εst|Ψg〉

= (Nc − 1)Nfu∗
p
vp. (14)

Following a well-trodden path, we can find the gap
equation. Let us rewrite the effective Hamiltonian in
terms of quasiparticle creation/annihilation operators.
To this end, we perform the inverse Bogoliubov–Valatin
transformation. We note that a diquark condensate con-
sists of two quarks bearing the same helicity but differ-
ent color and flavor. Four kinds of quasiparticles exist,
reflecting four kinds of relevant quarks. The transforma-
tion is given by

[

C11
R(L)(p)

C22†
R(L)(−p)

]

=

[

u∗
p

vp

−v∗
p

up

]

[

a1
R(L)(p)

a2†
R(L)(−p)

]

, (15)

and
[

C12
R(L)(p)

C21†
R(L)(−p)

]

=

[

u∗
p

vp

−v∗
p

up

]

[

a3
R(L)(p)

a4†
R(L)(−p)

]

, (16)

where a†

R(L)/aR(L) is creation/annihilation operator that

creates/annihilates a quasiparticle of right-handed(left-
handed) type.

The thermodynamic potential Ω̂ in the quasiparticle
basis is given by

Ω̂ ≡ Ĥ − µN̂ =
∑

p

[

(

a1†
R (p) a2

R(−p)
)

D

(

a1
R(p)

a2†
R (−p)

)

+
(

a3†
R (p) a4

R(−p)
)

D

(

a3
R(p)

a4†
R (−p)

)

]

+R → L, (17)

where

N̂ =
∑

p

(

C†α,s
R (p)Cα,s

R (p) + C†α,s
L (p)Cα,s

L (p)
)

, (18)

D ≡

[

up −vp

v∗
p

u∗
p

] [

ep − µ −∆p

−∆∗
p

−(ep − µ)

]

×

[

u∗
p

vp

−v∗
p

up

]

. (19)

Here, we introduce a gap function ∆p:

∆p ≡
1

2
g′2

∑

p′

D(p,p′)

× 〈Ψg|C
α,s
R (−p

′)Cβ,t
R (p′)εαβ3εst|Ψg〉

= (Nc − 1)Nf

g′2

2

∑

p′

D(p,p′)up′v∗
p′ . (20)

The values of the parameters up and vp are chosen so

that Ω̂ has the form of free quasiparticles. After some
algebra, we find that the thermodynamic potential Ω̂ is
given by

Ω̂ = Ωg +
∑

p

[

Epaν†
R (p)aν

R(p) + R → L
]

, (21)

where the superscript ν runs from 1 to 4, and Ωg is the
groud state thermodynamic potential:

Ωg = (Nc − 1)Nf

×
∑

p

[

2(ep − µ)|vp|
2 − ∆pupv∗

p
− ∆∗

p
u∗
p
vp

]

, (22)

with

|up|
2 =

1

2

(

1 +
ep − µ

Ep

)

, (23)

|vp|
2 =

1

2

(

1 −
ep − µ

Ep

)

, (24)

Ep =
√

(ep − µ)2 + ∆2
p
. (25)

In addition, we find that the diquark condensate is given
by

〈CR(−p)CR(p)〉 = upv∗
p

=
∆p

2Ep

≡ φ(p). (26)

Substituting Eq. (26) into Eq. (20), we obtain the fol-
lowing gap equation:

∆p =
(Nc − 1)Nf

12
g2

∑

p,p′

D(p,p′)
∆p′

2Ep′

. (27)

In the QCD-like theory, the one-loop running coupling
(ḡ) is introduced instead of the coupling constant (g) for
the quark-gluon vertex with an infrared regularization
parametor (pR)[8–10]:

g2 → ḡ2(p2) =
2πb

log[(p2 + p2
R)/Λ2

QCD]
, (28)

where

b =
6(N2

c − 1)

2Nc(11 − 2Nf/3)
. (29)

It should be noted that the asymptotic freedom in the
deep Euclidean region is satisfied by exploiting this run-
ning coupling ḡ.

Finally, we obtain the gap equation we ought to solve:

∆p =
(Nc − 1)Nf

12

∫

d3p′

(2π)3
ḡ2(p,p′)D(p,p′)

∆p′

2Ep′

=

∫

d3p′

6(2π)3
·
∆p′

Ep′

·
Zg ḡ

2(p,p′)
(

|p − p
′|2 + a

)

|p − p′|4 + α|p − p′|2 + β
. (30)
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III. COHERENCE LENGTH ξ

If |vp|
2 � 1, we can show that, with nonrelativistic

approximation, the gap equation Eq. (27) reduces to the
Bethe–Goldstone equation of the two-body system as

|p|2

m
φ(p) +

(Nc − 1)Nfg2

6

∑

p′

D(p,p′)φ(p′)

∼ 2(µ − m)φ(p), (31)

where m(6= 2m) is the reduced mass of the two-body
system.

Accordingly, the two-body wave function of a quark
Cooper pair apart from unimportant normalization con-
stant is given by

φ(r) =

∫

d3p

(2π)3
φ(p)e−ip·r

=

∫ ∞

0

p2dp

2π2
φ(p)j0(pr), (32)

where j0(pr) = sin(pr)
pr

is the zeroth-order spherical Bessel

function of the 1st kind with p = |p| and r = |r|.
The coherence length ξ, which is defined by the

squared mean distance of two paired particles, can be
calculated as

ξ =

(
∫

d3r|φ(r)|2r2

∫

d3r|φ(r)|2

)

1

2

. (33)

The averaged interparticle distance d of relevant quarks
is given by

d =

(

3π2

4

)
1

3

pF
, (34)

where pF stands for the Fermi momentum.

IV. NUMERICAL RESULTS

In this section, after obtaining the momentum-
dependent pair wave function by solving the gap equa-
tion Eq. (30), we calculate the coherence length (ξ) of
quark Cooper pairs. For numerical calculation, we set
the values of ΛQCD and the infrared regulator(pR) in the
running coupling to 738 MeV and e0.05ΛQCD, respective-
ly [8,9]. In addition, we set the current quark mass to
m = 0 (the chiral limit). Then, the Fermi momentum
equals the quark chemical potential (pF = µ).

The pair wave functions |φ(r)|2 at µ = 0.3 GeV
and at µ = 0.5 GeV in co-ordinate space are plotted
in Fig. 2. The functions have the maximum values at
|r| = 0 (r : relative co-ordinate), decrease steeply as |r|
grows and almost vanishes at |r| = 0.5 fm. In addition,
we find that the value of |φ(r)| at |r| = 0 increases as
µ increases. This reflects the fact that two quarks of a
Cooper pair get close to each other as µ grows. However,
as we will see below, the averaged interquark distance d
gets shorter more rapidly as µ grows, consequently, the
ratio ξ/d increases as µ grows.

0 0.2 0.4 0.6 0.8 1Èr®È HfmL0

5

10

15

ÈΦHr®
LÈ2

Μ=0.3

Μ=0.5

Fig. 2. Cooper-pair wave functions |φ(r)|2 for different val-
ues of µ (0.3 GeV and 0.5 GeV) in co-ordinate space apart
from normalization constant.

0.2 0.3 0.4 0.5 0.6 0.7

Μ HGeVL0.6

0.8

1

1.2

1.4

Ξ,
d

HfmL
ΞHAL
ΞHBL

d

Fig. 3. The coherence length (ξ) and the interquark dis-
tance (d) as functions of quark chemical potential (µ). The
ξ(A) line, which is the ξ line in the model A, crosses the d
line at µ ∼ 0.65 GeV. While ξ(B) line, which is the ξ line in
the model B, crosses the d line at µ ∼ 0.45 GeV.

Figure 3 plots the values of ξ and d as functions of µ.
ξ as well as d decreases monotonically as µ grows. The
µ dependence of ξ is weaker than that of d. The ξ(A)
line, which is the ξ line in the QCD-like theory with the
lattice-QCD-based gluon propagatoar (model A), crosses
the d line at µ ∼ 0.65 GeV. While the ξ(B) line, which is
the ξ line in the QCD-like theory with the tree-level glu-
on propagator (model B), crosses the d line at µ ∼ 0.45
GeV.

0.2 0.3 0.4 0.5 0.6 0.7

Μ HGeVL
0.6

0.8

1

1.2

ΞHAL�d

Fig. 4. The ratio ξ(A)/d as a function of µ. ξ(A)/d in-
creases almost linearly as µ grows (ξ(A)/d ∼ 1.42µ + 0.076).
ξ(A)/d < 1 in low to moderate µ region where 2SC phase is
possibly realized.
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Figure 4 plots the ratio ξ(A)/d. The ratio increases as
µ grows. We see that ξ(A)/d < 1 in moderate-µ region
where 2SC phase is possibly realized.

V. CONCLUSIONS

In this paper, coherence length (ξ) of quark Cooper
pairs and spatial structure of the pair wave function
in two-flavor quark matter have been investigated. We
have performed this study within a framework of a mod-
ified QCD-like theory in the mean-field approximation.
We have employed the lattice-QCD-based gluon propa-
gator, which is extracted from the quenched lattice QCD
data. The polarization factor of the lattice-QCD-based
gluon propagator is finite at IR region and enhanced
at p ∼ 1 GeV and then decreases as p increases (p:
transfer momentum) [16,17]. The intermediate energy re-
gion is demonstrated to be the most important region
for dynamical chiral symmetry breaking [17]. The usual
choice of the gluon propagator in the QCD-like theory
is the tree-level one [8–10]. This simplification may re-
sult in neglecting possible nonperturbative effects. Mean-
while, the lattice-QCD-based gluon propagator is con-
sidered to include all the nonperturbative effects in the
quenched QCD. Assuming that the nonperturbative ef-
fects are important in quark–quark (q–q) pairing as well
as antiquark–quark (q-q) pairing, we have combined the
QCD-like theory and the lattice-QCD-based gluon prop-
agator for the investigation.

So far a few studies were reported about coherence
length ξ of quark Cooper pairs for two flavors [14,15].
In Refs. [14] and [15], the one-loop Schwinger–Dyson
(S–D) equation in the ladder approximation with in-
frared safe running coupling is used for obtaining Coop-
er pair wave function. In one of them (Ref. [15]),
they reported the result only in a relatively high den-
sity region (µ > 0.8 GeV). In the other (Ref. [14]),
the result in a moderate density region (0.3 < µ <

0.65 GeV) was reported, but the quasiparticle energy
in Ref. (14) is that for one-flavor system [18], because

it contains 3∆2
p

(

Ep =
√

(ep − µ)2 + 3∆2
p

)

instead of

∆2
p

(

Ep =
√

(ep − µ)2 + ∆2
p

)

. Fortunately, the coeffi-

cient in front of ∆p does not affect the value of ξ, al-
though it affects the magnitude of ∆p. It is shown in
Ref. (9), that the one-loop S–D eq. with the ladder ap-
proximation can be derived within the QCD-like theory
with the tree-level gluon propagator.

At T = 0, phase transition between the chiral symme-
try is broken and color superconducting phases is consid-
ered to occur at moderate-µ (µ ∼ 0.4 GeV) [2–6]. As sug-
gested in the Introduction, in the moderate µ region, es-
pecially near the chiral symmetry restorating point, chi-
rally symmetric quark matter may lie in the 2SC phase.
In addition, the region in the vicinity of the chiral sym-
metry restorating point is the most probable area for
the quark-BEC. Hence, we pay special attention to the
moderate-µ region. At each value of µ, ξ(A), which is ξ in
the QCD-like theory with the lattice-QCD-based gluon
propagator (model A), is smaller than ξ(B), which is ξ in
the theory with the tree-level gluon propagator (model
B). We have found that ξ(A)/d < 1 at µ < 0.65 GeV,
while ξ(B)/d < 1 at µ < 0.45 GeV. Thus the Cooper pair
in the model A is rather bosonic. This result may imply
that the intermediate-energy region in the lattice-QCD-
based gluon propagator is important in q−q pairing as
well as in q−q pairing. The Cooper pair whose ξ is small-
er than d suggests that BEC description may be useful
as in the analogous example in condensed matter physics
[19–21].

It should be noted that, in this study, we have ignored
the µ-dependence of the coupling strength. Therefore, if
we use a µ-dependent running coupling, we may obtain
more or less different result especially in the relatively
high µ region.
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ВПЛИВ ҐРАТКОВО-КХД ҐЛЮОННОГО ПРОПАҐАТОРА НА КОГЕРЕНТНУ
ДОВЖИНУ КВАРКОВИХ КУПЕРIВСЬКИХ ПАР У ДВОАРОМАТНОМУ

КОЛЬОРОВОМУ НАДПРОВIДНИКУ

Гiйошi Кiучi
Вiддiл харчових наук, Коледж Джуншiн, 1-1-1 Чiкушiґаока,
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У статтi зроблено числовi дослiдження когерентної довжини (ξ) кваркових куперiвських пар для двох

ароматiв у межах модифiкованої КХД-подiбної калiбрувальної теорiї поля iз ґратково-КХД ґлюонним про-

паґатором, що отримується з ґраткових даних КХД. У пропаґатор включено всi непертурбативнi ефекти

“замороженої” КХД. Виявлено, що когерентна довжина в нашiй моделi ξ(A) менша вiд отриманої в КХД-

подiбнiй теорiї з деревоподiбним ґлюонним пропаґатором ξ(B). Показано, що ξ(A)/d < 1 при µ < 0.65 GeV,

тодi як ξ(B)/d < 1 при µ < 0.45 GeV (d — мiжкваркова вiдстань, µ — хемiчний потенцiял кваркiв). Отже,

куперiвська пара в нашiй моделi є радше бозонною в дiлянцi малих i середнiх µ, де ймовiрно реалiзується

двоароматна кольорова надпровiдна фаза.
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