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We study energy spectrum of the hydrogen atom problem in the Dirac theory with the Lorentz-
covariant deformed algebra leading to minimal length. Using conventional perturbation theory we
calculate the correction to any energy level besides some “problem states” in a simple case of
deformation when one deformation parameter vanishes.
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I. INTRODUCTION

In recent years there has been a growing interest in
the study of quantum mechanical systems with deformed
commutation relations. It is motivated by several inde-
pendent lines of theoretical physics (e. g., string theory
and quantum gravity), which suggest the existence of
minimal length as a finite lower bound to the possible
resolution of length [1–3]. Kempf et al. showed that such
an effect can be achieved by modifying usual canonical
commutation relations( [4–7]). The deformed commuta-
tion relation according to Kempf et al. in D-dimensional
space reads

[X̂i, P̂j ] = i~[(1 + βP̂ 2)δij + β′P̂iP̂j ],

[X̂i, X̂j ] = i~
2β − β′ + (2β + β′)βP̂ 2

1 + βP̂ 2
(P̂iX̂j − P̂jX̂i),

[P̂i, P̂j ] = 0. (1)

Here β and β′ are two small nonnegative parameters.
The proposed idea of a deformed commutation rela-

tion leading to minimal length was not new. As early as
1947 Snyder introduced the Lorentz-covariant quantized
spacetime, dropping the usual hypothesis of commuta-
tivity of the coordinates [8]. Howewer, for a long time
this idea attracted little attention of physicists. There
have been few works on this subject in the last forty
years [9–13]. An interest in this problem was revived with
the investigations in quantum gravity and string theory.

It is worth mentioning that deformed algebra (1) is a
nonrelativistic one, i. e. it violates the Lorentz symmetry.
In paper [14] theD-dimensional two-parameter deformed
algebra (1) was generalized to the (D + 1)-dimensional
quantized spacetime Lorentz-covariant one, which con-
tains the Snyder algebra as a special case (D = 3, β = 0)

[X̂µ, P̂ ν ] = −i~[(1− βP̂ρP̂
ρ)gµν − β′P̂µP̂ ν ],

[X̂µ, X̂ν ] = i~
2β−β′− (2β+β′)βP̂ρP̂

ρ

1−βP̂ρP̂ ρ
(P̂µX̂ν−P̂ νX̂µ),

[P̂µ, P̂ ν ] = 0, (2)

with gµν = gµν = diag(1,−1,−1, . . . ,−1) being the met-
ric tensor. Algebra (2) is an entirely new algebra, which

cannot be reduced to algebra (1) in the nonrelativistic
limit.

It is interesting to study the influence of minimal
length assumption on the properties of quantum systems.
Deformed commutation relations (1) were applied to the
consideration of different quantum mechanical problems.
For the review of the studied issues see [15]. In a space
with the deformed Lorentz-covariant algebra (2), how-
ever, the exact solution of a (1 + 1)-dimensional Dirac
oscillator in the simplest case of deformation, when one
deformation parameter vanishes, is still the only problem
that has been studied [14]. So this research area remains
almost unexplored.

The hydrogen atom is a unique quantum mechanical
system due to a highly accurate theoretical prediction
and the most precise experimental data. Studies of this
system may significantly contribute to our understand-
ing of the fundamentals of the structure of the Universe.
Studying the hydrogen atom in deformed space with min-
imal length we could come close to the answer whether
the finite lower bound to the possible resolution of length
does or does not exist. There are only a few papers on
this theme in the case of Kempf’s deformation [16–20].

Brau [16] considered the special case of deformation
β′ = 2β in which the position coordinates commute in
linear approximation over the deformation parameters.
In such simplest case the energy spectrum was calculated
using perturbation theory. It was found that the defor-
mation with minimal length decreases the depth of the
hydrogen atom potential well. In [17] authors attempt-
ed to find the modifications to the energy of the zero
angular momentum states, i. e. s-states, in momentum
representation. Their results differ from the ones pro-
posed in [16], namely the correction to the energy spec-
trum is opposite in sign. A general case of deformation,
without any assumption on the deformation parameter,
was considered in [18]. The perturbation hydrogen-atom
spectrum was obtained analytically for all states besides
s-states. To overcome the divergences which appeared in
the calculation of the corrections to the s-level due to the
term proportional to 1/r3 the authors used a numeri-
cal method and cut-off procedure. It is worth mentioning
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that in a special case of deformation β′ = 2β the results
obtained by Benczik et al. reproduce those of Brau. A
modified perturbation theory based on the shifted ex-
pansion of R̂−1 which does not contain the divergent
terms was proposed in [19]. Such an idea gives a possi-
bility to calculate the energy correction to any energy
level including s-levels [19,20].

In the present paper we develop the perturbation the-
ory to calculate corrections to the energy spectrum of
the hydrogen atom in space with a special case of de-
formation β′ = 0 of the Lorentz-covariant commutation
relations (2).

The paper is organized as follows. In Section II we
discuss different representations of the Lorentz-covariant
deformed algebra. In Section III we point out the solu-
tion of the relativistic hydrogen atom in ordinary quan-
tum mechanics to introduce notations to be used in the
paper. Considering the special case of deformation we
obtain corrections to the energy spectrum of Coulomb
problem in Dirac theory in Section IV using convention-
al perturbation theory. Finally, Section V contains the
conclusion.

II. REPRESENTATIONS OF THE ALGEBRA

It is useful to represent the operators of position X̂µ

and momenta P̂µ satisfying deformed algebra (2) by op-

erators x̂µ and p̂µ which obey the canonical commutation
relations

[x̂µ, p̂ν ] = −i~gµν . (3)

The representation that leaves the operator of momenta
undeformed reads{

X̂µ = (1− βp̂ρp̂
ρ)x̂µ − β′p̂µp̂ρx̂

ρ + i~γpµ,

P̂µ = p̂µ,
(4)

where γ is an arbitrary real constant which does not
change the commutation relations. In momentum repre-
sentation x̂µ = −i~gµν∂/∂pν , p̂µ = pµ we need to rede-
fine the inner product by introducing the weight func-
tion.

〈ψ|φ〉 =
∫

dDp

[1− (β + β′)pνpν ]α
ψ∗(pµ)φ(pµ), (5)

α =
2β + β′(D + 2)− 2γ

2(β + β′)
. (6)

This provides the Hermiticity of the position operators.
If we choose γ = β + β′(D + 2)/2 the weight function
reduces to 1. At such an assumption about the value of
γ we can write down the position operators in the Her-
mitian form:

 X̂µ = x̂µ − β

2
[p̂ρp̂

ρx̂µ + x̂µp̂ρp̂
ρ]− β′

2
[p̂µp̂ρx̂

ρ + x̂ρp̂
ρp̂µ] ,

P̂µ = p̂µ.
(7)

Using the “pseudoposition” representation{
x̂µ = xµ,

p̂µ = i~gµν ∂

∂xν

(8)

we calculate the square distance operator in the (3 + 1)
dimensional case R̂2 =

∑3
i=1(X̂

i)2 in the first order in
β, β′:

R2 = r2 + (β + β′)[p̂2r2 + r2p̂2]− 2β(p̂0)2r2 + 3~2β

− 2β′L̂2 − β′

2
(p̂0ct+ ctp̂0)(rp̂ + p̂r), (9)

with L̂ being the angular momentum. An expansion of
the inverse distance in the series over the parameters of
deformation up to the first order reads

R̂−1 =
1
r
− β + β′

2

(
1
r
p̂2 + p̂2 1

r

)
+ β(p̂0)2

1
r
− 2β − β′

2
~2

r3

+ β′
L̂2

r3
− β′

(p̂0ct+ ctp̂0)
4

(
1
r
p̂2 − p̂2 1

r

)
. (10)

Another representation that satisfies algebra (2) in the
first order in β, β′ in contrast to exact representation (7)
reads

X̂µ = x̂µ − 2β − β′

4
(x̂µp̂ρp̂

ρ + p̂ρp̂
ρx̂µ),

P̂µ = p̂µ − β′

2
p̂µp̂ρp̂

ρ.
(11)

By analogy, the square distance operator and inverse dis-
tance operator in representation (11), (8) has the form:

R2 = r2 +
(2β − β′)

2
((
p̂2 − (p̂0)2

)
r2

+ r2
(
p̂2 − (p̂0)2

)
+ 3~2

)
, (12)

R̂−1 =
1
r
− t(2β − β′)

4

(
1
r

(
p̂2 − (p̂0)2

)
+
(
p̂2 − (p̂0)2

) 1
r

+
2~2

r3

)
. (13)

Representations (7) and (11) coincide when β′ = 0.
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III. HYDROGEN ATOM IN THE DIRAC
THEORY

To review the notations to be used in this paper let
us recall the solution of hydrogen atom problem in the
Dirac theory with standart nondeformed algebra.

We write the Dirac Hamiltonian with a central force
potential in the form

Ĥ = cρ̂aP̂ +mc2ρ̂c + U(r), (14)

where

P̂ = σ̂xp̂
x + σ̂yp̂

y + σ̂z p̂
z. (15)

The choice of matrices σi, i = x, y, z; ρj , j = a, b, c can be
performed in different ways. The following representation
of these matrices is more convenient in some relations.

σ̂x =
(
σ̂0

x 0
0 −σ̂0

x

)
, σ̂y =

(
σ̂0

y 0
0 σ̂0

y

)
,

σ̂z =
(
σ̂0

z 0
0 −σ̂0

z

)
, (16)

ρ̂a =
(
I 0
0 −I

)
, ρ̂b =

(
0 σ̂0

y

σ̂0
y 0

)
,

ρ̂c =
(

0 −iσ̂0
y

iσ̂0
y 0

)
. (17)

Here σ̂0
x, σ̂

0
y, σ̂

0
z denote standart Pauli spin matrices.

Following Fock [21], let us perform the transformation
of equation

[
cρ̂aP̂ +mc2ρ̂c + U(r)

]
ψ = p̂0cψ (18)

to spherical coordinates accompanied with canonical
transformations. Any operator and wave function trans-
form:

Â→ Â∗ = r
√

sin(θ)UÂU−1 1
r
√

sin(θ)
, (19)

ψ → ψ∗ = r
√

sin(θ)Uψ, (20)

with U =
(
Î cos θ

2 + iσ̂y sin θ
2

)(
Î cos ϕ

2 + iσ̂z sin ϕ
2

)
be-

ing the unitary transformation. Turning into stationary
equation, we obtain[

cρ̂aP̂
∗ +mc2ρ̂c + U(r)

]
ψ∗ = E0ψ∗ (21)

The solution of (21) for ψ∗ = (ψ∗1 , ψ
∗
2 , ψ

∗
3 , ψ

∗
4)T reads

ψ∗1 = f(r)Y (θ, ϕ), ψ∗2 = g(r)Z(θ, ϕ),
ψ∗3 = f(r)Z(θ, ϕ), ψ∗4 = −g(r)Y (θ, ϕ), (22)

with normalization conditions∫ ∞

0

dr (|f |2 + |g|2) = 1, (23)∫ π

0

dθ

∫ 2π

0

dϕ (|Y |2 + |Z|2) = 1. (24)

Here Y (θ, ϕ), Z(θ, ϕ) are the so-called spherical func-
tions. The functions f(r) and g(r) correspond to the
form of the potential U(r). For the Coulomb potential
U(r) = − e2

r

f(r) =
1√
2

[
Fpk

(
2r

an∗

)
−Gpk

(
2r

an∗

)
2 sin ε

2

+ i
Fpk

(
2r

an∗

)
+Gpk

(
2r

an∗

)
2 cos ε

2

]
,

g(r) =
1√
2

[
Fpk

(
2r

an∗

)
−Gpk

(
2r

an∗

)
2 sin ε

2

− i
Fpk

(
2r

an∗

)
+Gpk

(
2r

an∗

)
2 cos ε

2

]
,

Fpk(x) = C(p, k)x
s
2 e−

x
2Qs

p(x), (25)

Gpk(x) = C(p, k) (n∗ − k)x
s
2 e−

x
2Qs

p−1(x).

Here Qs
p(x) = Γ(s+p+1)

Γ(s+1) 1F1(−p, s + 1, x) are the La-
guerre polynomial; p = 0, 1, 2, . . . ; k is connected with
the total angular momentum quantum number by j =

|k| − 1
2 , k = ±1,±2,±3, . . .; C(p, k) =

√
(n∗+k)

p!Γ(p+s+1)
α2

n∗4

is the normalization constant; α denotes the fine struc-
ture constant; a = ~2

me2 is the Bohr radius; ε depends on
energy E0 by the following equation

E0 = mc2 cos ε. (26)

Quantum numbers which appear in formulas (25) are
connected by

s = 2
√
k2 − α2, p+ s/2 = α cot ε. (27)

We also denote α
sin ε by n∗ due to a slight difference

between this ratio and integer main quantum number
n = p + |k|. Finally, the energy spectrum depending on
quantum numbers p and k is

E0
pk = mc2

p+
√
k2 − α2√(

p+
√
k2 − α2

)2
+ α2

. (28)
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IV. PERTURBATION OF THE ENERGY
SPECTRUM

In this section we calculate the correction to the ener-
gy spectrum of hydrogen atom in Dirac theory with the
Lorentz-covariant deformed algebra with minimal length
using conventional perturbation theory.

We study the Dirac equation in a (3 + 1)-dimensional
case in the form of[
cρ̂a(σ̂xP̂

x+ σ̂yP̂
y+ σ̂zP̂

z)+mc2ρ̂c−
e2

R

]
ψ= P̂ 0c ψ, (29)

where operators of position X̂µ and momenta P̂µ satisfy
deformed comutation relations (2).

As we saw in Section II, operators P̂ 0 and R̂−1 do
not commute any more. That is why we would find no

function to be the eigenfunction of the operator P̂ 0 and
Ĥ simultaneously in contrast to the undeformed case. It
is unknown for the authors how to write correctly sta-
tionary equation under such circumstances. Therefore we
consider the case when one of the deforming parameters
vanishes and the other one is positive, namely β′ = 0 and
β > 0. This assumption on the deformation parameters
guarantees commutativity of the operators P̂ 0 and R̂−1.
Note that at such an assumption for the parameters of
deformation representations (7) and (11) coincide.

We rewrite equation (29) taking into account only the
first-order term in β(

Ĥ0 + V̂β

)
ψ = p̂0cψ. (30)

The Hamiltonian of the unperturbed problem reads

Ĥ0 = cρ̂aP̂ +mc2ρ̂c −
e2

r
, (31)

and the perturbation operator can be written as follows

V̂β =
β

2
e2

((
p̂2 − (p̂0)2

)
1
r

+
1
r

(
p̂2 − (p̂0)2

)
+

2~2

r3

)
. (32)

We perform a conversion to the stationary equation by assuming

ψ(r, t) = e−
i
~ Etψ(r). (33)

Similarly to the undeformed case, we perform a transformation to spherical coordinates together with canonical
transformations. Finally we have (

Ĥ∗
0 + V̂ ∗β

)
ψ∗ = Eψ∗, (34)

with

Ĥ∗
0 = cρ̂aP̂

∗ +mc2ρ̂c −
e2

r
, (35)

V̂ ∗β =
β

2
e2

((
(p̂∗)2 − (p0)2

)
1
r

+
1
r

(
(p̂∗)2 − (p0)2

)
+

2~2

r3

)
(36)

and

(p̂∗)2 = (P̂ ∗)2 = p̂2
r −

~M̂∗

r2
+

(M̂∗)2

r2
, (37)

M̂∗ψ∗ = ~kρcψ
∗, (38)

p0 =
E0

c
. (39)

Now we can calculate the corrections to the spectrum using the eigenfunctions of an undeformed relativistic hydrogen
atom

∆E(1)
pk = mc2

~2β

a2

(
12α2

(
2p+ s

)(
2n∗k(α2 + 1) + k4(2p+ s)

)
s(s2 − 1)(s2 − 4)n∗5

+

+
α2(−3n∗2 + 4n∗k(2p+ s)− 4k2α2)

s(s2 − 1)n∗5
+
α2 − n∗2 + p2 − k2

sn∗3

)
. (40)
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The correction to the energy spectrum ∆E(1)
pk depends

on two quantum numbers p and k connected with the
usual main quantum number n and the total angular
momentum quantum number j by

n = p+ |k|, j = |k| − 1
2
. (41)

Formula (40) works for any allowed values for p and
k, besides k = ±1. For the states with such values of
quantum number k we obtain a divergent contribution
of terms proportional to 1

r (p̂∗)2 + (p̂∗)2 1
r and 1

r3 to the
energy correction. For example, for the ground state we
have 〈

1
r3

〉
∼
∫ ∞

0

dxxs−3e−x = ∞, (42)

because s = 2
√

1− α2 is less than 2. The situation is
rather similar to the nonrelativistic case of deformation
and calls for a modification of the perturbation theo-
ry [19].

It is worth mentioning that if we omit the contribu-
tion of the term (p0)2

r to ∆E(1)
pk we will find a correction

to the energy spectrum of a hydrogen atom in the Dirac
theory with Kempf’s deformation. In the nonrelativistic
limit of c→∞ this correction as expected coincides with
the result calculated in [18].

V. CONCLUSION

We studied the hydrogen atom problem in a space with
the Lorentz-covariant deformed algebra with the assump-
tion fo the deformation parameters β 6= 0, β′ = 0. Using
conventional perturbation theory we calculate the correc-
tion to the energy spectrum for all states besides some
“problem states” with |k| = 1. The difficulties are due to
the terms proportional to 1/r3 and 1

r p̂
2 + p̂2 1

r contained
in the perturbation operator because of their divergent
contribution to the energy correction. The same problem
with divergences appeared in the nonrelativistic case of
deformation when one attempts to calculate the correc-
tion to s-levels of a hydrogen atom [18,19].

One of the interesting problems is to extend the
method over the case of a two-parameter deformed al-
gebra. The authors expect that this problem to be the
subject of one of our papers in the future.
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ПЕРТУРБАЦIЙНИЙ СПЕКТР АТОМА ВОДНЮ У ПРОСТОРI
З ЛОРЕНЦ-КОВАРIАНТНОЮ ДЕФОРМОВАНОЮ АЛҐЕБРОЮ ГАЙЗЕНБЕРҐА

З МIНIМАЛЬНОЮ ДОВЖИНОЮ

М. I. Самар, В. М. Ткачук
Кафедра теоретичної фiзики Львiвського нацiонального унiверситету iменi Iвана Франка,

вул. Драгоманова, 12, Львiв, 79005, Україна

Ми вивчаємо енерґетичний спектр атома водню в теорiї Дiрака з Лоренц-коварiантною деформованою
алґеброю, що веде до мiнiмальної довжини. У простому випадку деформацiї, коли один iз її параметрiв
дорiвнює нулевi, ми, використовуючи звичайну теорiю збурень, обчислили поправки до всiх енерґетичних
рiвнiв, крiм деяких “проблемних” станiв.
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