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We examine a scenario of the abelianized Glasma evolution with accounting for back-reaction of
partonic medium in ultrarelativistic heavy-ion collisions. We announce that such a generalization
leads to the instabilities and the presence of negative color conductivity in the system.
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I. INTRODUCTION

Phenomenological analyses of experimental data indi-
cate that the quark-gluon plasma (QGP) can be formed
in ultrarelativistic A+A collisions [1]. Its local thermal-
ization and isotropization should be mainly related to the
fast processes stimulated by instabilities at small times
after collision [2, 3].

In the present theoretical picture of ultrarelativistic
heavy-ion collisions [4], the early stage is preferably char-
acterized by the large number of partons with “small”
momenta of the order of the so-called saturation mo-
mentum Λs, which are better viewed as a classical Yang-
Mills field in vacuum [5], sometimes named as “Glasma”.
The initial conditions for Glasma evolution are deter-
mined by the Color Glass Condensate (CGC) concept by
McLerran–Venugopalan (MV) [6], where the field sources
before collision can be presented by the randomly dis-
tributed valent quarks of colliding hadrons and are locat-
ed (due to Lorentz contraction) on infinitesimally thin
sheets running along the light-cone. These sources are
also treated as the hard partons with “large” momen-
ta, which escape quickly from the system after collision.
Thus, the original MV model neglects the interaction be-
tween the field and the hard partonic medium.

The space-time dynamics of the Yang–Mills fields in
vacuum (“the melting of CGC”) in assumption of boost
invariance was investigated numerically, and the energy
and the number distributions of the classically produced
gluons were computed (see, for example, review [7]).
Moreover, it was shown that the violations of boost in-
variance cause a non-Abelian Weibel instability [8] lead-
ing the field (soft) modes to grow with proper time [9].
However, the effect of isotropization is out of this model.

On the other hand, the hard partons (produced after
moment of collision) with large transverse momentum
pT can be studied within the framework of transport
theory, and if the presence of the soft classical field is ne-
glected, the time evolution of the partons is described by

Boltzmann equation with a collision kernel [10–15] (for
comment, see 1). However, it has been argued that the
collective processes caused by the soft gauge field should
be dominant in equilibration of QGP instabilities devel-
oped due to anisotropic distributions of released hard
partons [16–19].

The third regime where the back-reaction of the field
on the hard partons (treated as particles) is still weak but
where the self-interaction of the former may be strong-
ly nonlinear is governed by a “hard-loop” effective ac-
tion which has been derived in Ref. [20] for arbitrary
momentum-space anisotropies.

It is interesting to note that the numerical studies
of anisotropic hard partonic modes coupled to unsta-
ble soft modes revealed the tendency of the non-Abelian
gauge fields to “abelianize” during the stage of instabili-
ties [19,21]. It means that the field commutators become
much smaller than the fields themselves. Moreover, the
dynamics of the Abelian and non-Abelian fields is qual-
itatively the same, if these fields are not strong enough.

In this paper, we examine a scenario of Glasma evolu-
tion with CGC-like initial conditions, when the presence
of the (momentum-)anisotropic medium of hard partons
is also taken into account. Our goal is to evaluate an-
alytically the behavior of such a system in short-time
interval in weak-interaction regime when the application
of the abelianized version of the field dynamics is pos-
sible. Although the last condition demands to consider
the system at relatively large times after A+A collision
(as follows from numerical investigations) but simplifies
the problem considerably. However, it is already pointed
out in Refs. [22–24] that the early equilibration of QGP is
not necessary to describe pion and kaon spectra observed
experimentally at RHIC in Brookhaven.

Since the momentum-space anisotropy of the system
can be estimated by means of transport coefficients, we
attempt to calculate a conductivity tensor and to deter-
mine an effect of instabilities on it. It is expected that the

1This list of references contains also some works on approaches based on the relaxation time approximation to the Boltzmann
equation.
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back-reaction can lead to a negative color conductivity
in the boost-invariant case.

II. THE MODEL FORMULATION

As was mentioned in the Introduction, the classical
Yang–Mills theory in space-time with pseudo-cylindrical
metric

ds2 = dτ2 − τ2dη2 − dr2T − r2T dϕ
2, (1)

τ =
√

t2 − z2, η =
1

2
ln
t+ z

t− z
, (2)

(τ and η are proper time and space-time rapidity, re-
spectively) has been abelianized since τ0 ≈ 3/Λs, where
Λs ≈ 2 GeV [5]. It means that we actually come to the
Maxwell theory with 4-potential Aµ (hereafter, we ne-
glect the normalization constant 1/

√
Nc, where Nc is the

number of colors).
The free-field theory in mid-rapidity region in the

case of central collisions, when the potentials are
parametrized as Aτ = 0 (CGC-like gauge fixing), Aη ≡
Φ(τ, rT ), ArT

= 0, Aϕ ≡ Ψ(τ, rT ), has been already ex-
amined (see Ref. [23]) in order to describe the space-time
evolution of the field flow (collective velocity) at pre-
thermal stage of collisions. It turns out that the results
obtained are qualitatively the same like in the case of
non-Abelian model from Ref. [25].

Here we generalize the abelianized Glasma equations
by the inclusion of sources in the right-hand side:

∂2
τΦ − 1

τ
∂τΦ − ∂2

rT
Φ − 1

rT
∂rT

Φ = Jη(τ, rT ), (3)

∂2
τΨ +

1

τ
∂τΨ − ∂2

rT
Ψ +

1

rT
∂rT

Ψ = Jϕ(τ, rT ). (4)

Note that Jτ = 0, JrT
= 0 and the current conservation

is satisfied automatically.
In the context of A+A collisions, the presence of the

sources corresponds to the existence of the medium. Ac-
counting for a hard partonic component (viewed as a
particle subsystem), we aim to investigate the field and
particle dynamics.

The components of the current in Minkowskian space-
time are

Jµ = g

∫

pµ(f+ − f−)
d3p

p0
, (5)

where p0 ≡ |p| (the case of massless partons), f± are
distribution functions of (scalar) partons. The distribu-
tion of partons is supposed to be anisotropic in the mo-
mentum space and inhomogeneous in configuration one.
Space-time development of functions f± is determined by
Vlasov equations which we will formulate below. Note
that “−g” corresponds to the charge of electron in the
context of electrodynamics.

A toy field model with non-trivial right-hand side has
been already investigated in Ref. [26].

It is useful to parametrize momenta as (pµ) =
(pT cosh y, pT cosφ, pT sinφ, pT sinh y), where y is mo-
mentum rapidity.

In terms of our variables one has:

Jτ = g

∫

p2
T cosh θ(f+ − f−)dpT dydφ, (6)

Jη = −τg
∫

p2
T sinh θ(f+ − f−)dpT dydφ, (7)

JrT
= −g

∫

p2
T cos ξ(f+ − f−)dpT dydφ, (8)

Jϕ = −rT g
∫

p2
T sin ξ(f+ − f−)dpT dydφ, (9)

where θ = y − η, ξ = φ− ϕ.
Taking conditions Jτ = 0, JrT

= 0 into account the
difference f+ − f− should be an odd function of θ and ξ
during evolution.

The evolution of f± is generated by Vlasov equations:

(L̂± gF̂ )f± = 0, (10)

where L̂ ≡ pµ∂µ, F̂ ≡ pµFµν∂
ν
p , Fµν = ∂µAν − ∂νAµ.

Since the sources (partons) are randomly distributed
at the initial moment τ0, we put f0

+ = f0
− = f0, where

f0 is defined as (dNh/d
3xd3p)|τ0 , and L̂f0 = 0 in our

investigations. It means that the system is neutral and
the currents are absent at τ0.

Using the curved coordinates, we obtain

L̂= pT

(

cosh θ∂τ+
sinh θ

τ
∂η + cos ξ∂rT

+
sin ξ

rT
∂ϕ

)

, (11)

F̂ = −∂τΦ
τ
∂y +

∂rT
Φ

τ
(sinh θ sin ξ∂φ − cosh θ cos ξ∂y)

+
∂τΨ

rT
(sinh θ sin ξ∂y + cosh θ cos ξ∂φ) +

∂rT
Ψ

rT
∂φ. (12)

We can see that the operator of Lorentz force F̂ is sim-
ply the operator of rotation in momentum space and,
therefore, conserves the absolute value of transverse mo-
mentum pT . It is expected that such a structure of the
Lorentz force should lead to the momentum transmis-
sion between different directions and, consequently, to
instabilities in this system.

III. SOLUTION OF EQUATIONS

In this Section, we concentrate on finding the solu-
tion of the set of the coupled Maxwell–Vlasov equations.
Since the Glasma field is essential at early stage of nu-
clear collisions (in contrast with the hard partons or
quarks), the study of the field dynamics actually domi-
nates. By this way, it is necessary to express the particle
currents through the fields. In general, the Vlasov equa-
tions are complicated. For this reason, we are forced to
use a method for approximate solution of this set.

A fluctuation of the distribution function, which arises
during a fairly small time interval ∆τ can be found in
the linear approximation in g:

f± = f0 ∓ gδf. (13)
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In this approximation, the space-time evolution of cor-
rection δf , determining the difference f+ − f− = −2gδf
and the current components, results from the following
equation:

L̂δf = F̂ f0. (14)

Note that this approximation does not permit us to in-
vestigate an isotropization of the particle (hard parton)
kinematic part of the energy-momentum tensor, propor-
tional to the sum f+ + f−. It is expected that such
isotropization effect can be observed if the correction of
the order g2 is included. Nevertheless, the approximation
under consideration allows one to study the instabilities
in the system.

If τ → τ0, there exists an approximate solution, which
is short-living in time and localized in space,

δf ≈ τ − τ0
pT cosh θ

F̂ f0. (15)

It is easy to verify that the action of evolution operator
L̂ on this expression gives us

L̂
τ − τ0
pT cosh θ

F̂ f0 = F̂ f0 + (τ − τ0)W (τ), (16)

where

W (τ) =

[

∂τ +
tanh θ

τ
(∂η + tanh θ)

+
cos ξ

cosh θ
∂rT

+
sin ξ

rT cosh θ
∂ϕ

]

(F̂ f0). (17)

Thus, if τ → τ0, the last term in right-hand side of
(16) vanishes. Also note that this is the simplified proof
of Eq. (15). To understand this approximation in details
see Appendix A.

Often the model initial boost-invariant distributions
in central heavy-ion collisions take the form f 0 =
f0(pT , θ) = f0(pT ,−θ) (note that for the sake of cor-
rectness f0 has to be also a function of rT ). In this case,
we obtain

Jη = ση(τ)∂τΦ, Jϕ = σϕ(τ)∂τΨ, (18)

where

ση(τ) = 2(τ − τ0)σ0, σϕ(τ) = −(τ − τ0)σ0 (19)

are conductivities.
The common multiplier dependent on the initial dis-

tribution of partons is

σ0 ≡ −2πg2

∞
∫

0

dpT

∞
∫

−∞

dy ∂yf
0pT tanh θ. (20)

We can immediately see that ση(τ) and σϕ(τ) have the
different signs. It says about the presence of negative col-

or conductivity driving to instability in the system. The
mechanism of this instability looks simple: we deal with

situation when the particles (partons) give the energy to
the field.

Now let us analyze the properties of σ0. Firstly, we
assume that the initial distribution f 0 is the product
of the function of (pT , θ) and the spatial distribution
(dNh/d

3x)|τ0(rT ) in a transverse plane. Taking into ac-
count that the initial distribution is even function of θ,
one gets

σ0 = A
dNh
d3x

∣

∣

∣

∣

τ0

> 0, (21)

where A is a positive constant arising after integration
over momentum variables.

Thus, σϕ < 0, while ση > 0. It means that the color
negative conductivity takes place in the transverse plane.

At this stage the natural question arises: how does
negative conductivity look in the laboratory reference
frame. Eqs. (18) are actually the Ohm law, where
Eη ≡ Fτη = ∂τΦ, Eϕ ≡ Fτϕ = ∂τΨ are the (chro-
mo)electric field strengths. Introducing Ei = Fti in the
Minkowskian space-time, we find that Eη = τEz , Eϕ =
rT cosh η(− sinϕEx + cosϕEy) + rT sinh η(− sinϕFzx +
cosϕFzy). In these terms the current components are

Jt = − sinh ησηEz, Jz = cosh ησηEz, (22)

Jx = − sinϕ

rT
σϕEϕ, Jy =

cosϕ

rT
σϕEϕ. (23)

If η = 0 and ϕ = 0, one has that Jt = Jx = 0,
Jy = σϕEy , Jz = σηEz . Thus the color negative conduc-
tivity takes place under some conditions (related with the
value of angles) in the laboratory reference frame. This
effect is associated with filamentation in the plasma [3].

Since it is hard to find the general solution of field
equations for an arbitrary distribution (dNh/d

3x)|τ0 , we
try to study the particular case, when (dNh/d

3x)|τ0 =
const. This assumption simplifies the problem signifi-
cantly.

When σ0 is a constant, the spatial dependence of
the field potentials is immediately derived by using the
Bessel–Fourier transform:

Φ(τ, rT ) =

∞
∫

0

Φ0(kT )gη(τ, kT )J0(kT rT )dkT , (24)

Ψ(τ, rT ) = rT

∞
∫

0

Ψ0(kT )gϕ(τ, kT )J1(kT rT )dkT , (25)

where the initial conditions resulting from CGC concept
are applied:

gη|τ0 = 0,
∂τgη
τ

∣

∣

∣

∣

τ0

= kT , (26)

gϕ|τ0 = 1, τ∂τ gϕ|τ0 = 0. (27)

In principal, functions gη(τ, kT ), gϕ(τ, kT ) can be ex-
pressed for arbitrary τ0 6= 0 in terms of Heun functions.
However, these expressions are complicated for heuristic
analysis of our model and its applications.
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For this reason, we write down the functions gη,ϕ at
τ0 → 0:

gη = − kT
2σ0

exp

(

1

2
σ0τ

2

)

M

(

− k2
T

4σ0
,
1

2
;−σ0τ

2

)

, (28)

gϕ =
1

τ

√

2

σ0
exp

(

−1

4
σ0τ

2

)

M

(

k2
T − σ0

2σ0
, 0;

1

2
σ0τ

2

)

,

where M(a, b; z) is the Whittaker function.
It is easy to verify that the occurrence of negative col-

or conductivity σϕ leads to a growth of the some com-
ponents of magnetic and electric fields in comparison
with the case of the theory without partonic medium.
It is important that the Abelian magnetic field exhibits
a growth, draining some energy from the particle reser-
voir. The instabilities are related with the presence of
exponents in functions gη,ϕ; Whittaker functions change
actually a phase of oscillations only in comparison with
the free theory.

If σ0 → 0 and τ0 → 0, we come to the well-known
expressions (see, for example, Ref. [27] and references
therein):

gη(τ, kT ) = τJ1(kT τ), gϕ(τ, kT ) = J0(kT τ), (29)

where Jn(z) is the Bessel function.
These expressions correspond to the perturbative (low-

est order in the source charge densities) solution.
Now it is necessary to determine the functions Φ0(kT )

and Ψ0(kT ). They originate from the initial conditions
for the field equations.

Note that Ψ0(kT ) and Φ0(kT ) are fluctuating quanti-
ties within the CGC concept, and the pair correlator of
the (Yang–Mills) potentials is observable only. However,
the field potentials in our approach are not stochastic
quantities in the contrast with CGC ideology because
we want to constitute the initial conditions on the base
of the statistically averaged components of the energy-
momentum tensor accounting for the spatial inhomo-
geneity.

In order to derive Ψ0(kT ) and Φ0(kT ), let us use the en-
ergy density distribution and the requirement of the ab-
sence of field flow at the initial moment. In mid-rapidity
region (η = 0) and ϕ = 0 (note that transverse directions
are equal in the system with cylindrical symmetry), when
Ttt = Tττ , Ttx = Tτx, we have that

Ttt|τ0 ≡ ε(rT )

=
1

2

(

∂rT
Ψ

rT

∣

∣

∣

∣

τ0

)2

+
1

2

(

∂τΦ

τ

∣

∣

∣

∣

τ0

)2

, (30)

Ttx|τ0 = 0, (31)

where ε(rT ) is assumed to be the known function from
numerical calculations or physical point of view.

Our trick consists in the division of the energy density
between different field components:

∂rT
Ψ|τ0 =

√
αrT f(rT ),

∂τΦ

τ

∣

∣

∣

∣

τ0

=
√

1 − αf(rT ), (32)

where f(rT ) ≡
√

2ε(rT ) and α is the separation con-
stant (in general, α should be a function of rT ). Since
the potentials Ψ, Φ are real, one has that 0 ≤ α ≤ 1.

In principal, α is an arbitrary constant. In fact it turns
out that α ≈ 1/2 (it follows from a comparison of electric
and magnetic strengths within the numerical approach).
Note that the observables of the source-free theory are
independent on α.

Thus, one finds

Ψ0(kT ) =
√
αf̃(kT ), Φ0(kT ) =

√
1 − αf̃(kT ), (33)

here

f̃(kT ) =

∫ ∞

0

f(rT )J0(kT rT )rT drT . (34)

These expressions finally determine the fields in our
model.

IV. APPLICATIONS

In the previous Sections we have formulated the model
of Glasma in a hard partonic medium. Since the classical
field modes are usually interpreted as soft partons, their
spatial dependence at an early stage of the A+A colli-
sion may be done within the framework of the Glauber
model. However, the explanations of experimental data
can be efficiently with the application of other distribu-
tions too made. As was demonstrated in Ref. [24], the
Gaussian distribution of soft partons leads to the ade-
quate pion spectra produced after collision at RHIC. To
formulate the field initial conditions, here we would like
to choose the same approximation for the energy density
at the initial moment,

ε(rT ) = E exp

(

− r2T
2R2

)

, (35)

where E = 45 GeV/fm3, R = 3.768 fm.
Then we find that

f̃(kT ) = 23/2
√
ER2 exp (−k2

TR
2). (36)

The boost-invariant distribution function f 0 (defining
conductivities) is completely arbitrary at this point, so
in order to proceed one needs to assume a specific form
for it. In what follows we will require that f 0 is obtained
from the isotropic function,

N0 exp

(

− p0

ph

)

, (37)

by the replacement y → θ in p0 = pT cosh y and by the
rescaling of one dimension in momentum space,

f0 = N(ζ) exp

(

−pT
ph

√

cosh2 θ + ζ sinh2 θ

)

, (38)

where ph takes the role of saturation moment, ζ > −1 is a
parameter reflecting the strength of the partonic medium
anisotropy and N(ζ) is a normalization constant. Note
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that ζ > 0 corresponds to a contraction of the distribu-
tion in the z-direction whereas −1 < ζ < 0 corresponds
to a stretching of the distribution in the z-direction.

Constant N(ζ) is simply determined by requiring the
number density to be the same both for isotropic and
anisotropic systems and can be evaluated (by integra-
tion over momentum variables) to be

N(ξ) = N0

√

1 + ζ. (39)

Integrating over momentum, the multiplier defining
the conductivities is

σ0 = 4πg2N0p
2
hC(ζ), (40)

where

C(ζ) =
2

3
(1 + ζ)3/2F

([

2,
3

2

]

,

[

5

2

]

,−ζ
)

. (41)

The coefficient C(ζ) in the region ζ ∈ (−1,∞) is deter-
mined by a hypergeometric function F and is such that
C(−1) = 0 (the case of source-free theory), C(0) = 2/3
(for isotropic medium), C(∞) = π/2.

τ

Fig. 1. Time evolution of the field energy density split in-
to longitudinal and transverse electric (E) and magnetic (B)
components at rT = 0.1 [fm], η = 0, ϕ = 0. The top panel
corresponds to the free theory with σ0 = 0. The bottom panel
demonstrates the growth of EL and BT at σ0 = 0.25 [fm−2].

Fig. 1 shows how the exponentially growing ener-
gy transferred from hard to soft partons is distributed
among magnetic and electric fields at σ0 6= 0 in com-
parison with the case of free field theory. The dominant
contribution is still in longitudinal electric field (in ac-
cordance with CGC-like initial conditions). Nevertheless,
we see that the transverse magnetic field demonstrates

an unstable behavior too while this effect is absent in the
free theory. Since the particle subsystem gives energy to
the field, the total field energy density (as the sum of
components) tends to grow with time.

Note that a similar model with expanding Abelian field
coupled to the hard partons, when the strict boost invari-
ance of fields is relaxed, has been already developed in
Ref. [28] in the context of the quark-gluon plasma.

V. CONCLUSIONS

Generalizing the space-time evolution of the expanding
Glasma with CGC-like initial conditions by the inclusion
of small density of the hard partons anisotropically dis-
tributed in momentum space, we observe the instabilities
(due to transferring energy from hard to soft partons) in
the case of the abelianized boost-invariant model.

Here we propose to measure an anisotropy by means of
transport coefficients like the conductivity tensor in the
contrast with the usual approach based on the energy-
momentum tensor. As a result, the instabilities in the
system under consideration lead to the conclusion of the
presence of negative color conductivity in A+A collisions.
The sign of conductivity in transverse plane depends on
the angle which speaks of a filamentation inherent to
Weibel instabilities in plasma.

Unfortunately, the approximate solution derived to the
transport equations does not permit us to achieve the
isotropization here. This problem should be investigated
in details and will be published elsewhere.
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APPENDIX A. PROPAGATOR OF TRANSPORT
EQUATION

Here, we would like to discuss in detail the approx-
imation which we have applied previously. To find δf ,
we have to determine operator L̂−1, inverse to the first-
order evolution operator L̂. The inversion procedure of
the evolution operator of transport equation was elabo-
rated by Landau and, generally speaking, results in the
emergence of the Landau damping in plasma.

Let G is the solution of the following equation:

L̂G(τ, θ, rT |τ ′, θ′, r′T ) =
δ(τ−τ ′)

τ
δ(θ−θ′)δ2(rT−r′T ), (42)

where the right hand side is the 4-dimensional δ-function
with respect to the pseudo-cylindric measure τdτdθd2rT .

Without loosing generality, we limit ourselves by the
case, when τ0 → 0, and by using the transverse coordi-
nates rT instead of cylindrical (rT , ϕ).

Using the formulas from Appendix B, G is represented
as
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G(τ, θ, rT |τ ′, θ′, r′T ) = lim
ε→+0

i

(2π)4pT

∫

eiω[τ cosh (ξ−θ)−τ ′ cosh (ξ−θ′)]−ikT (rT −r
′

T
)

kTvT − ω cosh ξ − iε
ω dω dξ d2kT , (43)

where vT ≡ pT /pT and the Landau damping is already
taken into account due to auxiliary formula:

lim
ε→+0

1

x− iε
= P 1

x
+ iπδ(x). (44)

Discarding the spatial dispersion, we have to assume
that kT � ω cosh ξ. It leads to simplification:

G(τ, θ, rT |τ ′, θ′, r′T ) ≈ 1

pT
Θ(τ cosh θ − τ ′ cosh θ′)

×δ(τ sinh θ − τ ′ sinh θ′)δ2(rT − r′T ). (45)

where Θ is Heaviside function defined as Θ(x < 0) = 0,
Θ(x = 0) = 1/2, Θ(x > 0) = 1.

This approximation says that the system is homoge-
neous at significantly large times and the fluctuations are
localized in space.

Furthermore, let the Björken scaling flow, when θ ≈ 0,
take place. It means that θ and θ′ should be equal and
gives us that

G(τ, θ, rT |τ ′, θ′, r′T ) ≈ Θ(τ − τ ′)

pT τ ′ cosh θ′
δ(θ − θ′)δ2(rT − r′T ).

(46)
More precisely, it can be derived from condition,

τ sinh θ = const, resulting in

sinh θ dτ + τ cosh θ dθ = 0, (47)

where dτ = τ − τ ′, dθ = θ − θ′.
Assuming that τ is small and the expression under in-

tegration is not essentially changed at this time range,
we can do the following replacement:

∞
∫

0

dτ ′ Θ(τ − τ ′)F (τ ′) → τF (τ). (48)

Then, one obtains that

∫

G(τ, θ, rT |τ ′, θ′, r′T )F (τ ′, θ′, r′T )τ ′dτ ′dθ′d2r′T ≈

≈ τ

pT cosh θ
F (τ, θ, rT ). (49)

This formula determines the solution of inhomogeneous
transport equation with the source F .

APPENDIX B. INTEGRAL TRANSFORMATION

The Fourier transformation reads

f(t, z) =

∞
∫

−∞

dµdµ′

(2π)2

∞
∫

−∞

f(p, s)eiµ(t−p)−iµ′(z−s)dpds.

Let us introduce new variables:

t = τ cosh θ, z = τ sinh θ,

p = ρ coshψ, s = ρ sinhψ,

µ = λ coshφ, µ′ = λ sinhφ.

If f(t, z) = F (τ, θ), one gets the following transforma-
tion rule:

F̃ (λ, φ) =

∞
∫

−∞

F (ρ, ψ)e−iρλ cosh (φ−ψ)ρ dρ dψ,

F (τ, θ) =
1

(2π)2

∞
∫

−∞

F̃ (λ, φ)eiτλ cosh (φ−θ)λ dλdφ.

For example, we find that

1

τ
δ(∆τ)δ(∆θ) =

1

(2π)2

∞
∫

−∞

eiλ[τ cosh (φ−∆θ)−τ0 coshφ]λdλdφ,

where ∆τ = τ − τ0, ∆θ = θ − θ0.
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ЕВОЛЮЦIЯ ҐЛАЗМИ У ПАРТОННОМУ СЕРЕДОВИЩI

А. В. Назаренко
Iнститут теоретичної фiзики iм. М. М. Боголюбова,

вул. Метрологiчна, 14-б, Київ, 03680, Україна

Ми дослiджуємо сценарiй еволюцiї ґлазми з урахуванням зворотної дiї партонного середовища в ультра-

релятивiстичних зiткненнях важких йонiв. Ми анонсуємо, що таке узагальнення приводить до нестiйкостей

та наявностi вiд’ємної кольорової провiдностi у системi.
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