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We use Monte Carlo simulations to demonstrate that the deviations of the parameters of the
semirelativistic model of collective motion of flat edge-on spiral galaxies are caused by measurement
errors in angular diameters and HI line widths of galaxies. This effect is related to the well-known
Malmquist bias.
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I. INTRODUCTION

At the present time the Universe is essentially inho-
mogeneous on the scales of about 10–100 Mpc. The de-
velopment of initial fluctuations led to an observable
large-scale structure. The regions with increased matter
density provide an additional attraction of surrounding
galaxies. The regions with decreased density, e.g. voids,
also make an input to the collective large-scale motion
of galaxies on the background of Hubble expansion. The
investigation of such motion allows on the one hand to
map the matter density, including dark matter, in the
Local Universe, and on the other hand its parameters
are linked with cosmological parameters.

In 1989 Karachentsev [1] proposed to use flat edge-
on spiral galaxies as a tool for studying their large-scale
collective motion. They are good in this role for the fol-
lowing reasons:

1. The linear diameter is strongly correlated with the
HI linewidth for thin bulgeless galaxies. This allows
to determine distances without photometric data.

2. Flat galaxies can be easily identified by their axial
ratio.

3. Flat galaxies have a nearly 100% HI detection rate.

4. Galaxies in clusters are usually not flat due to the
interaction with neighbours. This means that flat
galaxies avoid clustering and do not interact with
the intergalactic gas in clusters.

5. Peculiar velocities of isolated flat galaxies are not
perturbed by neighbours.

To implement this idea the Flat Galaxy Catalogue
(FGC, [2]) was created. It contained data about 4455
galaxies, which satisfied the conditions ab/bb ≥ 7 and
ab > 0.6′. Here ab and bb are the major and minor axial

diameters directly measured on POSS-I and ESO/SERC
plates. In accordance with the original photographic ma-
terial, the Catalogue consists of two parts: FGC (2573
galaxies) and its southern extension, FGCE (1882 galax-
ies). The first part is based on the POSS-I and covers
the sky region with declinations between −20 deg and
+90deg. The second one is based on the ESO/SERC
and covers the rest of the sky area up to δ = −90 deg.

After thorough studies of the catalogue’s properties,
both these parts were joined. The angular diameters from
the FGCE were converted to the POSS-I system of the
FGC, which appeared to be close to the a25 system. This
system where galaxy size is taken at B = 25 mag/�′′

isophotal level was used, in particular, by deVacouleurs
et al. [3]. Some FGCE galaxies, which did not satisfy the
condition a > 0.6′ after conversion, were removed from
the resulting Revised Flat Galaxy Catalogue (RFGC,
[4]). It contained data about 4236 galaxies including the
information on the following parameters: Right Ascen-
sion and Declination for the epochs J2000.0 and B1950,0,
galactic longitude and latitude, major and minor blue
and red diameters in arcminutes in the POSS-I diame-
ter system, morphological type of the spiral galaxies ac-
cording to the Hubble classification, index of the mean
surface brightness (I — high, IV — very low) and some
other parameters, which are not used in this article. A
more detailed description of the catalogue can be found
in [4].

The original goal of this catalogue was to estimate the
distance to galaxies according to the Tully–Fisher rela-
tionship in the “HI line width — linear diameter” version
without using their redshifts. The difference between the
velocity V derived from the redshift and the Hubble ve-
locity R = Hr corresponding to the distance r estimated
by Tully–Fisher relationship is called a peculiar velocity
Vpec = cz −Hr.

There are some important things to take into account
about peculiar velocities. The redshift includes not on-
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ly the velocity of the galaxy, but also the velocities of
our Galaxy, the Solar System and the Earth. Thus, to
eliminate these factors, all velocities were reduced to the
frame, where CMB is isotropic. Naturally, the redshift
gives us only the radial component of the velocity and
the tangential components cannot be measured. Addi-
tionally, Tully–Fisher relationship is statistical and thus
has a certain error. Hence, we can only estimate the pecu-
liar velocity for each galaxy, sometimes with a significant
error.

However, we believe that there is a large-scale velocity
field. We consider the individual galaxies as test parti-
cles in the velocity field of a large-scale collective motion.
Thus, having data about the peculiar velocities of a large
number of galaxies, we can restore the radial component
of the velocity field. For this reason we need ample sam-
ples of peculiar velocities, preferably uniformly covering
the celestial sphere.

These conditions are satisfied by the RFGC catalogue,
which covers the whole celestial sphere in both hemi-
spheres with the natural exclusion of the Milky Way re-
gion. However, not all of the RFGC galaxies have data re-
quired to estimate the distance to them using the Tully–
Fisher relationship. Nevertheless, the sample of galaxies
having such data is also quite uniform.

To apply the Tully–Fisher relationship the data from
the catalogue is not sufficient; we also need to know the
HI linewidth W (in this article we take it at 50% level),
or the gas rotation velocity Vrot obtained from optical
observations. Additionally, we need redshift data. The
number of galaxies with such data increases constantly.

Since the time when FGC and RFGC were assembled
a number of articles have been published dealing with
collective motions of RFGC galaxies. Very preliminary
results were published by Karachentsev et al. [5]. The
parameters of the bulk motion were calculated by Kara-
chentsev et al. [6]. In [7] not only new data were added,
but also the models featuring the quadrupole and octo-
pole components of the velocity field were proposed. Al-
so, the generalized Tully–Fisher relationship for RFGC
galaxies was finalized. It included data not only about HI
linewidth and angular diameter in red and blue bands,
but also about the morphological type of the galaxy and
its surface brightness index. By that time the authors
had information about radial velocities and HI 21 cm
line widths or Vrot for 1327 RFGC galaxies from differ-
ent sources listed in [6]. From this number, 1271 galaxies
were included in the sample, and the rest of them were
considered to be outliers. As a result, the first list of pe-
culiar velocities of RFGC galaxies was prepared by Kara-
chentsev et al. [8]. Four years later, the number of galax-
ies with available data increased and reached 1561 [9];
1493 of them entered the sample. In this article we will
use this sample.

Analyzing the velocity field of the collective motion by
multipole decomposition we constructed the described
below model of galaxy motion. This model was con-
structed for flat space. However, according to GTR, our
spacetime is curved and even in the case of homoge-
neous isotropic Universe the actual galaxy velocity de-

viates from the simple Hubble law. Considering the next
term of the decomposition in R we obtain

V = R + γR2.

For distances R measured by angular diameters the value
γ can be expressed through the cosmological deceleration
parameter q in the following way, see e. g. [10]:

γ =
3 + q

2c
= 3.98× 10−6 s km−1. (1)

We used the value of q from the standard ΛCDM model

q =
Ωm

2
− ΩΛ = −0.61, (2)

where Ωm and ΩΛ are relative densities of matter includ-
ing dark matter and dark energy, respectively. Numeri-
cal estimations are based on the results of 7-year WMAP
observations [11]. Note that for different methods of de-
termination of distances R, e.g. photometric distances,
the expression for γ will be also different.

In the case when curved space-time contains an in-
homogeneous matter distribution, cosmic flows appear
which must be described in the GTR framework. The
corresponding research was performed by Kudrya and
Alexandrov [12, 13]. It was applied to real data in pa-
per [14]. The results have shown that the value of γ cal-
culated from the peculiar velocities data of RFGC galax-
ies essentially differed from estimation (1). The obtained
value was (−18.4 ± 2.4) × 10−6 s km−1. Note that its
sign is also opposite to that in equation (1). In this ar-
ticle we show a possible reason behind this effect. This
is a purely statistical effect related to Malmquist bias. It
is caused by errors in measurement of angular diameters
and HI line widths. We also use Monte Carlo simulations
to demonstrate that the value obtained by Parnovsky
and Gaydamaka [14] can be explained both qualitatively
and quantitatively.

II. MULTIPOLE MODELS OF COLLECTIVE
MOTION OF GALAXIES

In [7] the velocity field components in the CMB ref-
erence frame were expanded in terms of galaxy’s radial
vector r. The first three terms are

Vi = Di + Aikrk + O′
iklrkrl. (3)

In our notation we use the Einstein rule: summation by
all the repeating indices. Hence, for the radial velocity
V3K in the CMB reference frame we get

V3K = Dini + rAiknink + r2O′
iklninknl, (4)

where n = r/r and r = |r|. Let us decompose the ten-
sor A into two parts: Aik = Hδik + Q′

ik. Here H is a
trace, corresponding to the Hubble constant, δik is the
Kronecker delta, and Q′ is a traceless tensor. Next we
switch from distance r to the corresponding Hubble ve-
locity R = Hr.

V3K = R + Dini + RQiknink + R2Oiklninknl, (5)
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where Q = H−1Q′ and O = H−2O′.
This decomposition was used to obtain some models of

dependence of galaxy’s radial velocity V . In the simplest
D-model (Hubble law + dipole) we have

V3K = R + V dip + δV, V dip = Dini, (6)

where D is a velocity of homogeneous bulk motion, δV
is a random deviation and n is a unit vector towards a
galaxy. After the addition of quadrupole terms we obtain
a DQ-model

V3K = R + V dip + V qua + δV, V qua = RQiknink (7)

with the symmetrical traceless tensor Q describing qua-
drupole components of the velocity field. It characterises
the relative deviation of an effective “Hubble constant”
in a given direction from the mean value. The DQO-
model includes the octopole component of velocity field
described by the symmetrical tensor O of rank 3:

V3K = R + V dip + V qua + V oct + δV,
V oct = R2Oiklninknl.

(8)

In some cases it makes sense to use another way of de-
scribing the octopole component in the DQO-model. For
this purpose the tensor O can be considered a sum of
a traceless tensor Ô, and a trace, characterized by the
vector P

Oijk = Ôijk + P(iδjk), Pi =
3
5
Oijkδjk. (9)

Here the indices in parantheses are symmetrized. Thus
an alternative form of the DQO-model is

V3K = R + (Di + R2Pi)ni + RQiknink

+ R2Ôiklninknl + δV.
(10)

We will use Cartesian components of the vector n in the
galactic coordinates:

n1 = nz = sin b, n2 = nx = cos l cos b,
n3 = ny = sin l cos b.

(11)

These three models were used for processing data on
RFGC galaxies. To estimate the distances to galaxies
a generalized Tully–Fisher relationship was used in the
‘linear diameter — HI line width’ version. It has the
form [7]

R = (C1 + C2B + C3BT + C4U)W
a

+ C5

(
W
a

)2
+ C6

1
a ,

(12)

where W is a corrected HI line width in km s−1 measured
at 50% of the maximum, a is a corrected major galax-
ies’ angular diameter in arcminutes on red POSS and
ESO/SERC reproductions, U is a ratio of major galax-
ies’ angular diameters on red and blue reproductions, T
is a morphological type indicator (T = It − 5.35, where
It is a Hubble type; It = 5 corresponds to type Sc), and
B is a surface brightness indicator (B = ISB − 2, where
ISB is a surface brightness index from RFGC; bright-
ness decreases from I to IV). Details of corrections one

can find in [7, 9]. The reasons for choosing this form of
Tully–Fisher relationship for RFGC galaxies are given
ibid. We only note that the statistical significance of each
term in eq. (12) is greater than 99%.

The D-model has 9 parameters (6 coefficients C and
3 components of vector D), DQ-model has 14 parame-
ters (5 components of tensor Q are added), and DQO-
model is described by 24 coefficients. The values and er-
rors of the coefficients were calculated by the least square
method for different subsamples with distances limita-
tion to make the sample more homogeneous in depth [7].
We used the same weights for all datapoints. Since the
quadrupole and octopole terms explicitly depend on R,
an iteration procedure was used. Note that the coeffi-
cients of the generalised Tully–Fisher relationship and
components of the velocity model were fitted simultane-
ously. The iterations converge rather quickly.

The situation in the curved space is more complex.
It as was shown by Kudrya and Alexandrov [12, 13] the
expression for the velocity should be modified in the fol-
lowing way:

V3K = R + V dip + V qua + V oct + γR2. (13)

Since we moved the terms proportional to R2 into a sep-
arate term we should remove them from the Tully–Fisher
relation:

R = (C1 + C2B + C3BT + C4U)
W

a
+ C5

1
a
, (14)

We also should introduce an additional term to
the octopole component of the velocity: V oct =
R2 (Pini + Oijkninjnk + Sijninj), where Sijninj =
s1(n2

1 − n2
3) + s2(n2

2 − n2
3) + s3n1n2 + s4n1n3 + s5n2n3 is

a symmetric traceless tensor. The dipole and quadrupo-
le components remain the same as in the nonrelativistic
case.

In [12,13] it was shown that the relation

CαβγδV
βV δ =

H2

c2
[−2cSαγ + 6Qαγ

− 3Qε
αQεγ − (VαVγ − gαγQεηQεη)] (15)

must hold. Here Greek indices denote four-dimensional
components, gαβ is a metrical tensor, and Cαβγδ is a
Weyl tensor. The spatial parts of four-dimensional ten-
sors Qαβ and Sαβ coincide with three-dimensional ten-
sors Q and S, and their temporal and mixed parts are
much smaller. The four-dimensional velocity vector can
be assumed equal to (g−1/2

00 , 0, 0, 0). For the homogeneous
isotropic Universe Weyl tensor and tensors S and Q van-
ish. They are connected with spatial inhomogeneities of
the density distribution, e. g. attractors and voids. The
left part of this relation is a sum of inputs of individual
inhomogeneities. For a spherically symmetric attractor
with an excessive mass M at a distance L the spatial
part of the tensor CαβγδV

βV δ after reduction to eige-
naxes receives the form:

CαβγδV
βV δ = ξ

 2 0 0
0 −1 0
0 0 −1

 ,
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where ξ = GM/c2L3.
In [14] the value of this tensor was estimated using ap-

proximate excessive masses and distances to the nearest
attractors. The result was that the S value obtained with
the least squares method exceeds the expected value by
several orders. This is connected with the fact that the
terms containing the tensors Q and S have the same dis-
tribution over the celestial sphere. Due to measurement
errors and deviations from the Tully–Fisher relation the
tensor S “borrows” some of the value of tensor Q. Unfor-
tunately, with the quality and quantity of observational
data at hand we are unable to correctly separate the
inputs of these tensors. Thus, taking into account the
small values of tensor S, the so-called semirelativistic
model was introduced in [14], which differs from the full
relativistic model only by the dropped term with tensor
S. However, in both these models the obtained values
of γ appear to be way off the expected value, namely:
−16.1 ± 2.7 in the relativistic model and −18.4 ± 2.4
in the semirelativistic model. This inconsistence will be
addressed in the next chapters.

III. ESTIMATING THE IMPACT OF
MEASUREMENT ERRORS: A SIMPLE CASE

Before trying to address this problem at its full extent,
let us consider a simple case where an analytical solution
can be provided. Let us start off from introducing a toy
model y = Ax + Bx2, where x = W/a is a main term
of the Tully–Fisher relation (14), y = V , A = C1, and
B = γ0C

2
1 , where γ0 is a true value of γ. This model

corresponds to an isotropic Hubble expansion with cos-
mological acceleration.

Observational data provide us with a set of N points
characterized by values xi and yi. It is important to re-
alize how measurement errors and deviations from the
Tully–Fisher relation distort the dataset. The errors in
velocity measurements and deviations from Tully–Fisher
relation yield errors in y. The values of A and B deter-
mined by the least square method from the dataset with
such errors will have normal distribution of errors with-
out shift. At the same time, errors in measurements of W
or a yield errors in x. This case is often called Malmquist
bias in statistics. It is usually applied to a linear depen-
dence, but the general effects will be the same. Due to
this effect, the perceived values of A and B given by the
least square method will have a systematic error.

Let us consider the following case: we have N values
of xi distributed uniformly over the interval [0, 1] with
a step (N − 1)−1. The values of y are calculated with
A = A0 = 1 and B = B0. In each of N points the
xi is shifted by σξi, where ξi is a normally distributed
quantity with zero mean and unit variance. The differ-
ent values of ξi are not correlated with each other. The
values yi are calculated from the original nondisplaced
values of xi. The values of A and B given by the least

square method have the form

A =

N∑
i=1

yixi

N∑
i=1

x4
i −

N∑
i=1

yix
2
i

N∑
i=1

x3
i

N∑
i=1

x2
i

N∑
i=1

x4
i −

(
N∑

i=1

x3
i

)2 , (16)

B =

N∑
i=1

x2
i yi

N∑
i=1

x2
i −

N∑
i=1

x3
i

N∑
i=1

xiyi

N∑
i=1

x2
i

N∑
i=1

x4
i −

(
N∑

i=1

x3
i

)2 , (17)

x0
i =

i− 1
N − 1

, xi = x0
i + σξi, yi = x0

i + γ0(x0
i )

2. (18)

It is not very difficult to calculate the mean values of A
and B over ξ using the following expressions:

A = A1 + γ0A2, (19)

B = B1 + γ0B2. (20)

Here we designated

A1 =
1 + 40σ2 + 60σ4

1 + 28σ2 + 180σ4 + 720σ6
, (21)

A2 =
28σ2 + 60σ4

1 + 28σ2 + 180σ4 + 720σ6
, (22)

B1 =
−20σ2 + 120σ4

1 + 28σ2 + 180σ4 + 720σ6
, (23)

B2 =
1− 43/3σ2 + 80σ4

1 + 28σ2 + 180σ4 + 720σ6
. (24)

Note that the latter formulae are precise up to O(1/N).
To verify these formulae we calculated A and B for this
toy model using 10000 Monte Carlo simulations. The
mean values perfectly fitted the given formulae (see Fig-
ure 1).

0 0.2 0.4 0.6 0.8 1

-0.4

0

0.4

0.8

1.2

A1

B1

A2

B2

Fig. 1. Dependence of coefficients of equations (19) and
(20) on the noise level.
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Fig. 2. Dependence of least squares estimation of γ on the
noise level for different values of γ0. The values of γ0 equal to
values of γ at σ = 0.

If we calculate γ using the formula γ = B/A2, we will
obtain instead of the true value γ0 a value γ, plotted on
Figure 2 against σ for different γ0. At σ = 0, i.e. when
there are no errors, we obtain γ = γ0, but at small σ we
obtain γ < γ0. This is the impact of the measurement
errors we demonstrate.

IV. ESTIMATING THE IMPACT OF
MEASUREMENT ERRORS: A REAL CASE

The actual case is much more complicated. The prob-
lem cannot be reduced to the one-dimensional case since
the galaxy’s velocity depends on its position on the celes-
tial sphere. To estimate the distance we use all the terms
in relation (14). The errors in the determination of dis-
tances are non-Gaussian. They are due to errors in an-
gular diameters and HI line widths and deviations from
the Tully–Fisher relation. These errors were analyzed in
paper [15]. Here we will briefly mention the main results
of this analysis. These errors can be described by four
parameters:

Vi = V
(0)
i (1 + sV ξ1), (25)

Wi = W
(0)
i (1 + sW ξ2), (26)

ai = a
(0)
i (1 + saξ3) + ∆aξ4. (27)

Here ξ1, ξ2, ξ3, and ξ4 are the four independent non-
correlating random values. They are distributed accord-
ing to Gauss law with zero mean and unit variance.

Let us describe what errors correspond to each type
of noise. The noise (25) describes the deviations from
the Tully–Fisher relationship. It does not include veloc-
ity measurement error because radial velocities are well

determined, as well as the directions towards galaxies.
Such a type of noise provides a conventional log-normal
distribution of the velocity deviation. If this noise is used
alone, the maximal value of sV can be assumed about
0.2, which corresponds to 20% uncertainty of distance
estimated by the Tully–Fisher relation.

The noise (26) corresponds to HI line width measure-
ment errors. Different methods of calculating HI half-
width of the same profile can differ by up to 10%. Thus,
if this noise is used alone, the maximal value of sW can
be set to 0.15 with some tolerance.

The noise (27) describes angular diameter measure-
ment errors. The value sa describes a relative error
caused by variations of exposition, curvature of galax-
ies, etc. The diameter measurements have an accuracy
of not more than 5–10% (Karachentseva, private com-
munication). The value ∆a describes an absolute error
of measurement. This value is important for the smallest
galaxies. Since these diameters were measured in tenths
of millimetre, which corresponded to 0.11 arcmin, the
maximal value of ∆a can be estimated between 0.05 and
0.1. Note that if we use non-zero values of sa and ∆a

simultaneously, the maximum estimation of ∆a should
be somewhat reduced to avoid overestimating the noise
added to angular diameters for the smallest galaxies.

Naturally, such a difficult problem of determining the
shift of γ cannot be solved analytically. We use Monte
Carlo simulations to resolve it numerically. Let us de-
scribe the details of this procedure.

We use some sample of galaxies. In our case this is a
subsample of N = 1357 galaxies, whose distance in the
nonrelativistic D-model is less than 100h−1Mpc. For each
of the galaxies we substitute the measured radial veloci-
ty with the radial velocity calculated using the formulae
(13, 14, 6, 7, 8). We use the values given by equations
(1) and (2).

After that we add noise to our model and for each
of 10000 simulations we calculate the coefficients in the
same way as we treat actual data, i. e. using the semirela-
tivistic DQO-model. Thus, for each realisation we obtain
a complete set of the coefficients including γ. For the ob-
tained values of γ we calculate the mean and the stan-
dard deviation. Taking into account that the distribution
of γ is non-Gaussian, its quantiles differ from the ones
calculated from the normal distribution. In this article
we give errors corresponding to the 99% confidence lev-
el. Application of Monte Carlo method allows to do this
in a straightforward way. From 10000 values of γ for dif-
ferent realizations we find the 50th largest and smallest
values. They give us the boundaries of the 99% confi-
dence interval.

In principle, we can apply this procedure to any mock
catalogue. However, we should use a catalogue that has
the same spatial distribution as well as a distribution of
morphological types, surface brightness index, etc. as the
main sample. The best mock catalogue is thus the sample
itself. We use as a result the sample of actually measured
parameters, namely angular diameter, surface brightness
index, Hubble type, HI line width, ratio of angular diam-
eters in red and blue imprints, and celestial coordinates.
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The radial velocity is calculated from formulae (13, 14)
with the coefficients obtained from the real sample. The-
oretically, we could use distances to galaxies calculated
with the coefficients of the semirelativistic model by Par-
novsky and Gaydamaka [14], but we use a more refined
procedure.

At first we calculated the coefficients for the semirela-
tivistic model using real data while fixing the value of γ
at γ0. Then we used this set of coefficients to calculate
“radial velocities” for the galaxies. Such “radial veloci-
ties” are closer to the actual radial velocities than for
any other models with fixed γ.

The values obtained using the Monte Carlo method for
different parameters of the noise are given in Table 1. The
top part of Table 1 illustrates the impact of each individ-
ual type of noise. One can see that the γ value acts in the
same way as in the simple case considered in the previous
section. The noise sV , corresponding to the deviations
from the statistical Tully–Fisher relation has little or no
effect on the value of γ. All other types of noise lead to a
drastic reduction of γ, especially the noise ∆a. The bot-
tom part of Table 1 contains the results obtained with
realistic noise parameters. When choosing parameters we

used as a control parameter the σ value for the noised
sample, comparing it to the value σ = 1125 km s−1 for
real data. This parameter is convenient because it van-
ishes in the absence of the noise and grows when the
noise increases. Thus, it can help avoiding undernoising
and overnoising. Other constraints used and details of
the procedure are described in [15]. Naturally, we do not
try to find a unique set of noise parameters. The four
noise values form a four-dimensional parameter space,
the σ constraint yields a three-dimensional hypersurface
in it. Other constraints give us rough estimates of the
boundaries of the volume of suitable values.

One can see from Table 1 that for a set of parameters
lying inside or close to those boundaries, the value of γ
is much less than the initial value γ0. Comparing these
values with the value γ = (−18.4±2.4)×10−6 s km−1 ob-
tained by Parnovsky and Gaydamaka [14] from the real
data, we can select a range of suitable noise parameters.
For many realistic noise parameters the value of γ falls
into the 1σ area, and for most of them it falls into 99%
confidence area. In those cases when γ misses the 99%
confidence area, the value of ∆a is unrealistically large.

γ, 10−6 s km−1

sV sW sa ∆a σ, km s−1

〈γ〉 ± σγ
99% CL
min max

0.05 0.00 0.00 0.00 282±7 4.0±1.2 1.0 7.3
0.10 0.00 0.00 0.00 564±14 4.1±2.5 −1.9 10.8
0.15 0.00 0.00 0.00 845±22 4.2±3.7 −4.5 14.4
0.20 0.00 0.00 0.00 1127±29 4.4±5.1 −7.2 19.3
0.00 0.05 0.00 0.00 306±8 −0.1±1.2 −2.8 3.1
0.00 0.10 0.00 0.00 584±14 −8.1±1.5 −11.7 −3.9
0.00 0.15 0.00 0.00 821±20 −14.9±1.4 −18.0 −11.0
0.00 0.20 0.00 0.00 1021±24 −19.3±1.2 −22.0 −15.9
0.00 0.00 0.05 0.00 278±7 −1.7±1.1 −4.4 1.0
0.00 0.00 0.10 0.00 534±13 −13.2±1.2 −16.2 −9.7
0.00 0.00 0.15 0.00 753±18 −22.1±0.9 −24.3 −19.6
0.00 0.00 0.20 0.00 947±24 −26.2±1.0 −28.1 −22.3
0.00 0.00 0.00 0.05 368±12 −7.4±1.4 −11.0 −3.6
0.00 0.00 0.00 0.10 662±20 −20.6±1.3 −23.4 −15.3

0.10 0.15 0.05 0.05 1063±25 −20.5±1.4 −23.8 −16.6
0.10 0.20 0.05 0.05 1217±28 −23.1±1.2 −26.0 −19.6
0.10 0.15 0.07 0.07 1116±26 −23.4±1.1 −26.0 −20.2
0.12 0.15 0.05 0.05 1127±27 −20.5±1.5 −24.1 −16.2
0.15 0.12 0.05 0.05 1155±28 −18.3±2.0 −22.9 −12.7
0.13 0.15 0.05 0.03 1138±27 −18.4±1.8 −22.7 −13.1
0.17 0.10 0.05 0.03 1166±28 −13.5±2.6 −19.6 −5.7

Table 1. Results of Monte Carlo simulations.
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V. CONCLUSION

We demonstrated that the deviation of the parameter
γ from the parameter γ0 = 3.98× 10−6 s km−1 following
from the cosmological parameters can be explained both
qualitatively and quantitatively by measurement errors
in angular diameters and HI line widths of galaxies. From
the statistical point of view, this effect is related to the
Malmquist bias. However, since this particular case is too
complex to be treated analytically we used Monte Carlo

to demonstrate this.
Additionally, according to equation (13), the shift of γ

will lead to the overestimation of radial distances to the
galaxies by 18% for the noise with sV = 0.13, sW = 0.15,
sa = 0.05 and ∆a = 0.03.
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ВПЛИВ ПОХИБОК ВИМIРЮВАННЯ НА ПАРАМЕТР КОСМОЛОГIЧНОГО
УПОВIЛЬНЕННЯ, ОТРИМАНОГО В НАПIВРЕЛЯТИВIСТСЬКIЙ МОДЕЛI

КОЛЕКТИВНИХ РУХIВ ГАЛАКТИК
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вул. Обсерваторна, 3а, Київ, 04053, Україна

2Iнститут космiчних дослiджень НАНУ i НКАУ,
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За допомогою методу Монте-Карло ми демонструємо, що вiдхилення параметрiв напiврелятивiстської
моделi колективних рухiв пласких спiральних галактик, видимих iз ребра, викликанi похибками вимiрю-
вання кутових дiаметрiв та ширин лiнiї HI галактик. Цей ефект спорiднений iз добре вiдомим статистичним
ефектом Малмквiста.
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