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Two modified versions of the dipole model with a pair of mediating fields are considered. In the
first version, the modification affects the Yukawa term in the Lagrangian. In the second version a
non-linear self-action term is added. By constructing exact solutions of the field equations with the
use of a covariant Green function we derive a Lagrangian with many-point time-nonlocal interaction
terms. For the linear dipole model the two-particle interaction, in the non-relativistic limit, is shown
to be a sum of Coulomb and linear confinement terms. For the nonlinear ϕ3–model the interactions
are shown to include pairwise potentials and also three-particle cluster potentials with a logarithmic
confinement. The approaches towards a consistent relativistic treatment of the models are proposed,
and the problem of divergences is discussed.
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I. INTRODUCTION

Substantiation of confinement in QCD, both via nu-
merical simulations [1, 2] and especially via analytical
calculations [2], remains a challenging task. The study of
simpler field-theoretical models that simulate the char-
acteristic features of confinement remains relevant and
may be useful in further investigations. The examples
of such simpler models are higher derivative models and
dipole models.

In the middle of the 70s a rather simple higher deriva-
tive model [3] and a closely related dipole model [4] were
proposed as a phenomenological theory of quark binding
in hadrons. Subsequently, the non-Abelian version of the
theory was introduced [5]. These models indicate 1/k4

infrared asymptotics of the “gluon” propagator, and thus
a linear interaction potential, even at the classical level.
Unfortunately, the short-range (ultraviolet) behavior of
the interaction in these models is the same, in contradic-
tion to the 1/k2 Coulomb-like behavior of QCD. It is of
interest to modify the aforementioned models so as to ad-
just their properties to conform with realistic interquark
interactions.

In this paper we will analyze the interactions that
arise from particular generalizations of the dipole mod-
el [4]. For simplicity we consider the scalar version of the
model. We modify the Yukawa term in the Lagrangian
in order to take into account Coulomb-like interaction
in addition to the confinement one. Another modifi-
cation we shall consider involves the inclusion of non-
linear self-action terms in the mediating-field sector of
the Lagrangian. As an example we shall consider the
ϕ3-nonlinearity. We show that, in the nonrelativistic ap-
proximation, this model generates a two-particle interac-
tion and three-particle cluster interaction, both with the

logarithmic-type confinement. This requires regulariza-
tion of the three-point interaction potential in the static
limit.

Two possible ways of the relativistic treatment of the
models are considered. One is based on the classically
oriented formalism of the Fokker-type action integrals.
Another is a quantized field theory supplemented with
the variational method. The problem of divergences of
the relativistic interaction kernels and their regulariza-
tion is discussed.

II. THE NONLOCAL LAGRANGIAN FROM A
SCALAR NONLINEAR DIPOLE MODEL

We proceed from the classical action integral

I =
∫

d4xL(x) (2.1)

over Minkowski space (x ∈ M4) with the Lagrangian
density (~ = c = 1)

L = Lfree + LY + ∂µχ∂
µϕ− V(ϕ), (2.2)

Here Lfree is the Lagrangian describing free matter. We
do not need to specify it at this point (specific forms will
be presented in Sections 6 and 7). The χ(x) and ϕ(x) are
real massless scalar fields. The Yukawa term

LY = −ρχ (2.3)

describes the interaction of the matter with the field
χ(x); ρ is the scalar charge density of the matter. Lastly,
the potential V(ϕ) describes the self-interaction of the ϕ
field; it can be chosen arbitrary.

The stationary property of the action (2.1)–(2.3), i. e.
δI(x) = 0, determines the dynamics of the system. Thus,
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varying the action with respect to the mediating fields
χ and ϕ leads to the coupled set of the Euler-Lagrange
equations:

�ϕ = −ρ, (2.4)
�χ = −V ′(ϕ). (2.5)

They possess the exact formal solution:

ϕ = −D ∗ ρ, (2.6)
χ = −D ∗ V ′(ϕ), (2.7)

where “∗” denotes the convolution [D ∗ ρ] (x) ≡∫
d4x ′D(x−x′)ρ(x′) and D(x) is a Green function of the

d’Alembert equation. The arbitrary solution of the ho-
mogeneous d’Alembert equation is omitted because the
free χ and ϕ fields play no role in the investigation con-
sidered here.

Since the mediating fields are real, we must use a real
Green function of the d’Alembert equation. The choice

Dη(x) =
1
4π

[1 + η sgnx0]δ(x2), η = ±1, 0 (2.8)

corresponds to the retarded (if η = +1), the advanced
(if η = −1) or the symmetric (if η = 0) Green function;
here x2 ≡ xµx

µ = ηµνx
µxν and the time-like Minkowski

metric ‖ηµν‖ = diag(+,−,−,−) is used. We note some
useful properties of the Green functions (2.8):

Dη(−x) = −D−η(x), η = ±1;
D0(−x) = D0(x) = 1

2
[D+(x) +D−(x)]. (2.9)

The solutions (2.6)-(2.7) can be substituted into the
Lagrangian (2.2). The result is

L̄ = Lfree + Lint ' Lfree − V(−D ∗ ρ), (2.10)

where ' denotes equality modulo surface terms. This
partially reduced Lagrangian depends only on the mat-
ter variables and it is non-local in space-time.

III. A LINEAR DIPOLE MODEL

The choice

V(ϕ) = 1
2
κ2 ϕ2, (3.1)

where κ is an interaction constant with the dimension of
mass, corresponds to the linear dipole model [6] (see al-
so [4] where an original vector version of the linear dipole
model was proposed). The interaction term of the action
I =

∫
d4x L̄ with the Lagrangian density (2.10) and (3.1)

implies a 2-fold integration over Minkowski space:

I
(2)
int = 1

2
κ2

∫ ∫
d4xd4x′ ρ(x)G(x− x′) ρ(x′). (3.2)

The Poincaré-invariant kernel of this integral is con-
structed by convolutions of two Green functions of
d’Alembert’s equation, Dξ ∗ Dη (ξ, η = ±), and an ar-
bitrary additive constant. The only choice that avoids
divergences in (3.2) is [6]

G(x) =
1
2

[D+ ∗D+ +D− ∗D−] (x)− 1
16π

=
1

16π
[θ(x2)− 1] = − 1

16π
θ(−x2). (3.3)

Note that G(x) = G(−x) is symmetric by construction.
In order to have some understanding of the properties

of the interactions described by the non-local term (3.2)
it is useful to derive a static potential, i. e., a potential of
interaction between motionless point-like particles. For
this purpose we take the source to be a static system of
N point-like particles:

ρ(x) = ρ(t,x) =
N∑

a=1

ga δ(x− xa), (3.4)

where xa (a = 1, N) is the position of the a-th particle
and ga is its scalar charge. In this case we obtain:

I
(2)
int = 1

2
κ2

N∑
a=1

N∑
b=1

gagb

∫
dt

∫
d3x

∫
d3x ′δ(x− xa)δ(x′ − xb)

∫
dt′G(x− x′) ≡ −

∑ ∑
a < b

∫
dt V (xa − xb). (3.5)

It is obvious that the function

V (xa − xb) = −κ2gagb

∫
dt′G(t′,xa−xb) =

κ2gagb

8π
|xa − xb| (3.6)

is a static linearly confining potential.

The above dipole model does not include short-range
Coulomb-like interactions, as would arise in realistic de-
scriptions of inter-quark forces. Such a Coulombic inter-
action can be easily generated by modifying the Yukawa
term (2.3) in the Lagrangian (2.2) as follows:

LY → L̃Y = −ρ (χ+ 1
2
ϕ). (3.7)

As in the case of Eqs. (2.4)–(2.5), the modified field equa-
tions are easily solvable, and the corresponding reduced
Lagrangian has the form:

L̄ = Lfree + 1
2
ρD ∗ ρ+ V(−D ∗ ρ). (3.8)

For the present ϕ2-interaction case, Eq. (3.1), the action
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integral (3.2) with (3.3) modifies to the form

I
(2)
int = 1

2

∫ ∫
d4xd4x′ ρ(x){κ2G(x−x′)−D0(x−x′)}ρ(x′),

(3.9)
which leads, in the static limit, to the “funnel” (or “Cor-
nell”) two-particle potential:

V (x1 − x2) =
gagb

4π

{
κ2

2
|x1 − x2| −

1
|x1 − x2|

}
. (3.10)

We note that the static potentials (3.6) and (3.10) ac-
tually correspond to a non-relativistic (i.e., slow motion)
approximation of an interaction in a system of point-like
particles. Indeed, let us regard the particle positions in
(3.4) as slowly varying functions of t: xa = xa(t), such
that va ≡ |dxa /dt | � 1. In this case the expression
(3.4) is approximately equal to the manifestly covariant

charge density (6.2) considered in Section 6. Accordingly,
equality (3.5) holds approximately, up to negligibly small
(quasi-relativistic) corrections ∝ v2

a. Thus these static
potentials are appropriate for use in non-relativistic po-
tential models of hadrons. This topic will be discussed in
Section 5.

IV. THE ϕ3–NONLINEAR DIPOLE MODEL

The simplest non-linear version of the dipole model is
that with a cubic self-action potential:

V(ϕ) = 1
3
κϕ3, (4.1)

where κ is an interaction constant with the dimensions
of mass. Then, the corresponding interaction term in the
non-local action integral has the form:

I
(3)
int = 1

3
κ

∫∫∫∫
d4xd4x ′d4x ′′d4x ′′′D(x− x′)D(x− x′′)D(x− x′′′)ρ(x′)ρ(x′′)ρ(x′′′)

≡ 1
3
κ

∫∫∫
d4x ′d4x ′′d4x ′′′F (x′, x′′, x′′′)ρ(x′)ρ(x′′)ρ(x′′′). (4.2)

This expression is rather symbolic until the choice of
Green functions D (and thus the kernel F ) is specified.
To this end, let us consider the convolution of three ar-
bitrary chosen Green functions:

Fξηζ(x1, x2, x3) =
∫

d4z Dξ(z−x1)Dη(z−x2)Dζ(z−x3).

(4.3)
This function possesses the following formal properties:

1. translational invariance:
Fξηζ(x1+λ, x2+λ, x3+λ) = Fξηζ(x1, x2, x3), where
λ ∈ M4;

2. Lorentz invariance:
Fξηζ(Λx1,Λx2,Λx3) = Fξηζ(x1, x2, x3), where Λ ∈
SO(1, 3);

3. inversional property:
Fξηζ(−x1,−x2,−x3) = F−ξ−η−ζ(x1, x2, x3).

4. permutational properties:
Fηξζ(x2, x1, x3) = Fζξη(x3, x1, x2) = · · ·
= Fξηζ(x1, x2, x3);

It follows from property 1 that function (4.3) actually
depends on two linearly independent 4-vector arguments
only; for example,

Fξηζ(x1, x2, x3) ≡ Fξηζ(x1−x3, x2−x3). (4.4)

In addition, because of properties 3 and 4, all possible
functions Fξηζ can be expressed, in terms of only two
functions F−++ and F+++. These functions are calcu-
lated in the Appendix with the use of property 2:

F−++(u, v) =
θ(u0)θ(u2)θ(−v2)θ[−(u−v)2]

2(4π)2
√

(u · v)2 − u2v2
, (4.5)

F+++(u, v) =
{
∞, if u & v are space-like
0 otherwise

(4.6)

The function F+++ is divergent, hence only the function
F−++ can be used in the action integral (4.2).

Since the kernel F (x1, x2, x3) of the action integral
(4.2) is completely symmetric by construction, it must be
the inversion invariant (cf. property 3). The only choice
that ensures this property is:

F (x1, x2, x3) =
1
6
[
F−++(x1, x2, x3) + F−++(x2, x1, x3) + F−++(x3, x1, x2) + F−++(−x1,−x2,−x3)

+ F−++(−x2,−x1,−x3) + F−++(−x3,−x1,−x2)
]

(4.7)
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In the static approximation the choice of the Green
function is not important and need not be specified ex-
plicitly. In this case we have

I
(3)
int = 1

3
κ

∫
dt′

∫
d3x ′

∫
d3x ′′

∫
d3x ′′′ρ(x′)ρ(x′′)ρ(x′′′)

×
∫

dt′′
∫

dt′′′
∫

d4xD(x− x′)D(x− x′′)D(x− x′′′)

= − κ

3(4π)3

∫
dt

∫
d3x ′

∫
d3x ′′

∫
d3x ′′′ρ(x′)ρ(x′′)ρ(x′′′)

× U(x′,x′′,x′′′), (4.8)

where the kernel

U(x1,x2,x3) = −
∫

d3z

|z − x1||z − x2||z − x3|
(4.9)

has the structure (modulo a constant factor) of a three-
particle interaction potential.

The integral in r.h.s. of (4.9) is a divergent quantity
and thus it may seem to be meaningless. However, the
gradients ∂U(x1,x2,x3)/∂xa (a = 1, 2, 3) which deter-
mine the forces in the classical background of this prob-
lem, are well defined and finite. Thus the “function"(4.9)
can be presented in the form

U(x1,x2,x3) = Ũ(x1,x2,x3) + U0 (4.10)

where Ũ(x1,x2,x3) is a regular (finite) function and U0

is a physically unimportant infinite negative constant (in-
dependent of the variables x1, x2, x3).

In order to perform this replacement and calculate Ũ
explicitly, let us first list some general symmetry proper-
ties of integral (4.9) (which are related to properties of
the kernel F (4.7)):

1. translational invariance:
U(x1+λ,x2+λ,x3+λ) = U(x1,x2,x3), where
λ ∈ R3;

2. rotational invariance:
U(Rx1,Rx2,Rx3) = U(x1,x2,x3), where R ∈
SO(3);

3. inversional invariance: U(−x1,−x2,−x3) =
U(x1,x2,x3).

4. permutational invariance:
U(x2,x1,x3) = U(x1,x3,x2) = U(x1,x2,x3);

These properties are fundamental symmetries inherent
to any interaction potential of a closed (nonrelativis-
tic) system of three particles with identical interaction
properties. Thus the regularized potential must possess
these properties with necessity. As a consequence, the po-
tential Ũ(x1,x2,x3) actually depends only on the three
inter-point distances x12, x13, x23, where xab = |xab| ≡
|xa − xb|.

In an earlier paper [7] a representation of function (4.9)
was given in which its dependence on the inter pair dis-
tances is manifest. This representation simplifies consid-
erably the regularization and evaluation of U . It is based
on an application of the well known formula:

1
r

=
1√
π

∫ ∞

−∞
dk e−k2r2

to each Coulomb-like factor of the integrand of the ex-
pression (4.9), which thereby takes the form of the 6-fold
integral

∫
d3k

∫
d3z . . . The integrand is Gaussian with

respect to the variable z and thus the integration can be
carried out easily. As a result, the dependence of the po-
tential U(x12, x23, x13) on the three inter pair distances
xab becomes apparent.

The potential difference:

U(x12, x23, x13)− U(y12, y23, y13)

= Ũ(x12, x23, x13)− Ũ(y12, y23, y13) (4.11)

must be finite since infinite constants U0 (see (4.10)) from
the first and second terms of (4.11) mutually cancel out.
The l.h.s. of (4.11) can be calculated explicitly and the
result reduced to a quadrature [7]:

Ũ(x1,x2,x3) ≡ Ũ(x12, x23, x13) = 4π ln
x13 + x23

4a
+ I(α, β), (4.12)

where

I(α, β) = 4

1∫
−1

ds√
(s+ α)2 + β2

arctan

√
(s + α)2 + β2

1− s2
, (4.13)

α =
x2

13 − x2
23

x2
12

, β2 =
[(x13 + x23)2 − x2

12][x
2
12 − (x13 − x23)2]

x4
12

, (4.14)

and a is an arbitrary constant with dimensions of length.
We note that the interparticle distances must satisfy the
triangle inequalities: x13 + x23 ≥ x12, x23 + x12 ≥ x13

and x12 + x13 ≥ x23.

The regularized potential (4.12)–(4.14) possesses all
properties ennumerated above, including the permuta-
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tional invariance (although implicitly). In addition, it
obeys the following:

5. scaling property: Ũ(λx1, λx2, λx3) =
Ũ(x1,x2,x3) + 4π lnλ, where λ ∈ R+.

In a particular case when the points x1, x2 and x3 lie
on a straight line the integral (4.13) can be calculated
analytically:

Ũ(x12, x23, x13) = 4π ln
x>

2a
, (4.15)

where x> = max(x12, x23, x13).

This case includes configurations where two of three
points coincide, say, x1 = x3; i.e., x13 = 0, and x> =
x12 = x23 in r.h.s. of (4.15).

~
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Figure 1: The potential Ũ(a,−a, r) as a function of r = {x, y, z}; ρ =
√

x2 + y2;
a = |a|. The function is symmetric under the inversion z → −z and rotation
around 0z. In particular, Ũ = 4πθ(|z| − a) ln 1

2
(|z|/a + 1) if ρ = 0.

5 APPLICATION TONON-RELATIVISTIC PO-
TENTIAL MODELS

Generalized dipole models may have application to the spectroscopy of hadrons.
The funnel potential with linearly rising long-range interaction (3.10), which we
derived here from the ϕ2–model, has been used successfully in potential models
of heavy mesons; see [8] and refs. therein. The funnel potential has also been
applied successfully to the description of baryons [9]. Due to the linearity of
the ϕ2–model, the three-particle interaction in this case is a superposition of
pair-wise potentials.

The ϕ3–nonlinear dipole model reveals a different character of confinement.
Let us derive two- and three-particle interaction potentials for this model in the
non-relativistic approximation. To this end we insert the point-like density (3.4)
into the action (4.8) (with the regularized kernel Ũ) and represent the latter in
the form:

I
(3)
int = −

∫
dt V (5.1)

9

Fig. 1. The potential Ũ(a,−a, r) as a function of
r = {x, y, z}; ρ =

p
x2 + y2; a = |a|. The function is sym-

metric under the inversion z → −z and rotation around 0z.
In particular, Ũ = 4πθ(|z| − a) ln 1

2
(|z|/a + 1) if ρ = 0.

Another analytically solvable case is that of equidis-
tant separations x12 = x23 = x13 = r, for which

Ũ(r) = 4π ln
r

a
+ c1, (4.16)

where a is any convenient unit of length and c1 is a (phys-
ically irrelevant) constant.

In the general case, a numerical integration of (4.13)
is required. We illustrate the behavior of the potential in
Figure 1 for the particular case x1 = a, x2 = −a as a
function of x3 = r. The value of potential for an arbi-
trary configuration can be obtained from this using the
symmetry properties 1–5.

In the case when one of the points is far from the oth-
ers equality (4.15) is valid asymptotically. Thus the reg-
ularized potential reveals logarithmic confinement prop-
erties.

V. THE APPLICATION TO NON-RELATIVISTIC
POTENTIAL MODELS

Generalized dipole models may have an application to
the spectroscopy of hadrons. The funnel potential with
a linearly rising long-range interaction (3.10), which we
derived here from the ϕ2-model, has been used success-
fully in potential models of heavy mesons; see [8] and
refs. therein. The funnel potential has also been applied
successfully to the description of baryons [9]. Due to the
linearity of the ϕ2-model, the three-particle interaction
in this case is a superposition of pair-wise potentials.

The ϕ3-nonlinear dipole model reveals a different char-
acter of confinement. Let us derive two- and three-
particle interaction potentials for this model in the non-
relativistic approximation. To this end we insert the
point-like density (3.4) into action (4.8) (with the reg-
ularized kernel Ũ) and represent the latter in the form:

I
(3)
int = −

∫
dt V (5.1)

where

V =
κ

3(4π)3
∑

a

∑
b

∑
c

gagbgc Ũ(xab, xbc, xca) (5.2)

=
κ

3(4π)3

{∑
a

g3
aŨ(0, 0, 0) + 3

∑ ∑
a < b

gagb(ga+gb) Ũ(xab, xab, 0) + 6
∑ ∑ ∑

a < b < c

gagbgc Ũ(xab, xbc, xca)

}
.

The terms containing the infinite constant Ũ(0, 0, 0) cor-
respond to self-interaction energy and should be omit-
ted. The pairwise terms contribute the two-body poten-
tial which, taking account of eq. (4.15) and the remark
following this equation, takes the form:

V (x1 − x2) =
κg1g2(g1+g2)

(4π)2
ln
x12

2a
. (5.3)

The logarithmic funnel-shaped potential is qualitatively
similar to the potential (3.10); see Figure 2. It is also
used in potential models of mesons [8].

In the three-body potential, the cluster term
Ũ(x1,x2,x3), eqs. (4.12)–(4.14), arises along with the
pairwise terms:
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V (x1,x2,x3) =
κ

(4π)2
{
g1g2(g1+g2) ln

x12

2a
+ g2g3(g2+g3) ln

x23

2a
+ g3g1(g3+g1) ln

x31

2a

}
+

2κg1g2g3
(4π)3

Ũ(x1,x2,x3).

(5.4)

where

V =
κ

3(4π)3
∑

a

∑

b

∑
c

gagbgc Ũ(xab, xbc, xca)

=
κ

3(4π)3

{∑
a

g3
aŨ(0, 0, 0) + 3

∑∑

a < b

gagb(ga+gb) Ũ(xab, xab, 0)

+ 6
∑ ∑∑

a < b < c

gagbgc Ũ(xab, xbc, xca)

}
. (5.2)

Terms containing the infinite constant Ũ(0, 0, 0) correspond to self-interaction
energy and should be omitted. The pairwise terms contribute the two-body
potential which, taking account of eq. (4.15) and the remark following this
equation, takes the form:

V (x1 − x2) =
κg1g2(g1+g2)

(4π)2
ln

x12

2a
. (5.3)

The logarithmic funnel-shaped potential is qualitatively similar to the potential
(3.10); see Figure 2. It is also used in potential models of mesons [8].

r2 ln
 1r -   /r

U

r

–4

–3

–2

–1

0

1

2

0.5 1 1.5 2 2.5 3

Figure 2: Comparison of the Cornell and logarithmic potentials.

In the three-body potential, the cluster term Ũ(x1,x2, x3), eqs. (4.12)-
(4.14), arises along with the pairwise terms:

V (x1, x2, x3) =
κ

(4π)2
{

g1g2(g1+g2) ln
x12

2a
+ g2g3(g2+g3) ln

x23

2a

+ g3g1(g3+g1) ln
x31

2a

}
+

2κg1g2g3

(4π)3
Ũ(x1, x2, x3). (5.4)

The breaking of the superposition principle is caused by the nonlinearity of the
model.

10

Fig. 2. Comparison of the Cornell and logarithmic poten-
tials.

The breaking of the superposition principle is caused by
the nonlinearity of the model.

The use of logarithmic funnel potentials in phe-
nomenological models of hadrons has some advantages.
For example, in the two-particle problem with such a po-
tential, the differences between energy levels do not de-
pend on rest masses of the particles, and such behaviour
is observed experimentally [8].

The study of properties of three-particle systems in
models with logarithmically rising potential requires the
solution and analysis of the three-body Schrödinger
equation. This is a challenging task, which will not be
undertaken in the present work.

VI. A RELATIVISTIC TREATMENT: THE
FOKKER-TYPE FORMALISM

The non-relativistic treatment of the dipole models re-
vealed their confinement properties. Now we return to a
more consistent relativistic description which, up to this
point, is not as yet complete. We need to specify a dy-
namics of the matter subsystem of the models. This can
be done in several ways. In the present work, we consid-
er two distinct approaches; one is classical-oriented and
the other is a QFT approach. Both give rise to some
difficulties, which we outline briefly.

Within the classical framework, matter is considered
to be a system of N point-like particles. It is character-
ized by the following free-particle Lagrangian and charge
density:

Lfree(x) = −
∑

a

ma

∫
dsa δ(x− za(τa)); (6.1)

ρ(x) =
∑

a

ga

∫
dsa δ(x− za(τa)). (6.2)

Here ma and ga are the rest mass and the charge of the
a-th particle; zµ

a (τa) (µ = 0, 3, a = 1, N) are the co-
variant coordinates of the world line of the a-th particle,
parameterized by an arbitrary evolution parameter τa
(the proper time sa is used frequently); dsa ≡

√
ż2
a dτa;

żµ
a (τa) ≡ dzµ

a/dτa.
The substitution of (6.1) into action (2.1), and of (6.2)

into action (3.2) of the modified linear dipole model leads
to the Fokker-type action integral [10,11]:

I = Ifree + I
(2)
int ≡ −

∑
a

ma

∫
dsa (6.3)

+
∑ ∑

a < b

gagb

∫ ∫
dsa dsb

{
κ2G(zab)−D0(zab)

}
,

where zµ
ab ≡ zµ

a (τa) − zµ
b (τb). This expression is well-

defined and regular by provided that, in the second (dou-
ble) integral, the divergent self-interaction terms corre-
sponding to coincident particle indices a = b are removed
from the sum.

The variation of the particle variables zµ
a (τa) in action

(6.3) gives rise to integro-differential equations of motion
which complicate greatly the analysis of the model, even
in the simplest two-particle case. The transition to the
Hamiltonian formalism and quantization cannot be per-
formed directly. Similar two-particle Fokker-type mod-
els and some approximation methods appropriate for the
Hamiltonian description, and the quantization of those
and the present models are considered in [12–16].

In the case of the ϕ3-nonlinear model action (4.2) is
given by the three-fold Fokker integral:

I
(3)
int = 1

3
κ

∑
a

∑
b

∑
c

8
gagbgc

∫∫∫
dsa dsb dsc F (za, zb, zc)

= κ
∑ ∑

a 6= b

g2
agb

∫∫∫
dsa ds′a dsb F (za, z

′
a, zb) + 2κ

∑ ∑ ∑
a < b < c

gagbgc

∫∫∫
dsa dsb dsc F (za, zb, zc), (6.4)
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where z′a ≡ za(τ ′a), s′a ≡ sa(τ ′a) and the “backprimed”
summa skips terms corresponding to a = b = c. In con-
trast to action (6.3) of the linear model, this action is not
well defined. Even if the self-interaction terms are omit-
ted, the integrands F (za, z

′
a, zb) of the pair-wise terms

become ill defined as the integration variable τ ′a ap-
proaches τa, given definitions (4.3)–(4.5), (4.7). In this
particular case a more subtle analysis of the integral
(4.3) is necessary. Also, it must be remembered that the
non-relativistic three-particle potential (4.9) is divergent.
Thus the integrands F ’s in the relativistic action (6.4) are
not integrable and thus should be regularized. We shall
not consider this problem further in this work.

VII. A RELATIVISTIC TREATMENT: THE QFT
VARIATIONAL METHOD

In this section we consider a field-theoretical treatment
of matter. Matter is, more commonly, represented by a
system of fermionic fields. However, in this work, we will
consider it to be the complex scalar field.

We proceed from the Lagrangian and charge density:

Lfree = ∂µφ
∗∂µφ−m2φ∗φ, ρ = gφ∗φ, (7.1)

where φ(x) is a complex scalar “matter” field with rest
mass m and charge g.

The next step is a transition to the Hamiltonian for-
malism. The procedure is rather complex, due to a non-
locality of the Lagrangian description. It can be per-
formed perturbatively, following [6]. In the leading-order
approximation the procedure reduces to the following
formal prescription [6,7,17–19]. We construct the Hamil-
tonian density,

H = Hfree − Lint, (7.2)

where Hfree is the standard expression, and Lint is speci-
fied by (2.10) or (3.8). It is then expressed in terms of the
Fourier amplitudes Ak, Bk and A†k, B†

k of the field φ(x)
(see Eq. (2.14) in [20]). Upon quantization these ampli-
tudes satisfy the standard commutation relations and be-
come the creation and annihilation operators. Then, the
canonical normal-ordered Hamiltonian operator is given
by H =

∫
d3x : H(t=0,x) : .

Since the QFT eigenvalue equation H|Ψ〉 = E|ψ〉
is not solvable, we use the variational approxima-
tion δ〈Ψtr|H − E|Ψtr〉 = 0. The trial state of
the system, |Ψtr〉, is built of few particle chan-
nel components such as the two-particle state vec-
tor |2〉 = 1√

2

∫
d3p1d3p2 f(p1,p3)A†p1

A†p2
|0〉, the

particle-antiparticle vector |1+1̄〉 =
∫

d3p1d3p2 f(p1,p3)

×A†p1
B†

p2
|0〉, the three-particle one |3〉 = 1√

3!

×
∫

d3p1d3p2d3p3 f(p1,p2,p3)A†p1
A†p2

A†p3
|0〉, etc. To

implement the variational approximation, we evaluate
the matrix elements of H.

In the case of the linear dipole model the interac-
tion Lagrangian Lint ≡ L(2)

int (and thus the Hamiltoni-
an H

(2)
int ) is a bilinear functional of the charge densi-

ty ρ. Accordingly, the matrix elements 〈2|H(2)
int |2〉 and

〈1+1̄|H(2)
int |1+1̄〉 are the relevant ones for two-particle

and particle-antiparticle variational problems. They lead
to a variational Salpeter-like wave equations of the form:

{p10 + p20 − E}f(p1,p2)

+
∫

d3p′1 d3p′2 K(2)(p1,p2,p
′
1p

′
2)f(p′1,p

′
2) = 0, (7.3)

where pa0 =
√
m2 + p2

a and K(2) is a kernel. In the case
of a confining interaction this kernel is singular and must
be regularized; see [6] and refs. therein.

In the case of the ϕ3-nonlinear dipole model L(3)
int and

thus H(3)
int are trilinear in ρ. Consequently, the matrix el-

ement 〈2|H(3)
int |2〉 and 〈1+1̄|H(3)

int |1+1̄〉 vanish, similarly
to the case of the nonlinear the Wick–Cutkosky model
considered in [7]. In other words, the purely two-particle
trial states, |2〉 and |1+1̄〉, are inadequate for describ-
ing bound states, as they do not sample the interaction
terms of this Hamiltonian. In contrast, the three-particle
states are affected by H(3)

int , and the (non trivial) matrix
element 〈3|H(3)

int |3〉 leads to the tree-particle wave equa-
tion:

{p10 + p20 + p30 − E}f(p1,p2,p3) (7.4)

+
∫

d3p′1 d3p′2 d3p′3 K(3)(p1,p2,p3,p
′
1,p

′
2,p

′
3)

×f(p′1,p
′
2,p

′
3) = 0.

The kernel K(3) of this equation is rather complex [7]
and is expected to be singular (at least for a massless
mediating field). The study of this question is a sub-
tle problem, as is the problem of regularization of the
kernel K(3). In particular, it should be regularized in ac-
cord with the regularization of the non-relativistic po-
tential (4.9) considered in Section 4. In view of this,
another question arises: do QFT-counterparts of pair-
wise interactions which are present in the nonrelativistic
potentials (5.3) and (5.4) exist? If yes, they would not
be sampled by the purely two particle trial states |2〉
and |1+1̄〉. A possible solution to this problem is to use
more general trial states of the form |Ψtr〉 = |2〉 + |4〉,
|Ψtr〉 = |1+1̄〉+ |2+2̄〉 etc. [20].

APPENDIX. CALCULATING F−++ AND F+++

Combining definitions (4.4), (4.3) and (2.8) yields the following expression for the function F−++(u, v):

F−++(u, v) =
1

(2π)3

∫
d4z θ(u0 − z0)δ

[
(z − u)2

]
θ(z0 − v0)δ

[
(z − v)2

]
θ(z0)δ(z2). (A.1)
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In order to evaluate this integral we consider different cases.

I.1) Let u be time-like, i.e., u2 > 0. Due to the Lorentz-invariance of the function F−++(u, v) one can choose a
reference frame in which u = 0. Then the following transformations in the integrand of (A.1) are useful:

θ(z0)δ(z2) =
δ(z0 − |z|)

2|z|
; (A.2)

θ(u0 − z0)
(A.2)
== θ(u0 − |z|); (A.3)

δ
[
(u0 − z0)2 − z2

] (A.2)
== δ(u2

0 − 2u0|z|) =
δ(|z| − u0/2)

2u0
; (A.4)

θ(z0 − v0)
(A.4)
== θ(u0 − 2v0); (A.5)

δ
[
(z − v)2

] (A.2)
== δ(v2 − 2z · v) (A.4)

== δ
[
u0(|v|k − v0) + v2

]
=

1
u0|v|

δ

(
k +

v2 − u0v0
u0|v|

)
, (A.6)

where k =
z · v
|z||v|

. (A.7)

Since |k| ≤ 1 then, by (A.6),

|v2 − u0v0| − u0|v| ≤ 0 (A.8)

otherwise the integrand in (A.1) vanishes.

I.1.1a) Let v2 > 0, v0 > |v|. Then, by (A.4), v2 − u0v0 < −v2
0 − v2 < 0. The l.h.s. of inequality (A.8) can be

expressed, using (A.5), as follows:

u0(v0 − |v|)− v2 = (u0 − v0 − |v|)(v0 − |v|) > (v0 − |v|)2 > 0.

This inequality is opposite to (A.8). Thus F++(u, v) = 0 in this case.

I.1.1b) Let v2 > 0, v0 < −|v|. Then v2−u0v0 > v2 +u0|v| > 0. The l.h.s. of inequality (A.8) becomes: v2−u0(v0 +
|v|) > v2 > 0. Thus F++(u, v) = 0 in this case.

I.1.2) Let v2 < 0. We replace the inequality (A.8) by an equivalent one:

(v2 − u0v0)2 − u0v
2 = v2(v2 − 2u0v0 + u2

0) ≤ 0

which then simplifies to the condition

(v0 − u0)2 − v2 ≥ 0. (A.9)

If this condition holds, the integral (A.1) does not vanish and can be evaluated directly, using (A.2)–(A.7) and
spherical coordinates:

F−++(u, v) =
1

(2π)3

2π∫
0

dϕ

1∫
−1

dk

∞∫
0

|z|d|z|
∞∫

−∞

dz0
δ(z0 − |z|)

2|z|

× δ(|z| − u0/2)
2u0

1
u0|v|

δ

(
k +

v2 − u0v0
u0|v|

)
=

1
2(4π)2u0|v|

. (A.10)

Otherwise, F−++(u, v) = 0.

I.2) Let u2 < 0. There exists a reference frame in which u0 < 0. Then the integrand of (A.1) vanishes due to the
factor θ(u0 − z0)θ(z0) = 0.

Now we return to an arbitrary reference frame in which the function F−++(u, v) should be expressed in terms of
Lorentz-invariant combinations of 4-vectors u and v. This can be done unambiguously, by the replacement:

(u0 − v0)2 − v2 7→ (u− v)2, u0|v| 7→
√

(u · v)2 − u2v2 etc. (A.11)

The result yields the form (4.5).
Upon calculating F+++(u, v) we note that it is described by the same integral as (A.1) but with the factor θ(u0−z0)

replaced by θ(z0−u0). Besides, this function is symmetric: F+++(u, v) = F+++(v, u). Thus it is sufficient to consider
just two cases.
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II.1) Let u2 > 0 or/and v2 > 0. Using reasoning similar to that used in the case I.1 one can prove that
F+++(u, v) = 0.

II.2) Let u2 < 0 and v2 < 0. One can choose the reference frame in which u = (0, u1, 0, 0), v = (0, v1, v2, 0). Then

δ
[
(z − u)2

] (A.2)
== δ(2z1u1 − u2

1) =
δ(z1 − u1/2)

2u1
; (A.12)

δ
[
(z − v)2

] (A.2)
== δ(v2 − 2z · v) (A.12)

== δ(2v2z2 + v1u1 − v2
1 − v2

2) =
1

2v2
δ

(
z2 −

v2
1 + v2

2 − u1v1
2v2

)
, (A.13)

and thus

F+++(u, v) =
1

(2π)3

∫∫∫∫
dz0 dz1 dz2 dz3

δ(z0 − |z|)
2|z|

× δ(z1 − u1/2)
2u1

1
2v2

δ

(
z2 −

v2
1 + v2

2 − u1v1
2v2

)

=
1

(4π)3

∞∫
−∞

dz3
u1v2

[
u2

1

4
+

(
v2
1 + v2

2 − u1v1
2v2

)2

+ z2
3

]−1/2

. (A.14)

This last integral (A.14) is divergent.

The result is summarized in (4.6).

[1] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).
[2] E. S. Swanson, AIP Conf. Proc. 717, 636 (2004).
[3] J. Kiskis, Phys. Rev. D 11, 2178 (1975).
[4] S. Blaha, Phys. Rev. D 10, 4268 (1975).
[5] A. I. Alekseev, B. A. Arbuzov, Theor. Math. Phys. 59,

372 (1984).
[6] A. Duviryak, J. W. Darewych, J. Phys. A 37, 8365

(2004).
[7] A. Duviryak, J. W. Darewych, J. Phys. A 43, 485402

(2010).
[8] W. Lucha, F. F. Schoberl, D. Gromes, Phys. Reports

200, 127 (1991).
[9] A. Inopin, G. S. Sharov, Phys. Rev. 63, 054023 (2001).

[10] A. D. Fokker, Z. Phys. 28, 386 (1929).
[11] P. Havas, In Problems in the Foundations of Physics,

M. Bunge, ed. (Springer–Verlag, Berlin–Heidelberg–New
York, 1971), p. 31.

[12] A. Rivacoba, Nuovo Cimento B 84 35 (1984).
[13] J. Weiss, J. Math. Phys. 27, 1015 (1986).
[14] A. Duviryak, Int. J. Mod. Phys. A 14, 4519 (1999).
[15] A. Duviryak, Int. J. Mod. Phys. A 16, 2771 (2001).
[16] A. Duviryak, Collected Phys. Papers of the Shevchenko

Sci. Soc. 7, 533 (2008).
[17] J. Darewych, Condens. Matter Phys. 3, 633 (2000).
[18] B. Ding, J. Darewych, J. Phys. G 26, 97 (2000).
[19] M. Emami-Razavi, J. W. Darewych, J. Phys. G 31, 1095

(2005).
[20] M. Emami-Razavi, J. W. Darewych, J. Phys. G 32, 1171

(2006).

ПРО УТРИМУЮЧI ВЗАЄМОДIЇ У СКАЛЯРНИХ УЗАГАЛЬНЕННЯХ
ДИПОЛЬНОЇ МОДЕЛI

А. Дувiряк1, Ю. Даревич2

1Вiддiл комп’ютерного моделювання багаточастинкових систем,
Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, Львiв, 79011, Україна
2Вiддiлення фiзики та астрономiї, Йоркський унiверситет,

Торонто, Онтарiо, M3J 1P3, Канада

Розглянуто двi модифiкованi версiї дипольної моделi з парою скалярних полiв-посередникiв. Одна з
модифiкацiй стосується юкавського члена в лаґранжiанi. В iншiй версiї додано нелiнiйний член самодiї.
Шляхом побудови точних розв’язкiв польових рiвнянь полiв-посередникiв у термiнах коварiантних функцiй
Ґрiна отримано лаґранжiан iз часо-нелокальними багатоточковими членами взаємодiї. У межах лiнiйної
модифiкованої дипольної моделi отримано двочастинкову взаємодiю, що мiстить кулонiвський внесок та
лiнiйний конфайнмент. Нелiнiйна ϕ3-модель приводить до парної та тричастинкової кластерної взаємодiй iз
лоґарифмiчним конфайнментом. Запропоновано шляхи послiдовного релятивiстського тлумачення моделей
та обговорено проблему розбiжностей.
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