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The possibility of distinguishing scalar field models of dark energy with different Lagrangians and
time variable equation of state parameter by available observational data is analyzed. The multicom-
ponent cosmological models with the scalar field with either Klein-Gordon or Dirac-Born-Infeld
Lagrangians as dark energy and the monotonic decreasing and increasing equation of state para-
meters are considered. It is concluded that scalar field models of dark energy with decreasing and
increasing EoS parameters should be distinguishable at the accuracy level of forthcoming observa-
tional data. The Lagrangians of scalar fields could be distinguished by expected observational data
(Planck, SDSS etc.) in the case of decreasing EoS parameter, but are practically indistinguishable

in the case of the increasing one.
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I. INTRODUCTION

The observational data on the light curves of the type
Ia Supernovae, CMB anisotropy and large scale struc-
ture of the Universe are well fitted by the cosmological
models with the scalar field as dark energy. In numerous
papers (see e. g. the latest reviews [1-8], books [9-11] and
citing therein) the physical, cosmological and astrophysi-
cal aspects of dark energy are elucidated. But the main
question “which field of the large number of candidates is
preferable in the light of obtained up to now observation-
al data?” remains without answer. The “goodness of fit”
of many of them, which are quite different, for the same
dataset is so close that the problem of principal distin-
guishability of scalar field models of dark energy arises.
In the paper we analyze this problem for the subclass of
minimally coupled dynamical scalar fields.

In the fluid approach the minimal number of dark
energy parameters required for the description of the
dynamical and clustering properties of a scalar field is
three: the current density parameter 4., equation of
state (EoS) parameter w and effective sound speed c2.
They in the general case are functions of the scale fac-
tor a (or redshift z = a=! — 1). The latter function can
be deduced from the scalar field Lagrangian when it is
given. The function w(a) usually is defined ad hoc. At
the current level of possibility of constraining the dark
energy parameters by observations the simplest linear
function w(a) = wo + we(1 — a) [13,14] is widely used.
Two constants wy and w, (the current values of w and
its first derivative with respect to the scale factor with
the opposite sign) are determined together with the den-
sity parameter 4. and other cosmological parameters,
the minimal set of which contains six: density parame-
ter of baryons wy, density parameter of cold dark matter
Wedm, Hubble constant Hy, spectral index of initial mat-
ter density power spectrum ng (scalar mode), amplitude

of initial matter density power spectrum A, and reioni-
zation optical depth 7..;. The current observational data
on Supernovae type la light curves, CMB anisotropy and
large scale structure of the Universe allow to determine
most of them with high accuracy. The exception is pa-
rameter w,: its uncertainty is so large that the character
of variation of EoS parameter — increasing or decreasing
— is not recognized (see, for example, [15-17]).

In [18] we determined the parameters of scalar
field models of dynamical dark energy with the other
parametrization of EoS, which follows from the assump-
tion that the temporal derivative of dark energy pres-
sure is proportional to the temporal derivative of its
energy density. This parametrization involves two free
parameters wg and w,., which are the values of EoS
parameter at the current and early epochs, respective-
ly. The mean likelihood distribution obtained by the
Markov Chain Monte Carlo (MCMC) method for the
available datasets on CMB anisotropy, power spectrum
of spatial inhomogeneities in distribution of galaxies and
SN Ia photometric curves has two peaks with the cor-
responding sets of the best fitting parameters p, =
(Qd€7 Wo, We, Wh, Wedm, Ho, ns, As, Trei)a i =1,2 (Ta'
ble 1). The first of them corresponds to the scalar field
model with the decreasing EoS parameter, the second
one to the scalar field model with the increasing FEoS
parameter. Since the —log L’s for both p; and p, are
close, we concluded that these models are indistinguish-
able by the used dataset. This situation is the same for
both classical and tachyonic scalar fields. Moreover, they
are indistinguishable too.

In this paper we analyze the quantitative differences
of these four models of dark energy — classical and tachy-
onic scalar fields, each with p; and p, parameter sets,
and discuss the possibility of their distinguishing in the
light of available and expected observational data.

The paper is organized as follows. In Section II we
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discuss the scalar field models of dark energy and deter-
mination of their parameters. Section III is devoted to
the analysis of background dynamics in the models with
increasing and decreasing EoS parameters of the scalar
field and differences of SN Ia light curves. In Section IV
the differences of matter density and CMB temperature
fluctuations power spectra of all models are analyzed and
compared with the corresponding observational uncer-
tainties. Section V summarizes the results of the analyses
and presents the conclusions.

II. MODELS

We analyze the dynamics of expansion and the large
scale structure formation of the spatially flat Universe
filled with the non-relativistic particles (cold dark mat-
ter and baryons), relativistic ones (thermal electromag-
netic radiation and massless neutrino) and minimal-
ly coupled scalar field with the given Lagrangian. We
apply Einstein equations in the Friedmann—Robertson—
Walker (FRW) metric for the background dynamics and
Einstein—Boltzmann system of equations in the syn-
chronous gauge for the evolution of linear perturba-
tions. The line-element of FRW metric is ds? = c2dt? —
a?(t)do?, where do? is time-independent Euclidian met-
ric of 3-space and a(t) is the scale factor, which we nor-
malize to 1 at the current epoch to: a(ty) = 1. Below
we put the speed of light equal to 1 (¢ = 1), there-
fore the time has the dimension of a length, the Hub-
ble constant of an inverse length, the mass has dimen-
sion of energy, velocity is dimensionless and so on. When
Hubble constant appears in the traditional dimension of
[km/(s-Mpc)] the speed of light appears in [km/s].

A. Scalar field models

The following specification of the scalar field model is
used: its equation of state is Pge(a) = w(a)pae(a) and the
temporal derivative of the dark energy pressure is pro-
portional to the temporal derivative of its energy density,
Pye = ci (de) Pde, Where the coefficient ci (de)” often called
“adiabatic sound speed”, is constant. The last condition
together with the differential energy-momentum conser-
vation law, which in the Friedmann—Robertson—Walker
metric is

apge = —3(1 + w(a))pae, (1)
gives the ordinary differential equation for w(a):
aw' =3(1+w)(w — ¢} 40)), (2)

where a prime denotes the derivative with respect to the
scale factor a. It has the analytic solution:

w(a) = (1 + we) (1 +wp) B
1+ wp — (wp — we)a3I+we)

L3

where ci (de) W€ have denoted by w, since it corresponds
to the EoS parameter at the beginning of the expansion
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(we = w(0)), which we call the early EoS parameter.
One can see also that the other constant value here, the
integration constant wo = w(1), is the EoS parameter at
the current epoch. The differential equation (1) with (3)
has the analytic solution for pge:

_ 0 (L4 wp)a=30Hw) 4w, — g
Pde(a) = Pgo T

: (4)

where pé? = 3HZQqe/87G is the dark energy density
at current epoch. It is a regular function of a for any
values of wy and we, excluding singular point a = 0 for
we > —1. The pressure of fields with parametrization (3)
is a regular function of a too:

Pac(a) = wepao(a) + (wo — we)p, (5)

which is the generalized linear barotropic equation of
state. That is why we call such models “the scalar field
models of dark energy with the barotropic equation
of state”. For the quintessential scalar field (we, wy >
—1) both functions, pge(a) and —Pye(a), decrease
monotonously and tend to the asymptotic value (w. —
wo)pgl)/(l + wp), the sign of which depends on the ratio
of values of w, and wy. It means that Py.(a) and pge(a)
can change the sign at different moments of time depend-
ing on the relation between w. and wg. For example, in
the case of the quintessential scalar field (we, wg > —1)
with wy > w, the pressure changes the sign from mi-
nus to plus at a(p—gy = [(1 +wo)we /(we — wo)] /31 +we)
and the density changes the sign from plus to minus at
a(p=0y = [(1 + wo)/(we — wp)]/30+we) In the opposite
case (w. > wp) their signs (P < 0, p > 0) always remain
unaltered.

Parameters P P-
Qe 0.727354 | 0.7119:54
wo -0.9370-853 1 -0.9910-3¢
we -0.9715:0% 1 -0.051053
10w,  ]0.2257051710.22515-017
Wedm  |0.1117051310.11370-019
Hy 69.2%32 | 68.671 ]
ng 0.971995 | 0.9715:5%

log(10'°A)| 3.0775-8% | 3.0970-29
Trei  |0.08475:03210.09075-053

—log L | 4027.35 | 4027.51

Table 1. The best fitting values and 1o confidential ranges
of cosmological parameters in the CSF4+CDM model deter-
mined by the Markov Chain Monte Carlo technique using
the available observational data (for details see [18]). First
column — model of DE with decreasing EoS parameter,
second one — model of DE with increasing EoS parameter.
The current Hubble parameter Hp is in units kms™* Mpc™?,
the age of the Universe ¢y is given in Giga years.
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Note that substituting (3) into r.h.s. of (2) we see
that the sign of w’ is completely determined by the sign
of —(1 + wo)(we — wp). So, for the quintessential field
w(a) is a monotonously decreasing (w’ < 0) function
when w, > wy. The repulsion property of such a field
raises with time. When w, < wp, w(a) is a monotonous-
ly increasing (w’ > 0) function. The repulsion property
of the field in this case recedes with time. For the phan-
tom field, for which wy < —1, the conditions for raising
and receding repulsion properties of the field are oppo-
site. In the particular case w, = wg the EoS parameter
is constant, w’ = 0. Another particular case w, = —1 or
wo = —1 is simply A-term (w = const = —1). It must
be noted also, that w(a) in the form (3) does not allow
the phantom divide (w = —1) crossing since in this point
Py and Pde become 0, but it is applicable in both ranges
w > —1 and w < —1 separately.

The paper aims at analysing the possibility of distin-
guishing the scalar fields with receding and raising re-
pulsion by available observational data.

The discussed above three parameters of a scalar field
— Q4e, we and wy — are quite enough for the analysis
of background dynamics, luminosity distance — redshift
and angular diameter distance — redshift relations. But
scalar fields are gravitationally unstable and their clus-
tering properties depend also on one more of their char-
acteristic — the effective sound speed ¢ = § Py /dpde. In-
deed, the equations for evolution of Fourier amplitudes of
density d(4e)y = dpde/pae and velocity Vi4e) perturbations
of the scalar field in the synchronous gauge are

. h
d(de) +3(c —w)aHbgey + (1 +w) 5

2
2 _
+(1+4+w) |k+ 9a2H2% Vide) = 0, (6)
. 9 2k
Vide) + aH (1 = 3¢5)Vige) — H—w(S(de) =0, (7)

where £ is the wave number, h = h$ is the trace of scalar
perturbations of metric (see e.g. [18,19] or for gauge-
invariant approach e.g. [20,21] and citing therein). The
equations for the rest of components (non-relativistic
and relativistic) are the same asin [22]. To determine the
fourth parameter of dark energy, c2, we specify the
scalar field Lagrangian. We consider the scalar fields
with Klein-Gordon (KG) and Dirac-Born-Infeld (DBI)
Lagrangians, also called classical and tachyonic respec-

tively,

Lclas =X - U(¢)7
Liach = —U(6)V1 - 2X, (8)

where U(¢) and U(£) are the field potentials, X =
$.:07/2 and X = £,67/2 are kinetic terms. For the ho-
mogeneous background the field variables are connected
with the variables of the fluid approach by simple rela-
tions:

V(@ =" porfa), O(a) = pacla)y/“w(@ ()

_ 14+ w(a) >

YD pe(a), K= 12D

X (a) = (0

The effective (rest-frame) sound speed c? (dey for the
scalar field with the given Lagrangian is defined as

ci(de) = Px = 2XLL—X (11)
p.X xx+L x

It equals 1 for the classical scalar field and —w for the
tachyonic one. Therefore, these fields are quite different,
can affect the evolution of dark matter perturbations and
leave “fingerprints” in the large scale structure of the Uni-
verse, as was shown in our previous papers [18, 20, 21].
The objective of this paper is the analysis of possibili-
ty of distinguishing the scalar fields with KG and DBI
Lagrangians by available observational data.

For the calculation of the dynamics of expansion of the
Universe, the evolution of perturbations in all compo-
nents, the power spectra of matter density perturbations
and CMB anisotropy we have used the publicly available
code CAMB [23, 24], modified to include the presented
here expressions (3), (4), (11) and equations (6)—(7).

B. Determination of DE and cosmological
parameters

Therefore, the scalar field model of dark energy, de-
scribed in the previous subsection, involves three param-
eters Q4e, we and wg which must be determined by com-
parison of the calculated predictions on dynamics of ex-
pansion and large scale structure of the Universe with the
corresponding observational data. Since all predictions
and data are related with other components (dark mat-
ter, baryons, thermal cosmic radiation) it should be done
jointly with other cosmological parameters. Concentrat-
ing on the analysis of the possibility of determination
of dark energy parameters we consider the cosmologi-
cal model with the minimal set of six parameters: den-
sity parameter of baryons wp, density parameter of cold
dark matter weqm, Hubble constant Hg, spectral index
of initial matter density power spectrum ng,, amplitude
of initial matter density power spectrum Ag and reion-
ization optical depth 7. So, we have nine unknown pa-
rameters, but the number of independent ones is eight,
since we have assumed the spatial flatness of the Uni-
verse. Indeed, the dark energy density parameter g
in this case can be calculated from the zero curvature
condition: Qge = 1 — Q — Qedm, where € = wph™2,
Qedm = Weamh ™2, where h = Hp/100km/s - Mpc.

To determine the best fitting values and confidential
ranges of the scalar field parameters together with other
cosmological ones in our previous work [18] we performed
the Markov Chain Monte Carlo (MCMC) analysis for
the set of current observational data, which include the
power spectra from WMAPT [25,26] and SDSS DR7 [27],
the Hubble constant measurements [28], the light curves
of SN TIa [29] and Big Bang nucleosynthesis (BBN) pri-
or [30].
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Fig. 1. (Color online) Two-dimensional mean likelihood
distribution in the plane w. — wo for the combined dataset
WMAP7+SDSS LRG DR7+SN Union2+HST+BBN. Solid
lines correspond to 1o and 20 confidence contours.
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Fig. 2. (Color online) The power spectra of CMB tempera-
ture fluctuations (top) and matter density ones (bottom) for
cosmological models with classical and tachyonic scalar fields
(CSF and TSF respectively) with two sets of the best fitting
parameters from Table 1. The corresponding observational
data from WMAP7 and SDSS LRG DRT are shown by the
filled circles.

We have used the publicly available package
CosmoMC [32, 33], which includes the code CAMB
[23,24] for calculation of the model predictions for sam-
pled sets of 8 cosmological parameters: we, W, W, Wedm,
Hy, ng, As and 7y.¢;. The CosmoMC code has been mod-
ified to be run with the proposed here parametriza-
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tion of dark energy EoS parameter (3). The flat priors
—1 < wo, cg < 0 have been used to take into account
the quintessential properties of scalar fields with KG and
DBI Lagrangians (lower limit) and the constraints follow-
ing from observational data related to the recombination
and nucleosynthesis epochs (the upper one).

We performed two MCMC runs for the eight-
parametric flat cosmological model with the classical
scalar field. Each run had 8 chains and the number of
samples in each chain was ~ 200000. For the first run
we used only the mentioned above flat prior for we.
The set of best fitting parameters determined by this
run is marked by p; and presented in Table 1 together
with 1o confidential ranges. All parameters, excluding
we, are well constrained, the one-dimensional posterior
and mean likelihood distributions are close and similar
to Gaussian (half-Gaussian for wg), confidential ranges
are narrow. The EoS parameter at the early epoch w, is
essentially unconstrained: its 1o confidence range is wide
and coincides practically with the allowed by prior range
[—1, 0]. The mean likelihood and posterior are different
and the likelihood is bimodal, as it is shown in Fig. 1.
The first peak is close to —1, another one to 0. The best
fitting value of w, in the set p; corresponds to the first
peak. In this case w. < wg which means that the best
fitting scalar field model of dark energy has receding re-
pulsion properties (w’ > 0).

In order to obtain the best fitting parameters corre-
sponding to the second peak of the likelihood distribu-
tion we have performed an analogical run with additional
condition w, > wg. The set of best fitting parameters de-
termined by this run is marked by p, and presented in
Table 1. Now, the best fitting value of w, corresponds to
the second visible in the upper left corner of Fig. 1 peak
of mean likelihood distribution. In this case w, > wg and
we can say that the best fitting scalar field model of dark
energy has raising repulsion properties (w’ < 0).

As we see, a large variation of w. does not change
essentially other parameters: each parameter from the
set py is in the 1o range of the corresponding one from
the set p; and vice versa. The —log L’s (last row of Ta-
ble 1) for both sets are very close. The power spectra
of matter density perturbations and CMB temperature
fluctuations for both sets of the best fitting parameters
p; and p, are presented in Fig. 2. For the same sets
of parameters we have calculated also the spectra for
tachyonic scalar field models of dark energy. For all four
models the corresponding lines are superimposed and
well match the observational spectra. Therefore, we have
double degeneracy: in the type of the dynamics of scalar
field (receding-raising repulsion properties) and its La-
grangian (classical-tachyonic). Is it possible to distinguish
them in principle? It is the subject of the next sections.

III. DYNAMICS OF EXPANSION OF THE
UNIVERSE, SN IA LIGHT CURVES AND
STATEFINDERS

At first we analyze the evolution of the scalar field
parameters in the homogeneous (background) Universe.
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Fig. 3. The dependences of theaEOS parameter (top panel)
and ratio pde/pm (bottom panel) on the scale factor for mod-
els with the best fitting parameters p; and p,. The current
epoch corresponds to a = 1.

The time dependences of the EoS parameter and the ra-
tio of the scalar field energy density to dark matter den-
sity in the models with the best fitting parameters p;
and p, are presented in Fig. 3. As we see, in spite of the
closeness of these values for both parameter sets in the
current epoch (a = 1), they are quite different in the past
(a < 1) and future (a > 1). The EoS parameter in the
model with p; increases monotonically from —0.97 at the
beginning of expansion to —0.93 at the current epoch and
will continue increasing in the future up to discontinuity
of the second kind, caused by the energy density crossing
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104
104

10°

10.00 100.00

0.01 0.10 1.00

a

)

of zero (a(,,,—0) = 950). Immediately after that the Uni-
verse reaches the turnaround point (at, = A(pg.=0) T 0a,
da/a < 1) and begins to collapse [18]. At the early epoch
the scalar field energy density is insignificant similarly
to the cosmological constant. In the model with p, the
EoS parameter decreases monotonically from —0.05 at
the early epoch to —0.99 now and will asymptotically
approach —1 in the distant future. The energy density
in the early epoch traces the density of dark matter. In
the future it will asymptotically approach the constant

value pézo) = péoe) (we — wo)/(1 + we). So, the future of

the Universe with such field is de Sitter expansion.

The evolution of potentials and kinetic terms of clas-
sical and tachyonic scalar fields for models with the best
fitting parameters p; and p, is shown in the Fig. 4. One
can see, that both fields are quite different for p; and
P, parameter sets, but for each of them the potentials of
both fields are similar, while kinetic terms are different.
In all cases scalar fields roll slowly to the minima of their
potentials. In the models with p; parameter set it will
be reached at the finite time (a 268 Gyrs, turnaround
point), in the models with p, one — at the infinite time.
Near the turnaround point in the model with p; the ki-
netic terms of both fields become dominating (top pan-
els of Fig. 4), quintessential scalar fields behave as the
k-essential ones.

Using the dependences of densities of each component
on the scale factor one can deduce from the Einstein
equations the following equations for the background dy-
namics:

H = Ho\/Q,/a* + Q,,/a® 4+ Qae f(a), (12)

_ 120, /a* + Qm/a® + (1 + 3w)Qacf(a)
2 Qr/a‘* + Qm/a3 + Qdef(a) ’

(13)

104
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10741 . |
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Fig. 4. Evolution of potentials and kinetic terms of classical (left column) and tachyonic (right column) scalar fields for
models with best fitting parameters p; (top panel) and p, (bottom panel).
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where f(a) = [(1 + wo)a=20+we) 4w, — wo]/(1 + w.),
Qm = Qp + Qcgm is the density parameter of mat-
ter (nonrelativistic) component at the current epoch,
Q, = Q, + Q, is the density parameter of relativistic
component at the current epoch, H = a/a is the Hubble
parameter (expansion rate) for any moment of time and
q = —i/aH? is the acceleration parameter for any mo-
ment of time. They describe completely the dynamics of
expansion of the homogeneous isotropic Universe.

H/H,

-0.5

-1.0

-1.5 . .
0.01 0.10 1.00

a

10.00 100.00

Fig. 5. The dynamics of expansion of the Universe with
barotropic dark energy: H(a) (top panel) and ¢g(a) (bottom
one) for the p; and p, models.
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Fig. 6. The relative differences AH (a)/H (a) and Ag/qo of
models with p; and p,.

The temporal dependences of H and ¢ for the mod-
els with p; and p, are shown in Fig. 5. It can be seen
that their past evolution (a < 1) is practically indistin-
guishable, but the future one is different. In both models
the accelerated expansion began at a =~ 0.58. At the cur-
rent epoch the acceleration parameters are qp ~ —0.57
in the model with p; and g9 =~ —0.52 in the model
with py. In the last model it will continue decreasing
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in the future, approaching asymptotically —1 as in de
Sitter inflation. In the model with p; the acceleration
parameter will reach the minimal value ¢y, ~ —0.87
at a(g,.) ~ 4.95 and then will begin to increase. At
ag—0) = [(1+wo)(1+3we)/(we —wo)/2)' /")
570 the accelerated expansion will be altered by the
decelerated one. The pressure will become positive at
1

aw=0) > [We(l +wo)/(we —wp)]3FF»e) =~ 678 and in
the finite time according to (5) will reach the constant
positive value Pé;nax) = (wp — we)pg? ~ 0.035pg? caus-
ing the turn around at a =~ 960 and collapse. So, the
cosmological model with p; has future finite-time Big
Crunch singularity.

a5f .
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Fig. 7. (Color online) Top panel: The distance moduli
(m — M)(z) for models with p, and p, (lines) and SN SDSS
data with different fittings of SN Ia light curves (signs). Bot-
tom panel: the relative difference A(m — M)/(m — M) of
two models (line) and scattering of data points from the top
panel around the model line with best fitting parameters p,,
[(m — M)obs — (m = M)moa] /(m — M)moa.

Fig. 5 illustrates the model degeneracy: two different
scalar field models of dark energy are indistinguishable
by the dynamics of expansion of the Universe. How deep
is this degeneracy? To answer this question we have cal-
culated the relative differences AH (a)/H (a) and Ag/qo
of models with p; and p,. The results are presented in
Fig. 6. One can see that the appreciable difference (1%)
of H in models with p; and p, in the past (a < 1) ap-
pears at redshifts z > 1 (a < 0.5) and reaches 2% at
high z. The relative difference of acceleration parame-
ters in these models is maximal (~ 8%) at current epoch
(a = 1) and = 5% at the beginning of accelerated expan-
sion (a =~ 0.4 — 0.6).

Since both values are usually determined from the lu-
minosity distance-redshift relation, it is interesting to
compare the difference of distance moduli

(m — M) = 5logdy, + 25, (14)
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where

dy, = 1+z/ \/Q

for these models with observational uncertainties of their
determinations from the light curves of SN. In Fig. 7 we
present the distance moduli for both models and the rel-
ative difference between them together with the corre-
sponding current observational data [31]. Both models
match observational data on SN SDSS distance moduli
equally well, the difference between them does not ex-
ceed 0.1%, which is essentially lower than the dispersion
of observational points around of the best fitting curve.
To distinguish them other tests based on accurate mea-
surements of the acceleration parameter in the vicinity
of the Local Group should be proposed or a radical im-
provement of the accuracy of existing ones should be
made.
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Fig. 8. (Color online) Statefinder parameters r and s for
models with p; and p,.

If in the future high-precision observations it is possi-
ble to measure the second derivative of H, the statefinder
parameters r = 1+3H/H?*+H /H? and s = (r—1)/[3(q—
1/2)], introduced by [34], can be used for distinguishing
the scalar field models with different time variable EoS
parameters. For the matter plus dark energy dominated
epoch they can be presented in our parametrization (3)
as follows:

r=1+45(1+w)w.Nqc(a), s =1+ w)we/w,
where Qqc(a) = 8mGpae(a)/3H?. Their dependences on
the scale factor a for the best fitting models p; and p,
are shown in Fig. 8. One can see that the differences
between s(p;) and s(p,) at high z as well as between
r(p;) and r(p,) at low z are essentially larger than for
parameters H and ¢ (Fig. 5 and 6).

IV. MATTER DENSITY AND CMB POWER
SPECTRA

Let us analyze the large scale structure and CMB
anisotropy characteristics calculated for models with p,

and p, parameter sets, their differences and model distin-
guishability in the light of them. The dark energy affect
these characteristics via the dynamics of expansion of the
homogeneous Universe (scale-independent growth fac-
tor) and gravitational interaction between perturbations
of all components for the same k-mode. The evolution
of scalar field density perturbations depends also on ¢2,
therefore their influence on the matter density will be dif-
ferent for KG and DBI Lagrangians. Using the modified
CAMB code we have integrated the Einstein—Boltzmann
system of equations for all components (scalar field, dark
matter, baryons, thermal radiation, massless active neu-
trinos) in the cosmological models with the parameter
sets p; and py. The results for baryons, cold dark mat-
ter and scalar fields with KG/DBI Lagrangians (wave
number of perturbations k = 0.05 Mpc~!) are shown
in Fig. 9. In the case of the model with p; the evolution
tracks of scalar field density perturbations are similar for
both Lagrangians, but they differ in the case of the model
with p,. Since scalar field density perturbations are not
observable, let us look how they influence the evolution
tracks of matter density perturbations. For this purpose
in Fig. 10 we present the differences Ad(cam)/0(cam) =
(6(Cdm) (pl; a) - 6(cdm) (p2; a)) /6(cdm) (pl; a) for KG and
DBI scalar field models (left panel) as well as
Aés(cdm)/é(cdnﬂ = (5(cdm) (CSFv a) - 5(cdm) (TSF7 a’)) /
/0(cam)(CSF; a) for p; and p, parameter sets (right pan-
el). The differences between models with p; and p, for
scalar fields with KG and DBI Lagrangians reach ~ 2%
at the current epoch. In the case of p; parameter set
the scalar field with DBI Lagrangian is indistinguishable
from the scalar field with KG one (dashed line in bot-
tom panel of Fig. 10). In the case of p, parameter set
the difference between both fields does not exceed 0.3%.
It means that at the current level of accuracy of observa-
tional data and numerical codes for calculations of model
predictions they cannot be distinguished either. For final
conclusion other k-modes should be analyzed.

For such purpose we have calculated by the modified
version of CAMB the power spectra of matter density
perturbations for the same four models P(CSF,pq;k),
P(CSF,py; k), P(TSF,py;k) and P(TSF,py; k) (bot-
tom panel of Fig. 2). The relative differences AP/P are
presented for them in Fig. 11. The observational relative
1o errors of SDSS LRG DR7 data [27] are shown there
too. The maximal differences between spectra in mod-
els with p; and p, are at k ~ 0.01 h/Mpc (=~ 8% in the
models with CSF and ~ 6% in the models with TSF). At
lower scales, k ~ 0.1 h/Mpc, they are ~ 4 — 5%, that is
lower than the observational uncertainties at these scales.
In the case of p; parameter set the models with CSF and
TSF are indistinguishable, the relative difference is less
than 0.1%. In the case of p, parameter set it is maxi-
mal (~ 1.5%) at k ~0.01 h/Mpc, but it is = 0.6% at
k ~0.1 h/Mpc, where observational uncertainties are the
lowest, ~ 6%. So, the possibility of distinguishing CSF
from TSF by P is unpredictable. And vice versa, dis-
tinguishing the model with p; from the one with py by
the matter density power spectrum data expected in the
upcoming decade looks possible.
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Fig. 9. (Color online) Evolution of linear density perturbations of cold dark matter (dash-dotted line), baryons (dotted) and
scalar field (solid) for models with p; and p,. Classical scalar field — left column, tachyonic one — right. The wave number of

perturbations is k = 0.05 Mpc™*.
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Fig. 10. The influence of scalar field perturbations on the
evolution of linear matter density ones (k = 0.05 Mpc™1).
Top panel: the relative difference of CDM density per-
turbations in models with sets of parameters p: and p2
Ad(cdm)/O(cdm) = (I(cdm)(P1; @) = d(cam) (P2; @))/(cam)(P1; @)
for CSF (solid line) and TSF (dashed line). Bottom pan-
el: the relative difference of CDM density perturbations
in the models with CSF and TSF Adcam)/d(cam) =
(0(cdm) (TSF; @) — 6(cam) (CSF; a))/0(cam) (CSF; a) for the sets
of parameters p; (solid line) and p, (dashed line).
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Let us analyze now the possibility of distinguish-
ing these four models by observational data on CMB
anisotropy. In Fig. 2 the angular power spectra of CMB
temperature fluctuations C7 7 [12] for them are present-
ed in the top panel. All four lines are visually superim-
posed and go near most points in their 1o error bars.
The relative differences between them AC}T/CIT as
well as relative 1o errors of WMAP7 data [25, 26] are
shown in Fig. 12. The maximal differences (~ 3—4%)
between C'ETT of models with p; and p, are at low spher-
ical harmonics, where cosmic variance is too large to dis-
tinguish between such models. In the range of acoustic
peaks ¢ ~ 100—700, where observational data are most
accurate (~ 2%), the difference between C 7' of the mod-
els with p; and p, is somewhat smaller (< 1.5%). So, the
expected data releases on CMB anisotropy from WMAP
and Planck teams would probably allow the possibility
to answer the question “which scalar field dark energy,
with decreasing or increasing EoS parameter, fills our
Universe?”. To answer the question ”which is the field
Lagrangian?” will be harder in the case of decreasing
EoS parameter and practically impossible in the case of
the increasing one (see right panels of Figs. 10-12).

To support the latter conclusions let us compare the
relative differences of CMB temperature fluctuations
ACTT JCFT and polarization ACEF /CFE power spec-
tra in the models with both fields and parameter sets
with the observational uncertainties, modelled for the
Planck satellite in the following way. Assuming that the
noise part is due to the combined effect of Gaussian beam
and spatially uniform Gaussian white noise, for the ex-
periment with the known beam width and sensitivity the
noise power spectrum for each channel can be approxi-
mated as follows:

ij — 02 2 000+ 1 9f2whm
7’ = Orwnm0; exp [£( + )m ;
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Fig. 11. Top panel: the relative difference of matter densi-
ty power spectra AP/P in the models with best fitting pa-
rameters p; and p, for classical and tachyonic scalar fields.
Bottom panel: the relative difference of matter density pow-
er spectra AP/P in the models with classical and tachyonic
scalar fields for two sets of the best fitting parameters p, and
P, Dots show observational uncertainties (10) of SDSS LRG
DRY7 data.

where j stands for either TT or EFE, Otynm is the full
width at half maximum of the Gaussian beam and o;
is the root mean square of the instrumental noise. The
non-diagonal noise terms vanish since the noise contri-
butions from different maps do not correlate. For the
experiments with more than one channel the total noise
power spectrum is obtained as:

1 _nchan 1
NN T L i@

where nepan is the number of channels. The described
procedure was proposed by [38] and implemented in their
code FuturCMB [39], which we use here.
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Fig. 12. Top panel: the relative difference of CMB tem-
perature fluctuations power spectra AC7* /CZ™ in the mod-
els with best fitting parameters p; and p, for classical and
tachyonic scalar fields. Bottom panel: the relative difference
of CMB temperature fluctuations power spectra ACF * /CF T
in the models with classical and tachyonic scalar fields for
two sets of the best fitting parameters p, and p,. Dots show
observational uncertainties (1o) of WMAPT data.

In Fig. 13 we show the estimated errors for the Planck
experiment with 3 channels (for each of them Ofyhm, o7
and og are 9.5 arcmin, 6.8 uK per pixel and 10.9 uK
per pixel; 7.1 arcmin, 6.0 uK per pixel and 11.4 uK per
pixel; 5.0 arcmin, 13.1 uK per pixel and 26.7 uK per
pixel correspondingly). The observed sky fraction is as-
sumed to be fsry, = 0.65. The models with the same
fields but different parameter sets p; and p, can be dis-
tinguished by the data with such precision. For the CMB
temperature fluctuations power spectrum the difference
between studied models exceeds the estimated error lev-
el at high spherical harmonics, while for the polarization
power spectrum at low spherical harmonics, where it is
maximal. The models with different fields but the same
parameter sets (corresponding to both decreasing and
increasing EoS parameters) are still indistinguishable at
such level of experimental precision.
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Fig. 13. Left: the relative differences of CMB temperature fluctuations AC7*/C{ T and polarization ACFF /CFF power
spectra (from top to bottom) in the models with classical and tachyonic scalar fields for two sets of the best fitting parameters
p, and p,. Right: the relative differences of CMB temperature fluctuations ACF? /CFT and polarization ACFE /CEE power
spectra (from top to bottom) in the models with two sets of the best fitting parameters p; and p, for classical and tachyonic
scalar fields. Dots show the observational uncertainties, modelled for the Planck satellite.

V. DISCUSSION AND CONCLUSION

The weakness of constraints on dark energy parame-
ters for models with time variable EoS has been widely
discussed in the literature [35-37]. Moreover, the degen-
eracy between them limits strongly the possibility to test
whether w is constant or not. Our results, presented in
Tab. 2 of [18], confirm that. We have used the set of
observational data including the light curves of SN Ia,
the power spectra from WMAP7 and SDSS DRY7, the
Hubble constant measurements and BBN prior to ana-
lyze the possibility of determining the parameters of dy-
namical scalar field jointly with other cosmological ones.
The processing of the MCMC chains for eight-parametric
models (p = (Qde, Wo, We, Wb, Wedm, Ho, Ns, As, Trei))
gives marginalized posterior and likelihood distributions
as well as the best fitting values of parameters and their
confidential ranges. For the most parameters the posteri-
or and likelihood distributions are unimodal and similar,
the confidential ranges are narrow. The exception is we,
for which the marginalized posterior distribution is uni-
modal, but marginalized mean likelihood distribution is
bimodal. The values of maximal likelihood for both peaks
are very close. The first peak corresponds to the scalar
field model of dark energy with increasing EoS param-
eter, the second to model with the decreasing one. The
question is: which accuracy of observational data is nec-
essary to distinguish these two models of dark energy?
We have shown that the difference of luminosity distance
moduli A(m — M) in the models with decreasing and in-

1901-10

creasing EoS parameter does not exceed 0.1% (Fig. 7),
while the most accurate observational data on SN lumi-
nosity distances (SN SDSS, MLCS2k2 and SALT?2 [31])
disperse around the best fitting model line in the range of
~ 2%. Therefore, the radical improvement of statistical
and systematic uncertainties of data is necessary for dis-
tinguishing between these models of dark energy. Then
the statefinder parameters r and s [34] allow the possi-
bility to differentiate effectively the scalar field models of
dark energy with increasing and decreasing EoS param-
eters.

To diminish or remove the degeneracy between dark
energy, dark matter and curvature parameters other data
must be also improved. The difference of the matter pow-
er spectra is maximal (~6-8%) at scales 0.1—0.5 h~'Gpc
(left panel of Fig. 11). The maximal accuracy of matter
density perturbations power spectra obtained in the cur-
rent sky surveys reaches ~6% at scales ~ 50 h~'Mpc
(SDSS DR7), which is somewhat above the difference
between model power spectra at this scales. If expected
data from the next releases are 1.5 — 2 times more ac-
curate, then they will allow us to distinguish surely the
models with decreasing and increasing EoS parameters.
The important data in the used set are the data on CMB
anisotropy, as the difference of angular power spectra of
CMB temperature fluctuations is ~1-4%, which is some-
what smaller than the accuracy of the current measure-
ments by WMAP at scales ~ 0°.5 — 2° (£ ~ 100 — 500)
(left panel of Fig. 12). We believe that the expected data
release from WMAP team (nine-year observations) and
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particularly expected Planck data together with other
improved data will make it possible to determine whether
the EoS parameter of dark energy is increasing, decreas-
ing or constant.

The possibility of distinguishing the scalar field mod-
els of dark energy with different Lagrangians is less opti-
mistic. We have analyzed only two models of many pro-
posed in the literature and found that the differences
between predictions of such models are essentially low-
er than accuracy of current observational data. So, the
scalar fields with KG and DBI Lagrangians are indis-
tinguishable at the current level of accuracy of obser-
vational data (right panels of Fig. 10-12). Only in the
case of decreasing EoS parameter the scalar fields with
KG and DBI Lagrangians are potentially distinguishable,
perhaps already by Planck data. But in the case of the
increasing EoS parameter they are practically indistin-
guishable, since the differences for them are < 0.1%,
which is essentially lower than the accuracy of theoretical
studies and computer calculations of predictions. These
small differences have a simple explanation: in such a
case the densities of scalar fields were too low in the past
and did not leave the fingerprints in the CMB anisotropy
and LSS. This conclusion can be generalized for any type

of scalar fields — quintessence, phantom, quintom, etc.
We have considered the principal possibility of distin-
guishing the scalar fields with decreasing and increas-
ing EoS parameters and two Lagrangians in cosmologi-
cal models with the minimal set of parameters. Adding
extra parameters — masses of active neutrinos, sterile
neutrino, tensor mode, primordial magnetic fields, etc.
— weakens constraints on dark energy parameters and
possibility to distinguish the different scalar fields mod-
elling it. So, only joint progress of theory, laboratory ex-
periments, astrophysical and cosmological observations
will lead to the unveiling of the nature of dark energy.

ACKNOWLEDGMENTS

This work was supported by the project of Min-
istry of Education and Science of Ukraine (state regis-
tration number 0110U001385), research program “Cos-
momicrophysics” of the National Academy of Sciences of
Ukraine (state registration number 0109U003207) and
the SCOPES project No. 1273720128040 of Swiss Nation-
al Science Foundation. Authors also acknowledge the us-
age of CAMB and FuturCMB packages.

[1] E. J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).

[2] M. S. Turner, D. Huterer, J. Phys. Soc. Jpn 76, 111015
(2007).

[3] J. Frieman, M. Turner, D. Huterer, Ann. Rev. Astron.
Astrophys. 46, 385 (2008).

[4] in Special issue on dark energy, edited by G. Ellis,
H. Nicolai, R. Durrer, R. Maartens, Gen. Relat. Gravit.
40, Iss. 2-3 (2008).

[5] R. R. Caldwell, M. Kamionkowski, Ann. Rev. Nucl. Part.
Sc. 59, 397 (2009).

[6] E. V. Linder, arXiv:1004.4646 [astro-ph.CO]|.

[7] A. Blanchard, Astron. Astrophys. Rev. 18, 595 (2010).

[8] D. Sapone, Int. J. Mod. Phys. A 25, 5253 (2010).

[9] L. Amendola, S. Tsujikawa, Dark Energy: theory and ob-
servations (Cambridge University Press, 2010).

[10] Y.-F. Cai, E. N. Saridakis, M. R. Setare, J.-Q. Xia, Phys.
Rep. 493, 1 (2010).

[11] Lectures on Cosmology: Accelerated expansion of the
Univese. Lect. Notes in Physics 800, edited by G.
Wolschin, (Springer, Berlin—Heidelberg, 2010).

[12] R. Durrer, The Cosmic Microwave Background (Cam-
bridge University Press, 2008).

[13] M. Chevallier, D. Polarski, Int. J. Mod. Phys. D 10, 213
(2001).

[14] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).

[15] G. B. Zhao, J. Q. Xia, B. Feng, X. Zhang, Int. J. Mod.
Phys. D16, 1229 (2007).

[16] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330
(2009).

[17] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18
(2011).

[18] B. Novosyadlyj, O. Sergijenko, S. Apunevych, V. Pelykh,
Phys. Rev. D 82, 103008 (2010).

[19] R. de Putter, D. Huterer, E. V. Linder, Phys. Rev. D 81,
103513 (2010).

[20] B. Novosyadlyj, O. Sergijenko, J. Phys. Stud. 13, 1902
(2009); arXiv:0808.2098 [astro-ph].

[21] O. Sergijenko, B. Novosyadlyj, Phys. Rev. D 80, 083007
(2000).

[22] C. P. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995).

[23] A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538,
473 (2000).

[24] http://camb.info

[25] N. Jarosik et al., Astrophys. J. Suppl. Ser. 192, 14
(2011).

[26] D. Larson et al., Astrophys. J. Suppl. Ser. 192, 16 (2011).

[27] B. A. Reid et al., Mon. Not. Roy. Astron. Soc. 404, 60
(2010).

[28] A. G. Riess et al., Astrophys. J. 699, 539 (2009).

[29] R. Amanullah et al., Astrophys. J. 716, 712 (2010).

[30] G. Steigman, Ann. Rev. Nucl. Part. Sci. 57, 463 (2007);
E. L. Wright, Astrophys. J. 664, 633 (2007).

[31] R. Kessler et al., Astrophys. J. Suppl. 185, 32 (2009).

[32] A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002).

[33] http://cosmologist.info/cosmomc

[34] V. Sahni, T. D. Saini, A. A. Starobinsky, U. Alam, JETP
Lett. 77, 201 (2003).

[35] P. S. Corasaniti, M. Kunz, D. Parkinson, E. J. Copeland,
B. A. Bassett, Phys. Rev. D 70, 083006 (2004).

[36] L. Pogosian, P. S. Corasaniti, C. Stephan-Otto, R. Crit-
tenden, R. Nichol, Phys. Rev. D 72, 103519 (2005).

[37] L. Hollenstein, D. Sapone, R, Crittenden, B. M. Schafer,
J. Cosmol. Astropart. Phys. 04, 012 (2009).

[38] L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu,
Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 10, 013
(2006).

[39] http://lpsc.in2p3.fr/perotto/

1901-11



B. NOVOSYADLYJ, O. SERGIJENKO, S. APUNEVYCH

PO3PI3ZHIOBAHICTb CKAJIAPHO-IIOJILOBUX MOJEJIEM TEMHOI EHEPI'Ti
31 SMIHHUM ¥ YACI ITAPAMETPOM PIBHAdHHS CTAHY

B. Hosocsuit, O. Ceprienko, C. AnyneBua
Acmponomiuna obcepsamopis JIveiecvkozo nayionasvhozo ywisepcumemy imeni leana Ppanka,
eys. Kupuaa i Megodia, 8, Jlveis, 79005

IIpoanasrizoBaHO MOXKJIUBICTH PO3PIZHEHHS CKAJIsIPHO-IIOJBOBUX MOJIeJIeil TEMHOI eHepril 3 pisHUMHU JiarpaHKi-
aHaMM Ta 3MIHHAM y 9aci mapaMeTpoM DIiBHSHHSI CTaHY 3a HAsBHUMU CIIOCTEPEKYBAJbHUMU JAHUMHU. PO3riisiHyTO
6araTOKOMIIOHEHTHY KOCMOJIOTIYHY MOJIE/Ib 31 CKAJISPHUAM I0JIeM i3 starpamxianom Kisitna Topnona a6o ipaka—
Bopra—Tudenbaa Ta MOHOTOHHO CliaIar0uuM abo 3POCTAIOYNM MTapPaMEeTPOM PIBHSIHHSI CTAHY SIK TEMHOIO €HEPIi€ro.
Bceranosiieno, 1o cKajsipHO-TIOIBOBI MOJIE/Ii TEMHOI eHepril 31 ClaJarounM Ta 3POCTAIOYNM ITapaMeTPaMU PIBHAHHS
CTaHy MTOBUHHI PO3PI3HATHUCHA HA PIBHI TOYHOCTI MaflbyTHIX CrIOCTepeKyBaJIbHUX HaHUX. JlarpamKianu CKaJIsspHIX
[IOJIiB MOKHA PO3PI3HUTH 32 OUiKyBaHMMH crocrepexkysagbHumu ganumu (Planck, SDSS Tomo) y Bunaaxy crma-
JIAI0YOro IapaMeTpa PiBHAHHS CTaHy, IPOTE€ BOHU ITPAKTUYHO HE PO3PI3HSAIOTHC, SAKIO HapaMeTp PIBHSIHHS CTAHY

3pocTae.
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