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The regression modelling method is described in detail and applied to the problem of geomagnetic
indices forecasting. It provides not only quality forecasts but also gives new information about the
underlying physics of the solar wind-magnetosphere interaction.
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I. INTRODUCTION

Space weather forecasting is a challenging and non-
trivial activity. The most straightforward approach to
space weather prediction is to study the whole complex
chain of physical processes involved in magnetospheric
dynamics and conjugate them in a global model of the
evolution of the magnetosphere under the influence of
the solar wind. Unfortunately, this is not yet possible due
to our poor understanding of the physics of the interac-
tion between the solar wind and the magnetosphere. For
this reason, different approaches should be tried. Today
the optimal combination of virtues and vices is provided
by the methods involving time series analysis and da-
ta mining [1]. They provide a moderate prediction time
(up to several hours) with the highest available accuracy
(> 80%). They are very effective and easy to use but
strongly depend on satellite data availability. These are
“black box” or “input-output” models, which seek only
to reproduce the system’s output in response to changes
of its inputs. The model terms are usually physically in-
terpretable and thus useful for construction of new phe-
nomenological models. For this reason, this method can
not only provide a space weather forecast per se, but al-
so can improve our knowledge of the underlying physics
and thus increase the efficiency of other methods.

Multidimensional time series analysis can be per-
formed using the methods of statistics, signal processing,
informatics, fuzzy logic, etc. The most widely used vari-
ations are artificial neural networks, optimization, and
correlation analysis.

Artificial neural networks [2–5] provide short-term pre-
dictions up to 4 hours with the correlation coefficient
of 0.79 in the paper [4]. Earlier implementations of this
approach experienced significant difficulties predicting
strong geomagnetic storms with KP > 5, but this ap-
proach remains one of the most popular alongside the
empirical methods.

Optimization approach [6–12] seems to be more suc-
cessful being able to provide 8-hour predictions in the
paper [8]. However, in the papers based upon the opti-
mization methods the volume of the dataset used usually
does not exceed 1 year, which is insufficient to correctly
describe the solar cycle.

Correlation analysis [13–17] gives interesting results,

but it was used solely for developing and constraining
empirical models [16].

However, most of these methods have a common fea-
ture: they lead to a regression relation at some point, so
it seems natural to skip all the preliminary steps and
instantly use the regression analysis without unneces-
sary multiplication of entities. Regression analysis itself
was attempted earlier by Srivastava [18], but it was used
to estimate the probability of intense and super-intense
storm occurrence depending on the solar and interplan-
etary parameters. She was able to predict 2 of 4 super-
intense and 5 of 5 intense CME-driven storms during the
1996–2002 period using another 46 CME-driven storms
for training.

Here we describe a new approach, named “regression
modelling”, which allows to achieve accurate short-term
forecasts of geomagnetic indices, which we will use as
quantitative characteristics of space weather. The pro-
posed method is statistical, but has some features of em-
pirical models. It is based upon the regression analysis
and mathematical statistics. This approach involves the
inductive construction of a regression relation between
output and input values. It can provide accurate short-
term and, to a certain extent, medium-term forecasts and
gives new information about the underlying physics, thus
contributing to the solar-terrestrial physics.

Some preliminary descriptions of different aspects of
this method can also be found in the articles [19–23].

II. DESCRIPTION OF THE REGRESSION
MODELLING METHOD

In this Section we will give a formal description of the
regression modelling method in its most general form,
providing links to space weather forecasting where nec-
essary.

Consider a discrete dynamical system (in our case, ter-
restrial magnetosphere) with an unknown number Ktot

of inputs uk and one output y (one of geomagnetic in-
dices), which is simply one of inputs uk. At each step
t we know only K < Ktot inputs uk(t), k = 1,K (1,K
means all the integer numbers from 1 to K inclusively)
and an output y(t). Then at an arbitrary step T we can
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write the predicted value of the system’s output in the
form

y(T + Θ) = y∗(T + Θ) + ∆y(T + Θ), (1)

where Θ is the lead time of the forecast (the number
of hours the forecasted value is ahead of the last mea-
sured value), y∗(T +Θ) is the estimated predicted value,
and ∆y(T + Θ) is the uncertainty, which we assume to
be random and stochastic. We are also forced to assume
that all values are distributed normally to be able to use
the methods of mathematical statistics, though this is, of
course, not always true. We also assume that the statisti-
cal properties of the dynamical system do not change on
the time scale Θ. Note that the uncertainty ∆y(T + Θ)
can be also assumed to be members of some set or to lie
in a certain interval [24]. The predicted value y∗(T + Θ)
is expressed through a partial regression relation [25]:

y∗(T + Θ) = C0 +
m∑

i=1

Cixi(T ), (2)

where xi, i = 1,m are the regressors, which are arbi-
trary functions of input quantities uk(t), which are al-
ready measured at the time T when the forecast is made,
Ci, i = 0,m are the regression coefficients, C0 is the co-
efficient of the constant regressor x0 ≡ 1, and m is the
number of variable regressors.

We choose the regressors xi in the form of products of
powers of the input quantities

xi(t) =
K∏

k=1

upk

k (t− l), l = 0, L, (3)

where pk are powers, which can be equal to zero or any
natural number, l is the lag, and L is the maximal lag.
This is equivalent to using a Kolmogorov-Gabor poly-
nomial [26] as a basis function. In contrast to empirical
models we do not add fitting parameters and all the re-
gressors have physical meaning. Note that different sets
of regressors should be taken for different values of the
lead time Θ.

Of course, y(T + Θ) is also affected by the inputs
uk(T + 1), . . . , uk(T + Θ). However, we don’t know the
values of these inputs at the moment T and thus cannot
use them. This means that by increasing the lead time Θ
we sacrifice the ability to take into account the processes
with time scales less than Θ.

Now we should determine the coefficients Ci by the
generalised least squares method over a large sample of
solar wind and geomagnetic data, with equal statistical
weights of all points. It is usually advised [27] to use sin-
gular value decomposition for this task, but it is a rather
slow algorithm and requires multiplying two n×m matri-
ces, which requires a lot of RAM (each matrix requires
approximately 1.67 MB of RAM per regressor for the
sample described in Section III). For this reason, we used
the simple Gauss–Jordan elimination [27]. The latter al-
so produces a covariance matrix, which is an additional
advantage of this algorithm. The expression for Ci has

the form [27,28]:

Ci(t) =
∑

j

a−1
ij bj , (4)

where (•)−1 denotes matrix inversion,

aij =
T∑

t=1

xi(t)xj(t), (5)

bj =
T∑

t=1

y(t)xj(t). (6)

Its standard error is given by [27,28]

∆Ci =
√

ζii, (7)

where

ζij ≡ cov(xixj) = σ2a−1
ij (8)

is the covariance matrix,

σ =

√
S

n−m
(9)

is the residual mean square (RMS) error of the forecast,

S =
n∑

t=1

(y(t)− y)2 (10)

is the residual sum of squares (RSS), and n is the num-
ber of datapoints in the sample. The value n−m here is
a number of degrees of freedom.

The statistical significances of the regressors are de-
termined according to Fisher’s F-test [25, 29]. This test
allows separating significant and insignificant regressors.
The insignificant parameters are then rejected and the
routine is repeated until the regression contains only sig-
nificant regressors. This is done in the following way. Af-
ter processing the data with the least square method,
Fisher significance parameter Fi was determined for each
regressor by comparing residuals for the full model and
the model without the regressor in question [25,28]:

Fi =
Si − S

σ
=

(
Si

S
− 1

)
(n−m) (11)

where Si is RSS of the model without the i-th regres-
sor. Note that this procedure involves solving m gener-
alised least squares problems whose design matrices have
the dimensions n × (m − 1), so it is not too fast. Even
when using Gauss–Jordan elimination, we should per-
form m inversions of (m − 1) × (m − 1) matrices, so
the runtime growth cubically with m. For this reason,
we should not add all the regressors at once, but rather
add them gradually. This procedure will be described in
Section IV. All the Fi values were compared to the val-
ues 2.71, 3.84, 5.02, 6.64, 7.88, 10.83 and 12.10, which
correspond to the statistical significance levels of 90%,
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95%, 97.5%, 99%, 99.5%, 99.9% and 99.95% respective-
ly. Then, the insignificant regressors are rejected and the
routine is repeated until all the regressors are significant.
The number of significant regressors thus depends on the
selected significance level threshold. All the results given
below correspond to a minimal significance level of 90%.
Since rejecting any regressor leads to the change of the
statistical significances of the others, it is necessary to
reject insignificant regressors in several steps, ideally one
regressor at a time. In practice, since the F-test has a
significant runtime, it is better to reject all insignificant
regressors at once, but to gradually increase the signifi-
cance threshold to the desired value.

After that, new regressors are added. After adding
new regressors, all the significances are recalculated, and
some of the old regressors can become insignificant.

This routine should be repeated while the addition
of new regressors improves some quality characteristics.
Such characteristics, depending on the goal, can be the
maximum forecast error max

T
|∆y(T +Θ)|, the RMS error

σ or the prediction efficiency (PE)

PE = 1−
(

σ

σS

)2

, (12)

where

σS =

√
S

n− 1
(13)

is the sample’s standard deviation (SD), or the linear
correlation (LC) coefficient

r(ξ, η) =
∑

(ξ − ξ)(η − η)√∑
(ξ − ξ)2

∑
(η − η)2

(14)

between y∗(T +Θ) and y(T +Θ). Note that these values
for the developed model should be compared to the same
values for the persistence model

y∗0(T + Θ) = y(T ), (15)

which is, obviously, the simplest possible model, which
states that the output value will not change since the last
measurement, so it just shifts the time series one unit of
time to the future.

There is one more thing worth noting about the eval-
uation of the models. It is possible that the developed
model will be too sample-specific and fail to work on dif-
ferent samples, no matter how good its quality charac-
teristics are. To avoid such a situation, the sample should
be divided into 2 subsamples. The first subsample, which
is commonly called the training sample, is intended for
the determination of the model structure and parame-
ters. The second subsample, which is called the test or
the validation sample, is for the evaluation of the model.

The regressors xi are generally nonlinear, so from the
control theory’s point of view, this method is able to de-
scribe discrete dynamical systems with strong nonlineari-
ty. This is an essential feature of the regression modelling

method. To obtain a forecast of the sought geomagnetic
index, one has to sum up the regression relation over a
given sample.

Now we have only one question left: the accuracy of
the obtained models. It is important to understand that
there are several different sources of errors. First of all,
there is an error caused by the incompleteness of our
model, which, assuming that ∆y is distributed normally,
is equal to

∆y2
M =

m∑
i=1

m∑
j=1

ζijxixj . (16)

Then, there are errors caused by uncertainties in the de-
termination of the input quantities. We can take them
into account by calculating the partial derivatives of the
output with respect to the inputs:

∆y2
u =

K∑
k1=1

K∑
k2=1

∂y

∂uk1

∂y

∂uk2

cov(uk1 ,uk2). (17)

They divide into 3 types: measurement errors, which are
negligible, errors caused by the filtration of the input
data, which are provided in the OMNI 2 database, and
intrinsic temporal irregularities of the input parameters.
Finally, there are spatial variations ∆yS , which are due
to the fact that we measure the interplanetary magnetic
field (IMF) and the solar wind plasma parameters lo-
cally and assume that they are uniformly distributed in
space. To estimate this type of errors we need to perform
simultaneous multipoint measurements of input parame-
ters, which became possible since the launch of STEREO
mission in 2006, but lies beyond the scope of this method.

This method has two implementations: static and
adaptive. The static version involves calculation of the re-
gressors and the coefficients on the training sample with
forecasting made on the validation sample. The adap-
tive version involves calculation of the regressors on the
training sample and calculation of the coefficients simul-
taneously with the prediction, so that the coefficients are
recalculated at each step as new data become available.

III. DESCRIPTION OF DATA USED

We used the OMNI 2 database [30], which contains
IMF, solar wind and geomagnetic data, averaged over
1-hour intervals (at the time of publication it contained
54 parameters in total, starting from 1 January 1963).
This database covers a vast number of spacecraft. In re-
cent years the data come from spacecraft located in the
first Lagrange (L1) point, also called a libration point,
which is situated along the Earth–Sun axis approximate-
ly 0.01 AU (1.5 millions of kilometres) from the Earth.
For typical interplanetary conditions (V = 470 km s−1)
a spacecraft located there provides real-time data with a
40-minute lead time.

The data before 1976 are scarce and of poor quali-
ty and their inclusion in the dataset negatively impacts
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its characteristics. Also, the final DST index is avail-
able only up to 2003, and we should reserve a valida-
tion sample to test our models. For this reason we used
a training sample that ranges from 1 January 1976 to 31
December 2000, thus forming a continuous 25-year time
series with a total of n = 219168 datapoints. For the
DST index the mean is DST = −18.3 nT, the median is
−23 nT, the mode is 8 nT, and the standard deviation
is σDST = 24.6 nT. The distribution of the DST index
visually represents a normal one, but the Pearson’s χ2

test [25] disproves this null-hypothesis at the 99.99% con-
fidence level (χ2 = 416125.8). This is due to flatter wings
of the distribution, which are caused by the periodicities
of the ACF. For the aP index the mean is aP = 14.9 nT,
the median is 5 nT, the mode is 27 nT, and the standard
deviation is σaP

= 20.0 nT. In Section VI we will also
use a sample ranging from 1 January 2001 to 31 Decem-
ber 2003 (the latest value of the final DST index) and its
subsamples to test the developed models.

Unfortunately, during intense storms the instruments
aboard the spacecraft are often turned off to prevent per-
manent damage to them and some or all of the input
values are unavailable. By rejecting filled values from the
time series, we obtain the sample, which can be divided
into different subsamples for specific purposes. Of course,
the resulting sample will vary according to the exact de-
pendences of the regressors on the input quantities. For
example, if our model contains a regressor, which de-
pends on the ion density with a lag of 5 hours, then
we have to reject each datapoint whose 5th predecessor
contained a filled value of the ion density. Also, before
the February 26, 2009 update of the OMNI 2 database
we were forced to insert some missing data from other
databases, but now all the available data are included for
all years.

IV. SELECTION OF THE REGRESSORS AND
THE MEMORY OF GEOMAGNETIC INDICES

Now, all that remains is to choose some initial set of
regressors. It seems natural to start from the previous
values of the output value itself. This will also give us a
possibility to investigate temporal variations of the geo-
magnetic indices. For this purpose, we should construct
an autoregression model [23]

y∗AR(T + Θ) = C0 +
L∑

l=0

Cly(T − l) (18)

or, in other words,

xl(t) = y(t− l), l = 0, L. (19)

This model alone is not sufficient to correctly forecast
space weather, but it sets a basis for the construction of
models that are able to do so.

Let us determine the maximum reasonable value of L.
For this purpose, we plot the autocorrelation function
(ACF) at Θ = 1 for the DST (Figure 1) and the aP in-
dex (Figure 2). A brief glance at the ACF is enough to

tell that neither of the geomagnetic indices can be treat-
ed as a Markov process. In fact, both the DST and the
aP indices are periodically correlated.
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Fig. 1. Autocorrelation function of the DST index.
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Fig. 2. Autocorrelation function of the aP index.

One can see that in both cases the ACF tends to a sinu-
soid with a period close to half a year. Besides the half-a-
year periodicity one can also notice the 27-day periodici-
ty, caused by Carrington rotation of the Sun. The former
is caused by seasonal variations, which yields a question:
if there were no temporal variations, what would ACF
tend to at large offsets? If the distribution of DST and aP

was normal, the answer would be zero. However, the dis-
tribution slightly deviates from the normal one, so ACF
can tend to some non-zero quantity.

To determine this quantity we need to remove tem-
poral variations. For this purpose we need to calculate
the ACF of a random sample with the same statistical
characteristics as the actual sample. The easiest way to
get such a sample is to process the actual sample with a
permutation method, which is widely used in astronomy
e.g. for calculation of 2-point correlation functions. This
method involves random shuffling of the sample. Using
this method many times (10000 times in our case) and
calculating the correlation coefficient each time, we get
the distribution of the correlation coefficient by Monte
Carlo method.

The distribution of the coefficient for this sample ap-
peared to be very close to a normal distribution. For the
DST index the mean was equal to 0.008 nT and the vari-
ance — to 5.1 · 10−6 nT2. For the aP index the mean was
equal to 0.0052 nT and the variance — to 8.4 · 10−6 nT2.
The maximum recorded value in 10000 trials was equal
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to 0.015 nT for both indices. The top and the mean val-
ues are depicted on Figures 1 and 2 by the horizontal
lines. As one can see, in reality the correlation coefficient
exceeds this value at most times due to temporal varia-
tions. The ACF of the DST index crosses the top line for
the first time at about 6000 hours, though the difference
between the ACF and the sine with a half-year period
crosses it at about 2000 hours, which is about 3.5 27-day
Carrington periods. The ACF of the aP index crosses the
top line at about 1200 hours, though the difference be-
tween the ACF and the sine with 27-day period crosses
it at about 1000 hours. We will take the latter value as a
rough estimation of L. This hints that rather old values
of the geomagnetic indices can be quite significant.

Let us return to equation (18). Applying the F-test we
can determine which previous DST and aP values are sta-
tistically significant. We did not search statistically sig-
nificant values for L > 1000, but it is possible that there
are even older statistically significant values. A similar
situation was reported by Johnson and Wing [16] regard-
ing KP : “the significance is often quite large for extended
periods of time (10–20 days)”. In fact, after adding the
regressors corresponding to satellite data, we still found
statistically significant values of DST as far as 850 hours
ago (over 35 days). The statistical significance of these
oldest values can be over 99.9%.

After determining which previous values of the geo-
magnetic indices are statistically significant, we added
all the spacecraft-measured parameters available in the
OMNI 2 database with lags up to 24 hours for hourly
values and without lag for daily values. Naturally, com-
mon sense also counts: for example it would be silly to
add IMF components in GSE and GSM coordinates at
the same time. If some regressors xi have large statisti-
cal significance (we used a threshold Fi > 100), we also
added all their possible cross-products and powers

∏
i

xpi

i .

For practical purposes we used non-negative integer val-
ues of pi, limited by a total power of 4:

∑
i

pi 6 4. The

total number of regressors in final models varies roughly
from 50 to 250. Since it is quite large, we will not give
here any lists of regressors or coefficients.

Of course, this method does not guarantee that all the
significant regressors will enter the regression, since the
regressors are not orthogonal and thus more than one
expansion is possible.

V. TEMPORAL VARIATIONS OF
GEOMAGNETIC INDICES

On Figure 1 one can see a clear seasonal dependence
of the DST index. Indeed, if we select two subsamples,
corresponding to the summer and the winter in northern
hemisphere, bounded by vernal and autumnal equinox-
es, and verify the hypothesis that the difference between
the corresponding average DST values is statistically sig-
nificant using a one-sided Student’s test [25], we obtain
t∞ = 54.7, which is well over 99.95% significant. Val-
ues of t∞ corresponding to 99% and 99.95% confidence

levels are equal to 2.3 and 3.3 respectively. For the diur-
nal asymmetry the Student’s test gives t∞ = 3.3, which
corresponds to a significance level of 99.95%. Note that
formally the Student’s test is applicable only to normally
distributed values and the distribution of DST has flatter
wings than the normal one. However, taking into account
the obtained large values of t∞, we can be sure in quali-
tative conclusions made.

This dependence was described in many articles, for
example in [31–34], but the reason behind it is still
disputed. Most authors believe these asymmetries are
caused by either of two cusps turning to the sunlit side
due to annual rotation of the Earth with respect to the
Sun. However, O’Brien and McPherron [34] state that
this mechanism would give only 17% of the observed
asymmetry. Takalo and Mursula [33] connected the diur-
nal variations of DST with an inhomogeneous distribu-
tion of DST network stations with respect to the longi-
tude.

In our opinion, this behaviour is most likely caused by
an asymmetry of the DST stations with respect to the
geomagnetic equator. In fact, only the Hermanus station
is located in the southern hemisphere (dipole latitude
−33.3◦), while the other 3 stations are located in the
northern hemisphere (Kakioka +26.0◦, Honolulu +21.1◦,
San Juan +28.0◦). Thus, when the subsolar point is in
the northern hemisphere, there are 3 stations nearby, but
when it is in the southern hemisphere, there is only one
station.

The official definition of the DST index is [35]

DST(t) =
〈∆H(t)− Sq(t)〉

〈cos θ〉
, (20)

where ∆H(t) is the difference between the observed and
the baseline values of the H-component of the geomag-
netic field,

Sq(t, s) =
∑
m

∑
n

Amn cos(mt + αm) cos(ns + βn), (21)

is the solar quiet daily variation, s is the current month,
θ is the geomagnetic latitude, and 〈•〉 is an average over
4 contributing stations. Since it does not depend on the
sign of θ, any sources in the northern hemisphere will af-
fect the DST index 3 times stronger than their southern
counterparts. Note that temporal variations of the DST

index are provided not only by actual temporal varia-
tions of the H-component, but also by the term (21),
which explicitly contains them.

Usually, the DST index is associated with the ring cur-
rent, which is highly asymmetric during the geomagnet-
ic storm [36–38]. Moreover, the ∆H(t) term includes all
sources of the magnetic field, such as ionospheric cur-
rents, power lines, industrial facilities, railroads and so
on [39]. This fact explains, among others, the 7-day pe-
riodicity, which is of purely anthropogenic origin. Also,
initially the DST index is derived from very noisy data,
and it is possible to introduce additional errors during
its processing.

This means, in particular, that if some input param-
eter has high statistical significance, it is not necessary
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geoeffective, but if it is statistically insignificant, it is
most certainly not geoeffective.

Taking this known geoeffective factor as an example
we demonstrate how easily one can take it into account
using regression approach. To do so one should simply
add the synthetic inputs

uK+1(t) = sin((DOY(t)− 80)π/182.625) (22)

and

uK+2(t) = cos((DOY(t)− 80)π/182.625) (23)

Here DOY is the day of the year, 80 is the number of
days between the beginning of the year and the ver-
nal equinox, and 182.625 is the number of days in half
a year. The first of these terms is significant and de-
scribes summer-winter asymmetry, and the second one
(which appears statistically insignificant) describes an
absent spring-autumn asymmetry. Likewise, for the di-
urnal asymmetry the corresponding synthetic inputs will
be

uK+3(t) = sin((UT(t)− 2)π/12) (24)

and

uK+4(t) = cos((UT(t)− 2)π/12) (25)

Here 2 is the time difference between UT and the local
time at the northern magnetic pole, and 12 is the number
of hours in half a day. Both these terms are significant.

The coefficient of the regressor, equal to uK+3(t), is
less than the actual difference between the summer and
the winter mean DST values by an order of magnitude.
This can be explained in the following way: there are
other regressors, which depend on the parameters with
statistically significant summer-winter asymmetry, e.g.
previous DST values. They provide the lion share of the
summer-winter asymmetry of the DST index. A good ex-
ample of such a parameter is the international sunspot
number R, which has a 27-day periodicity due to Car-
rington’s rotation of the Sun. Nevertheless, there is a
small difference which can not be expressed with these
terms. Including it into regression, we obtain these sta-
tistically significant regressors. To further illustrate this
point let us consider as an example a value

X(t) = const + A sinωt (26)

In the regression it will look like

X(t + ∆t) = X(t) + A(sinω(t + ∆t)− sinωt)
= X(t) + A((cos ω∆t− 1) sinωt + cos ωt sinω∆t). (27)

The first term in brackets is of order (ω∆t)2, and the
second one is of order (ω∆t) in the natural assumption
that ω∆t � 1. So, it will seem that the coefficient is
A(ω∆t) rather than A. Note that this is just an example
and has nothing to do with the actual regressors.

However, the distribution of mean DST values vs. the
day of the year is much more complicated. Among its
features there is a strong asymmetry between the sum-
mer and the winter on the one hand and the spring and
the autumn on the other. To take it into account we in-
troduced additional terms into our regression, which are
the powers of uK+1(t) and their products with the powers
of uK+2(t). The sum of regressors with the correspond-
ing coefficients is very similar to the actual distribution.
Note that the coefficients were obtained independently
from the distribution.

We did the same thing with the diurnal asymmetry.
The cross-product uK+1(t) · uK+3(t) is also significant
and should be included in the regression. After this we
obtained a joint distribution of seasonal and diurnal vari-
ations of DST index, which contains 18 regressors. In-
creasing the number of the regressors describing tempo-
ral variations of the geomagnetic activity we can improve
the accuracy of this distribution. In particular, one could
add 11-year Schwabe’s and 22-year Hale’s solar cycles,
higher powers of uK+1, . . . , uK+4(t) etc.

Thus, we demonstrated how easily one can take into
account known effects in this method’s framework. Note
that these regressors do not depend on satellite param-
eters and can be used alongside the previous values of
geomagnetic indices. In this case they improve the fore-
casting skills of the model and make some of the autore-
gression terms insignificant.

More details on the temporal variations of the DST in-
dex and the identification of new geoeffective parameters
can be found in the article [21].

VI. FORECAST RESULTS

Now let us return to the main goal of this article and
discuss forecasting skills of the developed models.

First of all, we determined the statistical characteris-
tics of the developed models with 3 hours lead time over
the main sample and listed them in Table 1. It is divided
into 3 parts for DST, aP and KP indices. For DST and
aP indices we provide RMS errors σ, prediction efficien-
cies and linear correlation coefficients for the developed
(r) and the persistence (r0) models, and for KP index we
provide the percentages of points with deviations lying
within ± 1

3 and ±1 bins. All these data are provided for 4
models: persistence, autoregression, linear and nonlinear
models.

However, some other approaches work well inside the
training sample, where they “saw” the correct answer, but
perform poorly during the out-of-sample validation. Let
us verify that our approach holds no such vices using the
validation sample ranging from 1 January 2001 to 31 De-
cember 2003. These results are also provided in Table 1.
One can see that our models worked well over the train-
ing sample with an exception of the nonlinear model for
the DST index which appeared to be too sample-specific.
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Index DST aP KP

Model σ, nT PE, % r, % r0,% σ, nT PE, % r, % r0,% ± 1
3 ,% ±1,%

Training sample (Jan 1, 1976 — Dec 31, 2000)

Persistence 10.38 82.2 91.1 91.1 13.65 53.5 76.8 76.8 46.2 81.8

Autoregr. 9.92 83.7 91.5 91.1 12.74 59.6 77.2 76.8 80.1 93.9

Linear 7.89 85.6 92.5 89.2 8.06 68.5 82.9 71.6 80.0 94.3

Nonlinear 7.38 87.8 93.7 89.3 7.69 71.3 84.6 71.6 81.6 95.6

Validation sample (Jan 1, 2001 — Dec 31, 2003)

Persistence 12.00 82.3 91.2 91.2 15.72 53.8 76.9 76.9 46.9 82.6

Autoregr. 11.59 83.9 91.6 91.2 15.07 58.8 76.9 76.8 80.3 94.0

Linear 9.26 87.7 93.7 90.6 10.35 67.2 82.4 76.6 81.1 94.8

Nonlinear 12.11 79.8 89.6 90.9 10.80 64.3 80.9 76.6 83.2 96.1

Table 1. Statistical characteristics of the developed models for short-term forecasting (3 hours ahead).
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Fig. 3. Forecasted and measured values of the DST index
for the Halloween storm of 2003.
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Fig. 4. Forecasted and measured values of the aP index for
the Halloween storm of 2003.

Since the mean square error cannot tell if the devia-
tions are random or systematic, let us plot the forecasted
indices over a few subsamples corresponding to strong
geomagnetic storms. Figures 3 and 4 show the forecast-
ed and the measured values of the indices for a series of
geomagnetic storms in October-November 2003. As you
can see, the regression modelling method appeared to be

more than adequate to forecast space weather indices.

VII. CONCLUSION

In this article we have described the regression mod-
elling method of space weather forecasting. It provides
precise and reliable short-term forecasts of geomagnetic
indices at least 3 hours ahead. It is possible to increase
the lead time by sacrificing the ability to describe fine
temporal structure of the output value, i.e. using out-
put values with lower temporal resolution. Thus it seems
reasonable to try forecasting daily values like AP or C9

a few days ahead. In addition, the regression modelling
method is not limited to forecasting geomagnetic indices,
so we can apply it to forecast solar activity as well. It
can also tell which quantities are the most geoeffective
and in what way they are related to geomagnetic indices,
thus contributing to the understanding of the underly-
ing physics. Last but not least, the regression modelling
method is suitable for issuing real-time space weather
forecasts since it takes about one minute on an average
PC to calculate the coefficients and just a few seconds to
issue the forecast.
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РЕҐРЕСIЙНЕ МОДЕЛЮВАННЯ ГЕОМАГНIТНОЇ АКТИВНОСТI

А. С. Парновський
Iнститут космiчних дослiджень НАН України та НКА України,

просп. Акад. Глушкова, 40, корп. 4/1, Київ–187, 03680 МСП, Україна

У статтi докладно описаний метод реґресiйного моделювання. Його застосовано до задачi прогнозування
геомагнiтних iндексiв. Вiн забезпечує не тiльки якiсне прогнозування, а й новi вiдомостi щодо механiзмiв
взаємодiї сонячного вiтру з магнiтосферою.
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