ЗБУДЖЕННЯ ІЗОМЕРНОГО СТАНУ $11/2^-$ ІЗОТОПУ ¹²³Те В РЕАКЦІЇ (γ ,n)

В. М. Мазур^{1,2}, Д. М. Симочко¹, З. М. Біган¹, Т. В. Полторжицька²

1 Інститут електронної фізики НАН України,

вул. Університетська, 21, Ужгород, UA-88017

² Ужгородський національний університет, вул. Підгірна, 46, Ужгород, UA-88000

(Отримано 10 березня 2011 р.; в остаточному вигляді — 05 грудня 2011 р.)

Досліджено залежності ізомерних відношень від максимальної енерґії гамма-квантів у реакції 124 Te $(\gamma,n)^{123m,g}$ Te в інтервалі енерґій 10–22 MeB. Одержані перерізи збудження метастабільного стану з $J^{\pi} = 11/2^{-}$ ядра 123 Te. Експериментальні результати порівнюються з результатами розрахунку, проведеними в рамках програмного пакета TALYS-1.2.

Ключові слова: фотоядерні реакції, ізомерні відношення, переріз.

PACS number(s): 25.20.-x

Вивчення ядерних реакцій з випромінюванням різних частинок у вихідному каналі — важливе джерело інформації про механізм ядерної реакції, структуру високозбуджених станів материнського ядра, властивості й характеристики новоствореного ядра.

Дослідження властивостей збуджених станів у ядерних реакціях включає характеристики та ймовірність збудження рівнів, їхню енергію, спіновий розподіл, дає нам змогу одержати важливу інформацію про механізм реакції. Однак дані в цій області не повні. Деякі зі зазначених властивостей можна отримати з відношення виходів продуктів реакцій у різних спінових станах. Одним із таких напрямків досліджень є вимірювання ізомерних відношень, які визначаються як відношення перерізів (виходів) заселення ізомерних й основних станів дочірніх ядер. Це відношення залежить від спіну ядер мішені й моменту, що вноситься в ядро падаючим гамма-квантом, а також від механізму каналу реакції, властивостей кінцевих ядер при високих енергіях збудження, а також від характеристик низькорозташованих дискретних рівнів, через які формуються ізомерний та основний стани [1]. Тут потрібно відзначити, що потреба в нових й уточнених даних зі збудження ізомерних станів зумовлена цілим рядом задач як ядерної фізики (опис механізму реакції, з'ясування виду функції розподілу густин рівнів и т. д.), так і суміжних напрямків (активаційний аналіз, розрахунки процесу нуклеосинтезу і т. д.), і це знайшло своє відображення у відповідних оглядах [2,3].

Проведення таких досліджень на фотонних пучках має низку суттєвих переваг порівняно з експериментами на пучках заряджених частинок. Одна з них та, що гамма-кванти вносять в ядро відносно малі збудження. В інтервалі енергій гігантського дипольного резонансу (10–25 MeB) гамма-кванти вносять в ядро практично однозначно момент l = 1h, а дисперсія моментів після вильоту частинок становить ($1 \div 2$)h.

Метою цієї роботи є дослідження залежності ізомерних відношень виходів від енерґії гамма-квантів у реакції $^{124}\text{Te}(\gamma, n)^{123m,g}$ Te в області гігантського дипольного резонансу (ГР). До тепер процеси збудження ізомерних станів у реакціях (γ, n) для 124 Te усе ще практично не вивчені. Фактично виконана одна робота з вимірювання ізомерного відношення в одній точці при $E_{\gamma \text{ max}} = 25 \text{ MeB}$ [4]. Дослідження залежності ізомерних відношень виходів реакції $(\gamma, \mathbf{n})^m$ від енерґії гамма-квантів дає змогу одержати не лише інтеґральні характеристики перерізів, а й розрахувати диференціальні перерізи збудження ізомерних станів і визначити їхні параметри: енерґію максимуму E_{max} , ширину Γ , ефективні пороги тощо. Це дозволяє докладно порівняти з теоретичними розрахунками та більш однозначно інтерпретатувати результати. Ізомерний стан ізотопу ¹²³ Те, що утворюється в кінцевому стані реакції ¹²⁴ Te $(\gamma, n)^{123m,g}$ Te, характеризується спін-парністю $J^{\pi} = 11/2^{-1}$ і формується ядерною підболонкою $1h_{11/2}$, основний стан — підоболонкою $3s_{1/2}$.

Мішені для експерименту були виготовлені у вигляді дисків склоподібного окису телуру TeO₂ діаметром 25 мм, товщиною 2 мм і чистотою 99.99 % природного ізотопного складу. Опромінювали досліджувані взірці на гальмівному пучку мікротрона М-30 ІЕФ НАН України [5] в області енергій 10-18 МеВ з кроком $\Delta = 0.5$ MeB. При енергіях 19, 20 і 22 MeB опромінювали на бетатроні Б-25/30 УжНУ. Зміна енергій прискорених електронів на мікротроні відбувалася двома методами: у широких межах — заміною хвильоводних вставок, тобто зміною числа орбіт і в межах однієї орбіти — зміною магнітного поля. Напруженість магнітного поля контролювали методом ядерного магнітного резонансу. Середній струм прискорених електронів підтримували на рівні 5 мкА. Як гальмівну мішень використовували пластину танталу товщиною 0.5 мм.

Для дослідження використовували активаційну методику. Тривалість опромінення на мікротроні становила 2 години при енерґіях поблизу порога реакції $(\gamma, n)^m$ і 20 хвилин при енерґіях 16–18 МеВ. На бетатроні часи опромінення складали 2 години. Тривалість охолодження дорівнювала 5–7 діб, а вимірювання — 1–2 доби. Гамма-спектри наведеної активності опромінених мішеней вимірювали спектрометром із високою роздільною здатністю на базі НРGе-детектора об'ємом 175 см³ і 8192 канальним аналізатором ОRTEC, зв'язаним із комп'ютером для накопичення і обробки даних. Роздільна здатність детектора становить 1.9 кеВ для лінії 1332 кеВ кобальту — 60.

Спектроскопічні характеристики досліджуваних ядер, наведені в таблиці, брали з робіт [6,7].

	J^{π}	B_n , MeB	$T_{1/2}$	$E_{\rm iso},{\rm keB}$	$E\gamma$, keB	lpha(%)
$^{123g}\mathrm{Te}$	$1/2^{+}$	9.4	стаб.	_	_	_
$^{123m}\mathrm{Te}$	$11/2^{-}$		119.2 доби	159	247	84

Таблиця. Спектроскопічні характеристики ядра ¹²³ Te.

Тут B_n — поріг (γ ,n) реакції для материнського ядра ¹²⁴ Те, J^{π} — спін-парність станів, $T_{1/2}$ — період напіврозпаду, $E_{\rm iso}$ — енергія ізомерного рівня, E_{γ} — енергія аналітичної гамма — лінії, α — інтенсивність гамма-переходу.

Рис. 1. Ділянка експериментального гамма-спектра від опроміненої мішені Те.

Експериментальний апаратурний спектр взірця TeO_2 , опроміненого при енерґії $E_{\gamma \max} = 15 \text{ MeB}$, зображено на рис. 1. Тут n — номер каналу аналізатора, N — кількість імпульсів у каналі.

При роботі на гальмівних гамма - пучках безпосереднью в експерименті вимірювали виходи $Y(E_{\gamma max})$ фотоядерних реакцій, зв'язані з перерізами $\sigma(E)$ інтеґральним рівнянням:

$$Y(E_m) = k \int_{E_{th}}^{E_m} \sigma(E) \Phi(E, E_{\gamma \max}) dE$$

де $\Phi(E, E_m)$ — спектр гальмівних гамма-квантів, $E_{\rm th}$ — енергія порога реакції, $E_{\gamma \max}$ — максимальна енергія гамма-спектра, k — нормувальний коефіцієнт. Ізомерні відношення виходів d визначали як відношення виходу заселення ізомерного стану Y_m до виходу основного стану $Y_g - d = Y_m/Y_g$ або як відношення виходу Y_m до повного виходу (γ, n) реакції $Y_n = Y_g + Y_m$:

$$\eta = \frac{Y_m}{Y_g + Y_m} = \frac{1}{1 + \frac{1}{d}}.$$

У загальному випадку ізомерне відношення виходів визначаємо так [8]:

$$d(E_{\gamma \max}) = \frac{\lambda_g - \lambda_m}{\left\{ \left[C \frac{N_g}{N_m} \frac{\varphi_m}{\varphi_g} (\lambda_g - \lambda_m) - p\lambda_g \right] \frac{\lambda_g}{\lambda_m} \frac{f_m(t)}{f_g(t)} \right\} + p\lambda_m},$$

тут $\varphi = \epsilon_{m,g} \cdot k_{m,g} \cdot \alpha_{m,g}$, де $\alpha_{m,g}$ — інтенсивність гамма-квантів на акт розпаду, $\epsilon_{m,g}$ — ефективність спектрометра, $k_{m,g}$ — коефіцієнт самопоглинання лінії, N_m , N_g — кількість зареєстрованих імпульсів відповідних станів, C — коефіцієнт, що враховує прорахунки і накладання імпульсів, p — коефіцієнт розгалуження, $f_{m,g}$ — часова функція:

$$f_{m,g} = [1 - \exp(-\lambda_{m,g} t_{irr})] \cdot \exp(-\lambda_{m,g} t_{cool}) \cdot [1 - \exp(-\lambda_{m,g} t_{meas})].$$

Тут λ_m , λ_g — сталі розпаду ізомерного та основного станів, $t_{\rm irr}$, $t_{\rm cool}$, $t_{\rm meas}$ — тривалість опромінення, охолодження та вимірювання відповідно.

Аналіз даних з повних перерізів (γ, n) реакцій для ізотопів телуру [9] показує, що їхні параметри від ізотопу до ізотопу міняються слабо (у межах кількох процентів). Тому, оскільки основний стан ¹²³ Те стабільний і вихід його заселення окремо не вимірювали, то для визначення брали вихід $Y_n = Y_m + Y_g$, обчислений для ¹²² Те, який вимірювали одночасно. Хоча переріз реакції $(\gamma, \gamma')^m$ на два порядки менший від перерізу реакції $(\gamma, n)^m$, а в природній суміші ізотопів телуру вміст ізотопу ¹²³Те становить 0.87%, робили поправку на внесок реакції ¹²³Те $(\gamma, \gamma')^{123m}$ Те у вихід Y_m реакції ¹²⁴Те $(\gamma, n)^{123m}$ Те.

Одержані таким способом експериментальні відношення виходів для реакції $^{124}\text{Te}(\gamma,n)^{123m}\text{Te}$ зображені точками на рис. 2.

Видно, що ізомерне відношення $\eta(E_{\gamma \max})$ зростає і в ділянці 18 МеВ досягає значення 0.19. У ділянці 20– 22 МеВ ізомерне відношення не виходить на плато, а продовжує зростати, що може бути зв'язано з внеском реакції 125 Te $(\gamma, 2n)^{123m}$ Te, ефективний поріг якої є в області ~ 17 MeB. Суцільною кривою на рис. 2 зображено результат апроксимації експериментальних даних кривою Больцмана:

$$y = A + (B - A)/[1 + \exp((E - E_0)/\Delta E_1)],$$

де A, B, E_0 і ΔE_1 — параметри. Апроксимація здійснювалась в ділянці 11–18 МеВ методом найменших квадратів. У результаті одержані такі значення параметрів: $A = 0.215 \pm 0.021, B = -0.395 \pm 0.006, E_0 = 8.581 \pm 0.065, \Delta = 3.14 \pm 0.35.$

Рис. 2. Експериментальне ізомерне відношення для реакції 124 Te $(\gamma, n)^{123m,g}$ Te.

Рис. 3. Переріз збудження ізомерного стану в реакції $^{124}\text{Te}(\gamma,n)^{123m}\text{Te}.$

Наявність експериментальної залежності ізомерних відношень виходів від максимальної енергії гамма квантів $\eta(E_{\gamma \max})$ від порога реакції $(\gamma, n)^m$ і вище ГР дає змогу, використовуючи повні перерізи (γ, n) реакції [9], розрахувати повні перерізи заселення ізомерних станів σ_m . Розрахунок робили методом оберненої матриці [10]. Одержані перерізи збудження метастабільних станів у реакції ¹²⁴ Те $(\gamma, n)^{123m}$ Те зображені на рис. 3. Переріз має одногорбу форму з максимумом при енергії 15.5 МеВ. Суцільною кривою на рис. 3 показано результат підгонки перерізу σ_m кривою Лоренца:

$$\sigma(E) = \sigma_0 \cdot (\Gamma_0^2 E^2) / ((E^2 - E_0^2)^2 + \Gamma_0^2 E^2)$$

Тут σ_0 , E_0 , Γ_0 — параметри. Апроксимацію здійснювали методом найменших квадратів. У результаті одержані такі значення параметрів: $\sigma_0 = (68.58 \pm 2.64)$ мб, $E_0 = (15.55 \pm 0.06)$ MeB, $\Gamma_0 = (4.23 \pm 0.19)$ MeB.

Для порівняння експериментальних результатів із теоретичними оцінками ми розрахували перерізи реакції 124 Te $(\gamma, n)^{123m}$ Te за допомогою програмного пакета TALYS-1.2 [11]. Ця програма являє собою зібраний в одному коді пакет більшості сучасних моделей, що описують перебіг ядерних реакцій.

Під час розрахунку використовуємо таку схему: на ядро — мішень з параметрами (Z_i, N_i) і спін-парністю (J_i, π_i) падає гамма-квант з енергією E_{γ} і формується ядро з енергією E_c ($E_c = E_{\gamma}$) і спектром можливих значень спіну та парності (J_c, π_c) . Розраховуємо повний переріз фотопоглинання σ_{tot} . Розпад збудженого ядра відбувається за рахунок двох процесів: механізму напівпрямих процесів (частка яких становить 0.73% при $E_{\gamma} = 12$ MeB, 4.42% при $E_{\gamma} = 9.68$ MeB i 7.4%при $E_{\gamma} = 18$ MeB) та відповідно до статистичного механізму Гаузера–Фешбаха [12]. Для опису процесу фотопоглинання використовували апроксимовані лоренціаном експериментальні дані. При розрахунках застосовувався сферичний оптичний потенціал з набором локальних параметрів Конінґа–Делароша [13]. Густини рівнів ρ у цій роботі обчислювали за допомогою моделі Фермі-газу зі зміщенням по енергії [14].

Рис. 4. Теоретичні розрахунки перерізів реакцій, отриманих із використанням TALYS-1.2.

Після емісії нейтронів розраховуємо перехід на конкретні збуджені рівні (зони) дочірнього ядра, при цьому використовуємо коефіцієнти проникності T_l , розраховані за оптичною моделлю. До енергії збудження дочірнього ядра E = 3 MeB брали конкретні дискретні рівні з бази даних RIPL-3. При вищих енергіях спектр збуджених станів дочірнього ядра вважали неперервним, його описували густиною рівнів $\rho(E, J, \pi)$ і розбивали на 50 енерґетичних зон. Якщо ядро розпадається в зону неперервного спектра, то використовували ефективний коефіцієнт проникності T_l^{ef} .

На рис. 4 наведені результати розрахунку. Світлими точками показано повний переріз реакції ¹²⁴Te(γ , n)¹²³Te, ромбами — переріз збудження ізомера в реакції ¹²⁴Te(γ , n)^{123m}Te і трикутниками - переріз реакції ¹²⁵Te(γ , 2n)^{123m}Te. Видно, що в інтервалі 18– 22 MeB переріз реакції ¹²⁵Te(γ , 2n)^{123m}Te набирає помітних значень і може, як домішка, пояснити підняття експериментального ізомерного відношення виходів у реакції ¹²⁴Te(γ , n)^{123m}Te в області вище 20 MeB (рис. 2). Порівняння розрахункового перерізу реакції ¹²⁴Te(γ , n)^{123m}Te з експериментом (рис. 3) показує хороше узгодження як за величиною, так і за іншими параметрами (енергія максимуму перерізу σ_m , ширина Г). Таке узгодження вказує на домінування статистичного механізму реакції (γ, n) й адекватності використання в розрахунках методу Гаузера–Фешбаха.

Підсумовуючи, відзначимо, що в цій роботі вперше виміряно ізомерні відношення виходів для реакції ¹²⁴Te(γ , n)^{123m,g}Te при опроміненні гамма-квантами гальмівного спектра від порога вильоту нейтрона до 22 MeB. Функція $\eta(E_{\gamma \max})$ має зростаючий характер, однак не досягає насичення в ділянці 18– 20 MeB. Цю особливість можна пояснити внеском реакції ¹²⁵Te(γ ,2n)^{123m}Te. Також отримано переріз реакції ¹²⁴Te(γ , n)^{123m}Te на досліджуваному інтервалі енергій. Моделювання проходження взаємодії гаммаквантів із ядром мішені ¹²⁴Te дає добре узгодження з експериментальними результатами збудження ізомера ядра ^{123m}Te.

- [1] В. М. Мазур, Физ. эл. част. атом. яд. **31**, 385, (2000).
- [2] P. M. Walker, J. J. Carrol, Phys. Today 58, 39 (2005).
- [3] P. M. Walker, J. J. Carrol, Nucl. Phys. News 17, 11 (2007).
- [4] А. Г. Белов и др., Яд. физ. 59, 585 (1996).
- [5] С. П. Капица, В. Н. Мелехин, Микротрон (Наука, Москва, 1969).
- [6] E. Browne, R. Firestone, *Table of Radioactive Isotopes* (Willey, New York, 1986).
- [7] S. Ohya, Nucl. Data Sheets 102, 547 (2004).
- [8] R. Vänska, R. Rieppo, Nucl. Instr. Meth. 179, 525 (1981).

- [9] A. V. Varlamov et al., Atlas of Giant Dipole Resonance (IAEA, INDC(NDS)-394, Vienna, 1999).
- [10] О. В. Богданкевич, Ф. А. Николаев, Работа с пучком тормозного излучения (Атомиздат, Москва, 1964).
- [11] A. Koning, S. Hilaire, M. Duijvestijn, in Proc. of Int. Conf. on Nucl. Data for Sci. Technol. – ND2004 (AIP, Santa Fe, USA, 2004) 769, 1154 (2005).
- [12] W. Hauser, H. Feshbach, Phys. Rev. 87, 336 (1952).
- [13] A.J. Koning, J.P. Delaroche, Nucl. Phys. A **713**, 231 (2003).
- [14] W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A 217, 269 (1973).

EXCITATION OF THE ISOMERIC STATE $11/2^-$ OF 123 Te ISOTOPE IN (γ ,n) REACTION

V. M. Mazur^{1,2}, D. M. Symochko¹, Z. M. Bigan¹, T. V. Poltorznytska²

¹Institute of Electron Physics of NAS of Ukraine

21, Universytetska St., Uzhhorod, UA-88017, Ukraine

² Uzhhorod National University

46, Pidhirna St., Uzhhorod, UA-88000, Ukraine

The isomeric ratios energy dependence in the ${}^{124}\text{Te}(\gamma, n){}^{123m,g}\text{Te}$ reaction for the 10–22 MeV range of photons maximum energy has been studied. The cross-sections of the metastable state $J^{\pi} = 11/2^{-}$ excitation of the ${}^{123}\text{Te}$ isotope have been obtained. The experimental results are compared with the TALYS-1.2 calculations.