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On the basis of the regression modelling method we investigated temporal variations of DST,
aP and KP indices. The developed models also provide some new information about the underlying
physics of the interaction between the solar wind and the terrestrial magnetosphere.
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I. INTRODUCTION

Today our understanding of the interaction between
the solar wind and the terrestrial magnetosphere is not
deep enough to create physics-based predictive models.
For this reason, different approaches should be tried. To-
day the optimal combination of virtues and vices is pro-
vided by the methods involving time series analysis and
data mining [1]. They provide a moderate prediction time
(up to several hours) with the highest available accuracy
(> 80%). They are very effective and easy to use, but
strongly depend on satellite data availability. These are
“black box” or “input–output” models, which seek only
to reproduce the system’s output in response to changes
of its inputs. The model terms are usually physically in-
terpretable and thus useful for constructing new phe-
nomenological models. For this reason, this method can
not only provide a space weather forecast per se, but al-
so improve our knowledge of the underlying physics and
thus increase the efficiency of other methods. Most of
these methods have a feature in common: they lead to a
regression relation at some point, so it seems natural to
skip all the preliminary steps and instantly use the re-
gression analysis without the unnecessary multiplication
of entities.

In our article [2] we described a new approach, named
“regression modelling”. This approach can provide accu-
rate short-term and, to a certain extent, medium-term
forecasts of geomagnetic indices. It gives new informa-
tion about the underlying physics, thus contributing to
the solar-terrestrial physics.

In this article we shall discuss the physical implica-
tions of the regression modelling method. Some prelimi-
nary descriptions of different aspects of this method can
also be found in the articles [3–6]. For the description of
the method itself we refer to the articles [2, 7].

We will only mention here that we consider a discrete
dynamical system (in our case, the terrestrial magneto-
sphere) with an unknown number Ktot of inputs uk and
one output y (one of the geomagnetic indices). At each
step t we know only K < Ktot inputs uk(t), k = 1,K
(1,K means all the integer numbers from 1 to K inclu-

sively) and the output y(t). Then at an arbitrary step T
we can write the system’s output in the form

y(T + Θ) = y∗(T + Θ) + ∆y(T + Θ), (1)

where Θ is the lead time of the forecast (the number of
hours the forecasted value is ahead of the last measured
value), y∗(T + Θ) is the predicted value, and ∆y(T + Θ)
is the uncertainty, which we assume to be stochastic.
We are also forced to assume that all the values are dis-
tributed normally to be able to apply the methods of
mathematical statistics, though this is, of course, not al-
ways true. We also assume that the statistical properties
of the dynamical system do not change on the time scale
Θ. The predicted value y∗(T + Θ) is expressed through
a partial regression relation [8]:

y∗(T + Θ) =
m∑

i=1

Cixi(T ), (2)

where xi, i = 1,m are the regressors, which are arbi-
trary functions of input quantities uk(t), which are al-
ready measured at the time T when the forecast is made,
Ci, i = 0,m are the regression coefficients, and m is the
number of variable regressors.

We choose the regressors xi in the form of products of
powers of the input quantities

xi(t) =
K∏

k=1

upk

k (t − l), l = 0, L, (3)

where pk are powers, which can be equal to zero or any
natural number, l is the lag, and L is the maximal lag.
In contrast to empirical models we do not add fitting pa-
rameters and all the regressors have physical meaning.
Note that different sets of regressors should be taken for
different values of the lead time Θ.

The coefficients Ci are determined by the generalised
least squares method over a large sample of solar wind
and geomagnetic data, with equal statistical weights of
all points. The statistical significances of the regressors
are determined according to Fisher’s F-test [8, 9].
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II. DESCRIPTION OF DATA USED

As before, we used the OMNI 2 database [10], which
contains IMF, solar wind and geomagnetic data, aver-
aged over 1-hour intervals (at the time of publication it
contained 54 parameters, starting from 1 January 1963).
This database covers a vast number of spacecraft. In re-
cent years the data come from the ACE spacecraft locat-
ed in the first Lagrange (L1) point, also called a libra-
tion point, which is situated along the Earth-Sun ax-
is approximately 0.01 AU (1.5 millions of kilometres)
from the Earth. For typical interplanetary conditions
(V = 470 km s−1) a spacecraft located there provides
real-time data with approximately 40-minute lead time.

The geomagnetic data come from Kyoto WDC for Ge-
omagnetism (DST, AE) and from Geoforschung Zentrum
Potsdam (KP, aP and associated indices). Since Septem-
ber 2011 the final DST index is available up to 31 De-
cember 2008. The most recent definitive KP index is pub-
lished twice per month.

The data before 1976 are scarce and of poor quali-
ty and their inclusion in the dataset negatively impacts
its characteristics. Also, 1976 was the first year of the
solar cycle 21. For these reasons we used a training
sample that ranges from 1 January 1976 to 31 Decem-
ber 2000, thus forming a continuous 25-year time se-
ries with the total of n = 219168 datapoints. For the
DST index the mean is DST = −18.3 nT, the median is
−23 nT, the mode is 8 nT, and the standard deviation
is σDST = 24.6 nT. The distribution of the DST index
visually represents a normal one, but the Pearson’s χ2

test [8] disproves this null-hypothesis at the 99.99% con-
fidence level (χ2 = 416125.8). This is due to flatter wings
of the distribution, which are caused by the periodicities
of the ACF. For the aP index the mean is aP = 14.9 nT,
the median is 5 nT, the mode is 27 nT, and the standard
deviation is σaP = 20.0 nT.

Unfortunately, during intense storms the instruments
aboard the spacecraft are often turned off to prevent per-
manent damage to them and some or all of the input
values are unavailable. By rejecting filled values from the
time series, we obtain the sample, which can be divided
into different subsamples for specific purposes. Of course,
the resulting sample will vary according to the exact de-
pendences of the regressors on the input quantities. For
example, if a model contains a regressor, which depends
on the ion density with a lag of 5 hours, then we have to
reject each datapoint whose 5th predecessor contained a
filled value of the ion density.

III. MEMORY OF THE GEOMAGNETIC
INDICES

Let us begin with investigating temporal variations of
the geomagnetic indices. It seems natural to do so by
analyzing the autocorrelation functions (ACF) for the
DST (Figure 1) and the aP indices (Figure 2). A brief
glance at the ACF is enough to tell that neither of the
geomagnetic indices can be treated as a Markov process.

In fact, both the DST and the aP indices are periodically
correlated.

One can see that in both cases the ACF tends to a sinu-
soid with a period close to half a year. Besides the half-a-
year periodicity one can also notice the 27-day periodici-
ty, caused by Carrington rotation of the Sun. The former
is caused by seasonal variations, which yields a question:
if there were no temporal variations, what would ACF
tend to at large offsets? If the distribution of DST and
aP was normal, the answer would be zero. However, the
distribution slightly deviates from the normal one (the
distribution has flatter wings), so the ACF can tend to
some non-zero quantity.

To determine this quantity we need to remove tem-
poral variations. For this purpose we need to calculate
the ACF of a random sample with the same statistical
characteristics as the actual sample. The easiest way to
get such a sample is to process the actual sample with a
permutation method, which is widely used in astronomy
e. g. for the calculation of 2-point correlation functions.
This method involves a random shuffling of the sample.
Using this method many times (10 000 times in our case)
and calculating the correlation coefficient each time, we
get the distribution of the correlation coefficient in the
Monte Carlo framework.

The distribution of the coefficient for this sample ap-
peared to be very close to a normal distribution. For the
DST index the mean was equal to 0.008 nT and the vari-
ance — to 5.1 · 10−6 nT2. The maximum recorded value
in 10 000 trials was equal to 0.015 nT for both indices.
The top and the mean values are depicted on Figures 1
and 2 by horizontal lines. As one can see, in reality the
correlation coefficient exceeds this value at most times
due to temporal variations. The ACF of the DST index
crosses the top line for the first time at about 6 000 hours,
though the difference between the ACF and the sine with
a half-year period crosses it at about 2 000 hours, which
is about 3.5 27-day Carrington periods. The ACF of the
aP index crosses the top line at about 1 200 hours, though
the difference between the ACF and the sine with 27-day
period crosses it at about 1000 hours. We will take the
latter value as a rough estimation of L. This hints that
rather old values of the geomagnetic indices can be quite
significant. A similar situation was reported by Johnson
and Wing [11] regarding KP: “the significance is often
quite large for extended periods of time (10–20 days)”.

To investigate this effect, we should construct an au-
toregression model [6]

y∗AR(T + Θ) = C0 +
L∑

l=0

Cly(T − l). (4)

Applying the F-test we can determine which previous
DST and aP values are statistically significant. We did
not search statistically significant values for L > 1 000,
but it is possible that there are even older statistically
significant values. In fact, the final models still contained
statistically significant values of DST as far as 900 hours
ago, which is about 37.5 days (see Figure 3). The statis-
tical significance of these oldest values can reach 99.95%.
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IV. TEMPORAL VARIATIONS OF
GEOMAGNETIC INDICES

On Figure 1 one can see a clear seasonal dependence of
the DST index. Indeed, if we select two subsamples, cor-
responding to the summer and the winter in the northern
hemisphere, bounded by vernal and autumnal equinox-
es, and verify the hypothesis that the difference between
the corresponding average DST values is statistically sig-
nificant using a one-sided Student’s test [8], we obtain
t∞ = 80.3, which is well over 99.95% significant. The val-
ues of t∞ corresponding to 99% and 99.95% confidence
levels are equal to 2.3 and 3.3, respectively. For the diur-
nal asymmetry the Student’s test gives t∞ = 8.8, which
corresponds to the significance level of 99.95%. Note that
formally the Student’s test is applicable only to normal-
ly distributed values and the distribution of DST has
flatter wings than the normal one. However, taking into
account the obtained large values of t∞, we can be sure
of the qualitative conclusions made.
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Fig. 1. Autocorrelation function of the DST index.
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Fig. 2. Autocorrelation function of the aP index.

This dependence was described in many articles, e.g.
[12–15], but the reason behind it is still disputed. Most
authors believe these asymmetries are caused by either
of two cusps turning to the sunlit side due to the annual
rotation of the Earth with respect to the Sun. Howev-
er, O’Brien and McPherron [15] state that this mech-
anism can be held responsible only for 17% of the ob-
served asymmetry. Takalo and Mursula [14] connected
the diurnal variations of DST with an inhomogeneous
distribution of DST network stations with respect to the
longitude.

In our opinion, this behaviour is most likely caused by
an asymmetry of the DST stations with respect to the

geomagnetic equator. In fact, only the Hermanus station
is located in the southern hemisphere (dipole latitude
−33.3◦), while the other 3 stations are located in the
northern hemisphere (Kakioka +26.0◦, Honolulu +21.1◦,
San Juan +28.0◦).

The official definition of the DST index is [16]

DST(t) =
〈∆H(t)− Sq(t)〉

〈cos θ〉
, (5)

where ∆H(t) is the difference between the observed and
the baseline values of the H-component of the geomag-
netic field,

Sq(t, s) =
∑
m

∑
n

Amn cos(mt + αm) cos(ns + βn), (6)

is the solar quiet daily variation, s is the current month,
θ is the geomagnetic latitude, and 〈•〉 is an average over
4 contributing stations. Since it does not depend on the
sign of θ, any sources in the northern hemisphere will af-
fect the DST index 3 times stronger than their southern
counterparts. Note that temporal variations of the DST

index are provided not only by actual temporal variations
of the H-component, but also by the term (6), which ex-
plicitly contains them.

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

57
6

62
4

67
2

72
0

76
8

81
6

86
4

91
2

Time offset, hrs

0

10

20

30

F

99.95%
99.9%

99.5%
99%

97.5%
95%
90%

Fig. 3. Dependence of the Fisher significance F of the pre-
vious DST value on its lag for the autocorrelation model with
1 hour lead time.

Usually, the DST index is associated with the ring cur-
rent, which is highly asymmetric during the geomagnetic
storm [17–19]. However, the ∆H(t) term includes all the
sources of the magnetic field, such as ionospheric cur-
rents, power lines, industrial facilities, railroads and so
on [20]. This fact explains, among others, the 7-day pe-
riodicity, which is of purely anthropogenic origin. Also,
initially the DST index is derived from very noisy data,
and it is possible that additional errors were introduced
during its processing.
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Taking this known geoeffective factor as an example
we demonstrate how easily one can take it into account
using the regression approach. To do so one should sim-
ply add the synthetic inputs

uK+1(t) = sin((DOY(t)− 80)π/182.62) (7)

and

uK+2(t) = cos((DOY(t)− 80)π/182.62) (8)

Here DOY is the day of the year, 80 is the number of days
between January 1 and the vernal equinox, and 182.62 is
the number of days in half a year. The first of these terms
is significant and describes the summer–winter asymme-
try, and the second one (which appears statistically in-
significant) describes an absent spring–autumn asymme-
try. Likewise, for the diurnal asymmetry the correspond-
ing synthetic inputs will be

uK+3(t) = sin((UT(t)− 2)π/12) (9)

and

uK+4(t) = cos((UT(t)− 2)π/12) (10)

Here 2 is the time difference between UT and the local
time at the northern magnetic pole, and 12 is the number
of hours in half a day. Both these terms are significant.
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Fig. 4. Seasonal variation of the DST index.
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Fig. 5. Diurnal variation of the DST index.

The coefficient of the regressor, equal to uK+3(t), is
less than the actual difference between the summer and
the winter mean DST values by an order of magnitude.
This can be explained in the following way: there are
other regressors, which depend on the parameters with
statistically significant summer-winter asymmetry, e.g.
previous DST values. They provide the lion share of the

summer-winter asymmetry of the DST index. A good ex-
ample of such a parameter is the international sunspot
number R, which has a 27-day periodicity due to Car-
rington’s rotation of the Sun. Nevertheless, there is a
small difference which cannot be expressed with these
terms. Including it into regression, we obtain these sta-
tistically significant regressors.

There is another possible explanation of this effect. Let
us consider as an example a value

X(t) = const + A sinωt. (11)

In the regression it will look like

X(t + ∆t) = X(t) + A(sinω(t + ∆t)− sinωt)
= X(t) + A((cos ω∆t − 1) sinωt (12)
+ cos ωt sinω∆t).

The first term in brackets is of the order (ω∆t)2, and the
second one is of the order (ω∆t) in the natural assump-
tion that ω∆t � 1. So, it will seem that the coefficient is
A(ω∆t) rather than A. Note that this is just an example
and has nothing to do with the actual regressors.

However, the distribution of mean DST values vs. the
day of the year (Figure 4) is much more complicated.
Among its features there is a strong asymmetry between
the summer and the winter on one side and the spring
and the autumn on the other. To take it into account we
introduced additional terms into our regression, which
are the powers of uK+1(t) and their products with the
powers of uK+2(t). The sum of regressors with the cor-
responding coefficients is very similar to the actual dis-
tribution (Figure 5). Note that the coefficients were ob-
tained independently from the distribution.
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Fig. 6. Sum of terms directly describing seasonal variation
of the DST index.
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Fig. 7. Sum of terms directly describing diurnal variation
of the DST index.
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We did the same thing with the diurnal asymmetry
(Figures 6, 7). The cross-product uK+1(t) · uK+3(t) is
also significant and should be included in the regres-
sion. After this we obtained a joint distribution of sea-
sonal and diurnal variations of the DST index, which
contains 18 regressors (Figure 8). Increasing the num-
ber of the regressors describing temporal variations of
the geomagnetic activity we can improve the accuracy
of this distribution. In particular, one could add 11-year
Schwabe’s and 22-year Hale’s solar cycles, higher powers
of uK+1(t), . . . , uK+4(t), etc.

V. NEW GEOEFFECTIVE PARAMETERS

Now let us discuss the parameters whose geoeffective-
ness was previously unknown: the latitudinal and the lon-
gitudinal bulk flow angles of the solar wind and demon-
strate that they are indeed geoeffective.

The distribution of the latitudinal flow angle θV and
the corresponding mean DST value is plotted on Figure
9. The distribution looks similar to a normal distribu-
tion with σθV

= 2.97◦ and θV = 0.64◦, and this null-
hypothesis is supported by Pearson’s χ2 test at more
than 99.99% confidence level (χ2 = 3284.9, n = 118198).
However, the number of points with deviations exceeding
3σ is larger than it follows from the normal distribution
(787 versus 319). The minimal and maximal values of θV

are equal to −32.0◦ and 29.7◦, respectively.
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Fig. 8. Temporal variation of the DST index. Darker spots
correspond to lower values.

If we ignore the wing bins in the distribution of mean
DST values against θV , which are somewhat random due
to a small amount of points in them, we will notice a
slight almost linear trend. If we plot the sum of terms
containing θV (Figure 10), we will notice a similar trend.
If we select two subsamples, one −4◦ < θV < 0◦ and
the other 0◦ < θV < 4◦, and verify the hypothesis that
the difference between the corresponding average DST

values is statistically insignificant using a one-sided Stu-

dent’s test, we obtain t∞ = 5.9, which is over 99.95%
significant.
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Fig. 9. Distribution of the latitudinal flow angle and the

corresponding mean DST values.

5 10 15V, °

1
Input in Dst, nT

-3

-2

-1

-15 -10 -5

Fig. 10. Sum of terms describing the latitudinal flow angle.

Fig. 11. Seasonal dependence of the latitudinal flow angle’s
input in the DST index.

If we divide the sample in two subsamples, one for
northern summer and one for northern winter, and plot
the corresponding histograms on Figure 11, we will see
that the summer distribution has an obvious linear trend,
but the winter one has not. If we apply the Student test
to the same intervals now, we obtain that t∞ = 5.44 in
the summer and t∞ = 0.059 in the winter. The former
corresponds to more than 99.95% significance, while the
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latter — to less than 10%. This proves that seasonal vari-
ations of the geomagnetic indices are at least partially
caused by the actual physical processes.
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Fig. 12. Distribution of the longitudinal flow angle and the
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Fig. 14. Seasonal dependence of the longitudinal flow an-
gle’s input in the DST index.

The longitudinal flow angle ϕV appeared to be even
more significant than the latitudinal flow angle. Its dis-
tribution together with the corresponding mean DST

values is plotted on Figure 12, where white bars show

the complete sample, and the grey bars show the quiet-
time sample with DST > −50 nT. Like the latitudinal
flow angle, the distribution of the longitudinal flow an-
gle resembles a normal distribution with σϕV

= 2.9◦ and
ϕV = −0.1◦. The Pearson’s χ2 test supports the rel-
evant null-hypothesis at more than 99.99% confidence
level (χ2 = 7871.0, n = 129236). However, the num-
ber of points with deviations exceeding 3σ is still larger
than it follows from the normal distribution (1213 versus
349). The minimal and maximal values of ϕV are equal,
respectively, to −20.7◦ and 19.0◦.

A significant trend is the most prominent feature of
this figure. If we plot a sum of regressors, which contain
ϕV (Figure 13), we shall see a very similar trend. If we
select two subsamples, one −8◦ < ϕV < −4◦ and other
4◦ < ϕV < 8◦, and verify the hypothesis that the dif-
ference between the corresponding average DST values
is statistically insignificant using a one-sided Student’s
test, we obtain t∞ = 37.1, so the null-hypothesis should
be rejected at well over 99.95% confidence level.

Like before, we separately plotted the distributions for
summer and winter subsamples (Figure 14). We see that
the trend is identical on both plots, so the corresponding
effect is season-independent.

VI. CONCLUSION

We demonstrated how easily one can take into account
temporal variations in this method’s framework. Note
that these regressors do not depend on space-borne pa-
rameters and can be used alongside the previous values
of geomagnetic indices. In this case they improve the
forecast skill of the model and make some of the autore-
gression terms insignificant.

Also, we demonstrated that our method is truly ca-
pable of pointing out new geoeffective parameters and
verified the geoffectiveness of two such values.
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РЕҐРЕСIЙНЕ МОДЕЛЮВАННЯ ВЗАЄМОДIЇ СОНЯЧНОГО ВIТРУ
З МАГНIТОСФЕРОЮ ЗЕМЛI

О. С. Парновський, А. Ю. Полонська
Iнститут космiчних дослiджень НАНУ та НКАУ
просп. Глушкова, 40, корп. 4/1, Київ, 03680, Україна

На основi методу реґресiйного моделювання ми дослiдили часовi варiацiї DST, aP та KP-iндексiв. Роз-
робленi моделi дають нову iнформацiю щодо фiзики взаємодiї сонячного вiтру та магнiтосфери Землi.
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