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We consider a scalar Yukawa-like model in the framework of partially reduced quantum field
theory. The reduced Lagrangian of the model consists of free scalar field terms and nonlocal current
interaction term. Hamiltonian expressions for conserved quantities arisen from a Lorentz-invariance
of the model in the momentum representation have been found in the first-order approximation with
respect to a coupling constant squared. The canonical quantization of the system is performed. It is
shown that the obtained conserved quantities and the previously found Hamiltonian and momentum
of the system satisfy the commutational relations of the Poincaré group. The expression for S-
matrix in the current approximation is found. The unitarity of this operator is proven by the direct
calculation.
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I. INTRODUCTION

Recently a partially reduced field theory [1–4] comple-
mented with the variational method [5,6] has been used
for the description of the relativistic bound states prob-
lem [7–11]. The structure of this approach is as follows.
Variables of a field mediating an interaction of fermion or
scalar matter fields are eliminated from the Lagrangian
of the system by means of the covariant Green’s function,
the propagator of the mediating field. The reduced La-
grangian description is put into the Hamiltonian form
which then is quantized canonically. Finally, a field-
theoretical version of a variational method is applied
in order to derive relativistic wave equations describing
bound or/and scattering states of the system.

A reduced Lagrangian includes space-time-nonlocal in-
teraction term. Unlike other nonlocal theories known in
the literature where a nonlocality is inserted by hands
(in a free-field Lagrangian [12,13] or in interaction terms
by means of form-factors [13, 14]), here the nonlocali-
ty appears in a natural way, via a propagator mediating
an interaction between currents of matter field. Thus the
reduced field theory describes those processes of the orig-
inal local theory in which the role of free quanta of me-
diating field can be neglected. This approach has been
used to the description of positronium (Ps), muonium
(Mu) [7, 8] Ps− and Mu− [9], and the obtained spec-
tra agree with the conventional QED and experimental
data. The reduced scalar Yukawa model [1, 2, 4, 10] and
its nonlinear generalizations [11] were considered too. In
all cases it took sparing efforts to derive the variational
wave equations of advantageous structure as compared
with the Bethe–Salpeter (BS) equations.

However, some important problems of the partially re-
duced field theory remain unconsidered. A nonlocality of
the Lagrangian complicates a transition to the Hamilto-
nian formalism. We apply a Hamiltonization scheme de-
veloped by Llosa and Vives [15] for nonlocal Lagrangians

in mechanics. This procedure is realized by the subse-
quent approximation scheme and leads to a loss of co-
variance [4]. Non-covariance and non-exactness of this
method cause to distrust in a relativistic invariance of
the approach and thus in its physical meaningfulness. It
is known that covariance is not a necessary condition
of Poincaré-invariance of the system, but a Poincaré-
invariance itself has a physical sense and it is a neces-
sary condition of a reliability of results predicted by the
theory.

In the present paper this problem is considered for the
simple scalar Yukawa model. We construct the Hamilto-
nian formulation of a reduced Yukawa-like model in the
linear (i. e., second-order coupling constant) approxima-
tion and prove a Poincaré-invariance of the model. Ten
generators of the Poincaré group have been constructed
for this purpose. They are built on the basis of Noether
currents, by means of transition to the Hamiltonian for-
malism (Sections II–IV) and further quantization (Sec-
tion V). It is worth mentioning that not only Hamilto-
nian but also boost generator contains the interaction
term. It is shown that these generators satisfy commuta-
tional relations of the Poincaré group within the limits
of the present approximation (Section VI).

One other important problem inherent to nonlocal
field theories is the construction of a unitary scatter-
ing matrix. Usually, difficulties that arise herewith are
the reasons to distrust such theories. In Subsection
VII.A we construct the scattering matrix of the reduced
Yukawa-like model by means of the standard quantum-
mechanical algorithm [16], using a transition to the inter-
action representation. The unitarity of the scattering ma-
trix within the present approximation is shown in Sub-
section VII.B. Some details of this computation are given
there too.

We use the time-like Minkowski metrics: ‖ηµν‖ =
diag(+,−,−,−), and put c = ~ = 1.
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II. REDUCED LAGRANGIAN AND
CONSERVED QUANTITIES

The considered model comes from the scalar Yukawa
model [1] which describes the dynamics of two complex
scalar fields φr(x), (r = 1, 2) coupled via a real scalar
mediating field χ(x).

Reduction of the field χ(x) in the initial Lagrangian
of the Yukawa model leads to an effective non-local La-
grangian describing the interaction of currents of fields
φr(x) in terms of the symmetric Green function of Klein–
Gordon equation [1, 4]. For generality we replace the
Green function by an arbitrary symmetric Poincaré-
invariant kernel, K(x− x′) = K(x′ − x).

Hence a starting point of our work is a Lagrangain

density:

L =
2∑

r=1

Lr +
1
2

∫
d4x ρ(x)K(x− x′)ρ(x′), (1)

where

Lr = (∂µφ∗r)(∂
µφr)−m2

rφ
∗
rφr, r = 1, 2, (2)

ρ(x) = −
2∑

r=1

grφ
∗
rφr. (3)

Poincaré-invariance of Yukawa model leads to the ex-
istence of ten conserved quantities which are a 4-
momentum Pµ and 4-angular momentum Mλσ.

For Lagrangian (1) these expressions were found in [4]:

Pµ(t) =
2∑

r=1

∫
d3xT 0µ

r (x)|x0=t − η0µ

∫
d3x

∫
d4 x′ρ(x)K(x− x′)ρ(x′)|x0=t

− 1
2

∫
dx4

∫
d4x′ Ξ(x0 − t, x′0 − t)ρ(x){∂νK(x− x′)}ρ(x′), (4)

Mλσ(t) =
2∑

r=1

∫
d3xT 0[λ

r (x)xσ]|x0=t −
∫

d3x

∫
d4x′ ρ(x)η0[λxσ]K(x− x′)ρ(x′)|x0=t

− 1
2

∫
dx4

∫
d4x′ Ξ(x0 − t, x′0 − t)ρ(x){∂[λK(x− x′)xσ]}ρ(x′). (5)

Here a[µbν] = aµbν − aνbµ Ξ(t, s) ≡ Θ(t)Θ(−s) −
Θ(−t)Θ(s) = 1

2 (sign(t) − sign(s)), where Θ(t) — is the
Heaviside step function, and

Tµν
r = {(∂µφ∗r)(∂

νφr) + (∂νφ∗r)(∂
µφr)} − ηµνLr (6)

is the energy-momentum tensor for a free field φr(x).
For further calculation it is convenient to transform

each complex field into a pair of real fields: φrα(x)
(r = 1, 2; α = 1, 2):

φr =
1√
2
(φr1 + iφr2), φ∗r =

1√
2
(φr1 − iφr2), (7)

and, for brevity, we replace the multi subscript rα by
single subscript a (a = 1, 4). Then we have

ρ(x) = −1
2

∑
a

gaφ2
a(x). (8)

The transition to the Hamiltonian description was re-
alized in [4] by means of the Hamiltonization procedure
for nonlocal Lagrangians [15]. This transition is built as
a perturbative scheme with the usage of the momentum
representation for fields that in the first-order approxi-
mation (in a coupling constant squared) has the simple
form:

φa(x) =
1

(2π)3/2

∑
A=±

∫
d3k√
2ka0

aA
a (k)eiAkax, (9)

a = 1, . . . , 4,

where k = {ka0,k}, ka0 =
√

m2
a + k2, k = {ki, i =

1, 2, 3}, and quantities aA
a are the amplitudes of normal

field modes which upon quantization become the parti-
cles creation (A = +) and annihilation (A = −) opera-
tors.

For the generators of time translations H = P 0 (the
Hamiltonian) and space translations P = {P i, i =
1, 2, 3} (the momentum) there were found the following
expressions [4]:

H = Hfree + Hint, P = Pfree,

where

Hfree =
1
2

∑
a

∑
A

∫
d3k ka0a

A
a (k)a−A

a (k), (10)

Pfree =
1
2

∑
a

∑
A

∫
d3k kaA

a (k)a−A
a (k), (11)

3101-2



PARTIALLY REDUCED FORMULATION OF SCALAR YUKAWA MODEL. . .

Hint =
1
2

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v TABCD

ab (k,q,u,v)aA
a (k)aB

a (q)aC
b (u)aD

b (v), (12)

and where

TABCD
ab (k,q,u,v) = − gagb

16(2π)3
δ(Ak + Bq + Cu + Dv)√

ka0qa0ub0vb0
K̃(Aka + Bqa), (13)

K̃(k) =
∫

d4x e−ik·xK(x). (14)

In expressions (10) and (11) a summation over A can
be performed:

Hfree =
∑

a

∫
d3k ka0a

+
a (k)a−a (k), (15)

Pfree =
∑

a

∫
d3k ka+

a (k)a−a (k). (16)

The translation generators H and P must be supple-
mented with the generators of the Lorentz group for a
further Poincaré-invariance examination of the system.
These generators form into the 4-angular momentum.

III. ANGULAR MOMENTUM

Zero-order approximation

We find space components of the angular momentum
in the zero-order approximation at first. The energy-
momentum tensor for complex scalar fields (6) must be
substituted into the first term of (5). Thus we obtain the
expression (with i, j = 1, 2, 3):

M ij
free ≡ M ij

(0) =
∑

r

∫
d3x (17)

×
{
φ̇r
∗
(xj∂iφr − xi∂jφr) + φ̇r(xj∂iφ∗r − xi∂jφ∗r)

}
.

We proceed to real fields (7), rename subscripts (rα →
a), take into consideration representation (9), and obtain
the components of the angular momentum vector:

Mk
(0) ≡

1
2
εk

ijM
ij
(0) =

i

2
εk

ij

∑
a

∑
A

∫
d3k (18)

× AaA
a (k)ki∂ja−A

a (k), k = 1, 2, 3.

After summation over A we have:

Mk
free ≡ Mk

(0) = iεk
ij

∑
a

∫
d3k a+

a (k)ki∂ja−a (k); (19)

here ∂ia(k) = ∂a(k)/∂ki etc.

Fist-order approximation

Using (5) and (6) the first correction for the angular
momentum can be written as follows:

M ij
(1) =

∫
d4x

∫
d4x′ Ξ(x0, x′0)ρ(x′)K(x− x′)

× [∂iρ(x)xj − ∂jρ(x)xi]. (20)

Then we transform each complex field into a pair of real
fields (7), take into consideration eqs. (8) and (9) and
arrive at the formula:

M ij
(1) = 4i

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v

× SABCD
ab (k,q,u,v)aA

a (k)aB
a (q) (21)

×
{
ujaD

b (v)∂iaC
b (u)− uiaD

b (v)∂jaC
b (u)

+ vjaC
b (u)∂iaD

b (v)− viaC
b (u)∂jaD

b (v)
}
,

where the kernel

SABCD
ab (k,q,u,v) =

gagb

16(2π)3
δ(Ak + Bq + Cu + Dv)√

ka0qa0ub0vb0

×P K̃(Aka + Bqa)− K̃(Cub + Dvb)
Aka0 + Bqa0 + Cub0 + Dvb0

(22)

was found in [4]1.

IV. CENTRE-OF-MASS INTEGRAL

Zero-order approximation

Similarly to the angular momentum we find an ex-
pression for the integral of centre-of-mass (it corresponds
to pure Lorentz transformations) in zero-order approxi-
mation. For this purpose expression (6) for the energy-
momentum tensor must be substituted into the first term
of (5) (where we assign λ = 0, µ = i for superscripts):

1One of the authors (A.D.) asks pardon for an error made in Eq. (5.22) of Ref. [4] where the mistaken factor 1/16 is to be
read as 1/8.
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Ki
(0) ≡ M0i

(0) =
∑

r

∫
d3x

{
2φ̇r

∗
φ̇r xi − x0(φ̇r

∗
∂iφr + ∂iφ∗rφ̇r)

}
. (23)

After proceeding to real fields and some transformations and substitutions we obtain:

Ki
(0) =

i

2

∑
a

∑
A

∫
d3k AaA

a (k)
{

ka0∂
ia−A

a (k) +
ki

ka0
a−A

a (k)
}

. (24)

The second term contains two equal components with opposite signs. Thus, after summation over A, the only first
term survives:

Ki
free ≡ Ki

(0) =
i

2

∑
a

∫
d3k ka0a

+
a (k)

↔
∂i a−a (k), (25)

where a
↔
∂i b ≡ a∂ib− (∂ia)b.

First-order approximation

According to (5), the centre-of-mass integral in the first-order approximation is:

Ki
(1) = Ki

int + Ki
nc,

where

Ki
int = − i

2

∑
ab

∑
ABCD

A

∫
d3k d3q d3u d3v TCDAB

ba (u,v,k,q)
{

∂iaA
a (k)− ki

2k2
a0

aA
a (k)

}
aB

a (q)aC
b (u)aD

b (v), (26)

Ki
nc = 4i

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v SABCD

ab (k,q,u,v)aA
a (k)aB

a (q)

×
{

ub0a
D
b (v)∂iaC

b (u) + vb0a
C
b (u)∂iaD

b (v) +
aD

b (v)aC
b (u)

2

(
ui

ub0
− vi

vb0

)}
. (27)

V. CHANGE OF VARIABLES. CANONICAL
QUANTIZATION

As was shown in [4], the variables a+
a , a−a are non-

canonical. We make a transition to canonical variables
a that satisfy the Poisson bracket relations:

{a−a (k), a+
b (q)} = iδabδ(k− q). (28)

(other Poisson brackets are equal to zero). These vari-
ables are related to the original ones by the approximat-
ed formula [4]:

aA
a (k) = aA

a (k) +
A

2

∑
b

∑
BCD

∫
d3q d3u d3v (29)

× S−ABCD
ab (k,q,u,v)aB

a (q)aC
b (u)aD

b (v) + o(g2),

where the symbol o(g2) denotes terms of higher order
than g2

a and gagb. Thus the expressions for the angular
momentum and for the centre-of-mass integral in terms
of new variables a can be written as follows:

M = M(0)[a] + M(1)[a] = Mfree[a] + Mnc[a]

= Mfree[a] + o(g2), (30)

K = K(0)[a] + K(1)[a] = Kfree[a] + Kint[a] + Knc[a]

= Kfree[a] + Kint[a] + o(g2). (31)

Henceforth, for convenience, we do not underscore new
variables, i. e. we rename a → a. Then the final expres-
sions for the angular momentum and for the centre-of-
mass integral in the momentum representation can be
represented by formulae (19), (25) and (26). Together
with (16), (15) and (12) this yields a dynamical basis for
the system of two interacting scalar fields under consid-
eration.

Let us perform the canonical quantization. Then the
variables a+

a are the creation operators and a−a are the
annihilation operators. The normal ordering of products
of these operators is understood. Poisson brackets should
be replaced by quantum commutators:

{A,B} −→ −i[A,B]. (32)
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For the operators a± standard commutational relations
hold:

[a+
a (k), a+

b (q)] = [a−a (k), a−b (q)] = 0,

(33)
[a−a (k), a+

b (q)] = δabδ(k− q).

VI. POINCARÉ-INVARIANCE

It is necessary to make sure that approximated ex-
pressions for operators H, P, M and K do satisfy the
Poincaré algebra relations to get to know that the sys-
tem possesses a Poincaré-invariance. Scilicet the follow-
ing expressions must be verified [17]:

[P i,H] = [P i,Hfree] + [P i,Hint] = 0,

[M i,H] = [M i,Hfree] + [M i,Hint] = 0,

[P i, P j ] = 0, [M i, P j ] = iεij
kP k, [M i,M j ] = iεij

kMk,

[M i,Kj ] = [M i,Kj
free] + [M i,Kj

int] = iεij
kKk,

[Ki,H] = [Ki
free,Hfree] + [Ki

free,Hint] + [Ki
int,Hfree] + o(g2) ' iP i,

[Ki, P j ] = [Ki
free, P

j ] + [Ki
int, P

j ] = iδijH,

[Ki,Kj ] = [Ki
free,K

j
free] + [Ki

free,K
j
int] + [Ki

int,K
j
free] + o(g2) ' −iεij

kMk. (34)

It is easy to verify that commutation relations for free-
field terms are valid. Let us present a calculation of com-
mutation relations in the firs-order approximation in the
coupling constant squared.

A. Calculation of [P, Hint] and [M, Hint]

Let us mention two remarks that concern to calcula-
tion of all commutators with interaction terms. The first
concerns to normal ordering of products of the creation
and annihilation operators. It is easy to verify that the
normal ordering is preserved at every step of calculation
below, regardless of the case how operators are ordered –
explicitly or not. Therefore for simplicity of the descrip-
tion we will to consider interaction terms of generators
ordered implicitly. The second remark concern to superfi-
cial terms that arise during the calculation. Those terms
will be omitted so far as they give a zero action in the
Fock space.

Let us show the calculation of the first commutator in
details here:

[P,Hint] =
1
2

∑
abc

∑
ABCD

∫
d3p d3k d3q d3u d3v

×TABCD
ab (k,q,u,v)

×p[a+
c (p)a−c (p), aA

a (k)aB
a (q)aC

b (u)aD
b (v)].

For brevity it is convenient to unify the integration vari-
ables p, k . . . and subscripts a, b, c in the common sub-

scripts p, k, . . . : a+
c (p) ≡ a+

p , . . . . Let us consider a com-
mutator in r.-h.s. of equality quoted above and execute
some simplification in it. By consecutive permutations
the operator product a+a− with operators aA

k . . . aD
v one

obtains:

[a+
p a−p , aA

k aB
q aC

u aD
v ] = −aA

k aB
q aC

u aD
p δpvD

−aA
k aB

q aC
p aD

v δpuC − aA
k aB

p aC
u aD

v δpqB − aA
p aB

q aC
u aD

v δpkA.

Here we use the short notation: δpk ≡ δcaδ(p− k) etc.
Integrating this expression and using some properties

of δ-function we receive:∫
d3p d3k d3q d3u d3v p [a+

p a−p , aA
k aB

q aC
u aD

v ]

=
∫

d3k d3q d3u d3v (Ak+Bq+Cu+Dv)aA
k aB

q aC
u aD

v .

It is worth mentioning that expression (13) for TABCD
ab

contains a δ-function. Thus we have∫
d3k d3q d3u d3v (Ak + Bq + Cu + Dv)

×δ(Ak + Bq + Cu + Dv) · · · = 0,

where the following property of δ-function is taken into
consideration:

∫
dx δ(x)xf(x) = 0 for arbitrary function

f(x) that is regular in x = 0. Thus:

[P,Hint] = 0.
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The second commutator can be calculated by analo-
gy. The terms that contain the derivative of δ-function
will occur there. In this case the differential operation
should be displaced onto the one of operators a± (omit-
ting the superficial terms). Finally, we obtain that the
second commutator is equal to zero:

[M,Hint] = 0.

B. Calculation of [Hfree,Kint] and [Hint,Kfree]

Since free-field generators satisfy the Poincaré algebra
(34) it is necessary to prove the equality:

[Hfree,Kint]− [Kfree,Hint] = 0. (35)

In order to simplify calculations we proceed from opera-
tors a± to operators b± by means of the relation:

a±k =
√

k0b
±
k . (36)

In the new notation:

Hfree =
∫

d3k k2
0b

+
k b−k , (37)

Kfree =
i

2

∫
d3k k2

0b
+
k

↔
∇ b−k , (38)

Hint =
∑

ABCD

∫
d3k d3q d3u d3v ΠABCD

kquv bA
k bB

q bC
u bD

v ,

(39)

Kint = −i
∑

ABCD

∫
d3k d3q d3u d3v DΠABCD

kquv bA
k bB

q bC
u∇bD

v ,

(40)
(integrating by d3k d3q d3u d3v include the summation
over subscripts a, b, c, d too; these subscripts are not
showed explicitly in the formulae). Here the kernel
ΠABCD

kquv is similar by structure to the defined above ker-
nel TABCD

ab (k,q,u,v) (13):

ΠABCD
kquv ≡ ΠABCD

ab (k,q,u,v) =
1
2

√
ka0qa0ub0vb0 TABCD

ab (k,q,u,v)

= − gagb

32(2π)3
δ(Ak + Bq + Cu + Dv)K̃(Aka + Bqa). (41)

Similarly to TABCD
ab (k,q,u,v) this kernel possesses symmetry properties:

ΠBACD
ab (q,k,u,v) = ΠABCD

ab (k,q,u,v),

ΠABCD
ab (−k,−q,−u,−v) = Π−A−B−C−D

ab (k,q,u,v) = ΠABCD
ab (k,q,u,v), (42)

Π−A−BCD
ab (k,q,u,v) = ΠABCD

ab (k,q,−u,−v),

ΠAB−CD
ab (k,q,−u,v) = ΠABC−D

ab (k,q,u,−v) = ΠABCD
ab (k,q,u,v) (43)

which are important for calculations. Summing up over A, B, C, D in (39), (40) and using some properties (42) of
ΠABCD

kquv yields:

Hint =
∫

d3k . . . d3v
{
Π−−−−

kquv b−k b−q b−u b−v + 2(Π+−−−
kquv + Π−−+−

uvkq )b+
k b−q b−u b−v

+ (Π++−−
kquv + Π−−++

uvkq + 4Π+−+−
kuqv )b+

k b+
q b−u b−v + 2(Π+++−

kquv + Π+−++
uvkq )b+

k b+
q b+

u b−v + Π++++
kquv b+

k b+
q b+

u b+
v

}
, (44)

Kint = i

∫
d3k . . . d3v

{
Π−−−−

kquv b−k b−q b−u∇vb−v + 2Π+−−−
kquv b+

k b−q b−u∇vb−v + Π−−+−
uvkq b+

k ∇qb
−
q b−u b−v

− Π−−+−
uvkq ∇kb+

k b−q b−u b−v + (Π++−−
kquv + 2Π+−+−

kuqv )b+
k b+

q b−u∇vb−v − 2Π+−+−
kuqv b+

k ∇qb
+
q b−u b−v (45)

− Π−−++
uvkq ∇kb+

k b+
q b−u b−v + Π+++−

kquv b+
k b+

q b+
u∇vb−v −Π+++−

kquv b+
k b+

q ∇ub+
u b−v − 2Π+−++

uvkq ∇kb+
k b+

q b+
u b−v

− Π++++
kquv b+

k b+
q b+

u∇vb+
v

}
.

Thereafter we calculate commutators for items with the fixed number of creation and annihilation operators
separately. Let us calculate one of them.

It is worth mentioning at first the equalities:

[b−k , b+
q ] =

δkq

q0
, [∇kb−k , b+

q ] =
∇kδkq

q0
, [b−k ,∇qb

+
q ] =

∇qδkq

k0
. (46)

Let us find commutator Hfree with the first term of expression for Kint (45):
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∫
d3p d3k . . . d3v [p2

0b
+
p b−p , iΠ−−−−

kquv b−k b−q b−u∇vb−v ] = i

∫
d3k . . . d3v (k0 + q0 + u0 + v0)∇vΠ−−−−

kquv b−k b−q b−u b−v , (47)

and commutator Kfree with the first term of expression for Hint (44):

i

2

∫
d3p d3k . . . d3v [p2

0(b
+
p ∇pb

−
p −∇pb

+
p b−p ),Π−−−−

kquv b−k b−q b−u b−v ]

= i

∫
d3k . . . d3v (k0∇kΠ−−−−

kquv + q0∇qΠ−−−−
kquv + u0∇uΠ−−−−

kquv + v0∇vΠ−−−−
kquv )b−k b−q b−u b−v . (48)

Now it is necessary to show that the difference of integrals (47) and (48) is equal to zero, i. e.:

(k0 + q0 + u0 + v0)∇vΠ−−−−
kquv − (k0∇kΠ−−−−

kquv + q0∇qΠ−−−−
kquv + u0∇uΠ−−−−

kquv + v0∇vΠ−−−−
kquv ) = 0. (49)

To show this let us take into consideration the structure of kernel (41), namely

ΠABCD
kquv ∝ δ(Ak + Bq + Cu + Dv)K̃(Ak + Bq), where K̃(Ak + Bq) ≡ K̃[(Ak + Bq)2]. (50)

It is easy to approve the identity:

k0∇kK̃(k ± q) + q0∇qK̃(k ± q) = 0. (51)

Expanding the expression in l.-h.s. of Eq. (49) yields:

(k0 + q0 + u0 + v0)∇δ(k + q + u + v)K̃(k + q)− k0∇δ(k + q + u + v)K̃(k + q)− k0δ(k + q + u + v)∇kK̃(k + q)

−q0∇δ(k + q + u + v)K̃(k + q)− q0δ(k + q + u + v)∇qK̃(k + q)− u0∇δ(k + q + u + v)K̃(k + q)

−v0∇δ(k + q + u + v)K̃(k + q) = −δ(k + q + u + v)(k0∇kK̃(k + q) + q0∇qK̃(k + q)) = 0,

thus equality (49) is true.

The commutators of terms with other rates of creation
and annihilation operators can be calculated by analogy.
Thus we have proved equality (35).

C. Calculation of [P i, Kj
int] and [Mk, Kj

int]

Upon calculating these commutators it is convenient
to use the simplification proposed in the previous para-
graph. Then the expressions for components of the mo-
mentum and the angular momentum are:

P i =
∫

d3k pip0b
+
p b−p

and:

Mk = iεk
ij

∑
a

∫
d3p pip0b

+
p ∂jb−p .

After simple calculations we obtain:

[P i,Kj
int] = iδijHint.

As far as the second commutator is concerned, it is nec-
essary to prove the equality:

[Mk,Kl
int] = iεkl

mKm
int. (52)

Let us show that this equality is fulfilled separately for
items with fixed numbers of creation and annihilation
operators in the expression Kj

int (45). For example, for
items with annihilation operators only we have:

εk
ij

∫
d3p pip0Π−−−−

kqu∂lv
[b+

p ∂jb−p , b−k b−q b−u b−v ]

= −εk
ij∂

l
vΠ−−−−

kquv (ki∂jb−k b−q b−u b−v + qib−k ∂jb−q b−u b−v

+uib−k b−q ∂jb−u b−v + vib−k b−q b−u ∂jb−v ). (53)

Let us switch over the derivatives from the operators
onto the kernel and throw away the unimportant super-
ficial terms. Owing to antisymmetry of the factor εk

ij we
receive the simple expression:

L̂k∂l
vΠ−−−−

kquv b−k b−q b−u b−v , (54)

where L̂k ≡ εk
ij(k

i∂j
k+qi∂j

q +ui∂j
u+vi∂j

v) is the infinites-
imal rotational operator. Let us write down:

L̂k∂l
vΠ−−−−

kquv = ∂l
vL̂kΠ−−−−

kquv b−v +
[
L̂k, ∂l

v

]
Π−−−−

kquv .

Since we have the rotary-invariant kernel the first term
in r.-h.s. is equal to zero. After calculating the commuta-
tor

[
L̂k, ∂l

v

]
= −εk

lj∂
j
v, we present the sought expression
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(54) as:

−εk
ij∂

j
vΠ−−−−

kquv b−k b−q b−u b−v .

It is easy to see that it gives the whole contribution in
the r.-h.s. of (52) which contains annihilation operators
only.

Commutators of the momentum with other lines of
expression (45) for Kj

int (that contain the creation oper-
ators too) can be found by analogy. Finally, we complete
the proof of equality (52).

D. Calculation of [Ki
free, K

j
int] and [Ki

int, K
j
free]

Let us find [Ki
free,K

j
int] + [Ki

int,K
j
free].

By analogy with the previous paragraph, we use ex-
pressions (38) and (45) for Ki

free and Kj
int in this sum in

terms of b± operators. Then, using the commutational
relations (46), both commutators are calculated line-by-
line.

For the first line of (45) the sum of commutators under
consideration yields:

∫
d3k . . . d3v

{
(k0∂

i
k∂j

v + q0∂
i
q∂

j
v + u0∂

i
u∂j

v + v0∂
i
v∂j

v −k0∂
j
k∂i

v − q0∂
j
q∂i

v + u0∂
j
u∂i

v − v0∂
j
v∂i

v)Π−−−−
kquv

}
b−k b−q b−u b−v .

Taking into consideration the structure of kernel (50) and obvious equalities:

∂i
k∂j

vδ(k + q + u + v) ≡ ∂i∂jδ(k + q + u + v) = ∂j
k∂i

vδ(k + q + u + v)

etc., we arrive at the expression:∫
d3k d3q d3u d3v (k0∂

j
vδ(k + q + u + v)∂i

kK̃(k + q) + q0∂
j
vδ(k + q + u + v)∂i

qK̃(k + q)

−k0∂
i
vδ(k + q + u + v)∂j

kK̃(k + q)− q0∂
i
vδ(k + q + u + v)∂j

qK̃(k + q)b−k b−q b−u b−v ,

that is equal to zero owing to (51). The other commuta-
tors of terms with definite rates of creation and annihi-
lation operators can be calculated by analogy. Thus one
receives:

[Ki
free,K

j
int] + [Ki

int,K
j
free] = 0.

VII. PROBLEM OF UNITARITY OF THE
SCATTERING MATRIX

A. S-matrix construction

For the construction of S-matrix we use the standard
algorithm of quantum mechanics [16].

All the above mentioned quantities are given in
Schrödinger representation, in which the field operators
a±a (k) ≡ a±a (k, t = 0). Let us go over to the interac-
tion representation. For this we write Heisenberg equa-
tion (relatively free-field Hamiltonian) for creating and
annihilating operators:

iȧA
a (k, t) = [aA

a (k, t),Hfree].

We solve it and receive:

aA
a (k, t) ≡ eiHfreetaA

a (k)e−iHfreet = e−iAka0taA
a (k).

Using this expressions for calculating the interaction
Hamiltonian we receive:

Hint(t) ≡ eiHfreetHinte
−iHfreet =

1
2

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v TABCD

ab (k,q,u,v)

×e−i(Aka0+Bqa0+Cub0+Dvb0)t : aA
a (k)aB

a (q)aC
b (u)aD

b (v) : .

Let us consider an adiabatic scattering matrix in the first-order approximation:

S = lim
α→0

Sα(∞,−∞) ≡ lim
α→0

Te
−i

∞R
−∞

dt e−α|t|Hint(t)

' 1− i lim
α→0

∞∫
−∞

dt e−α|t|Hint(t);

here T denotes the chronological ordering. Note that the operator of the chronological ordering T does not play any
role in the present approximation. Thus the calculation of S is straitforward and the final expression for scattering
matrix can be received:

S = 1+
i

2

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v

gagb

16(2π)3
δ(4)(Aka+Bqa+Cub+Dvb)√

ka0qa0ub0vb0
K̃(Aka+Bqa) : aA

a (k)aB
a (q)aC

b (u)aD
b (v) : . (55)
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B. Checking for unitarity

Now it should be shown that S (55) is a unitary oper-
ator in the current approximation. It means:

SS+ ≈ 1 + o(g2).

The scattering matrix operator can be written as:

S = I + iF, (56)

where F up to the i factor is equal to the transition oper-
ator. It matches in current approximation to a phase op-
erator (following Blokhintsev; [14]). Accordingly to (56)
S is a unitary operator, if F is Hermitian: F = F+.

Let us show it is really so. For convenience we go over
to the operators b introduced in Subsection VI.B. Then

F =
1
2

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v (57)

× QABCD
kquv : bA

akbB
aqb

C
bubD

bv :,

where QABCD
kquv = δ(Aka0+Bqa0+Cub0+Dvb0)ΠABCD

kquv is
expressed here in terms of the kernel ΠABCD

kquv (41) intro-
duced in Subsection VI.B and possessing properties (42)
and (43). In contrast to ΠABCD

kquv , the kernel Q satisfies
properties (42) only.

After summation over A, B, C, D in (57) we receive:

F =
∑
ab

∫
d3k . . . d3v :

{
Q−−−−

kquv b−akb−aqb
−
bub−bv + 2Q+−−−

kquv b+
akb−aqb

−
bub−bv + 2Q−−+−

uvkq b+
bkb−bqb

−
aub−av

+ Q++−−
kquv b+

akb+
aqb

−
bub−bv + Q−−++

uvkq b+
bkb+

bqb
−
aub−av + 4Q+−+−

kuqv b+
akb+

bqb
−
aub−bv

+ 2Q+++−
kquv b+

akb+
aqb

+
bub−bv + 2Q+−++

uvkq b+
bkb+

bqb
+
aub−av + Q++++

kquv b+
akb+

aqb
+
bub+

bv} : . (58)

Hermiticity can be proved separately for some groups
of terms in this expression: for the first and the last
terms, for remaining terms of the first and the third line,
separately Hermiticity for two first terms in the second
line, and separately it can be shown for the third term
in this line.

For example, we consider the sum of the first and the
last terms in expression (58). Let us conjugate this sum:

(Q−−−−
kquv : b−akb−aqb

−
bub−bv : +Q++++

kquv : b+
akb+

aqb
+
bub+

bv :)+

= Q−−−−
kquv : b+

bvb+
bub+

aqb
+
ak : +Q++++

kquv : b−bvb−bub−aqb
−
ak :

(59)

In kernels Q we inverse all the signs A, B, C, D ac-
cordingly to (42). Using normal ordering we order the
operators b by indices k, q, u, v and receive the expres-
sion:

Q++++
kquv : b+

akb+
aqb

+
bub+

bv : +Q−−−−
kquv : b−akb−aqb

−
bub−bv : .

It coincides with an outgoing expression (in brackets in
the left-hand side of (59)). Therefore the sum of the first
and the last terms in (58) has the property of Hermitic-
ity.

By analogy one can prove the hermiticity of other sums
of lines in expression (58). At last we receive that F is
an Hermitian operator and it means that the scattering
matrix S is unitary.

VIII. CONCLUSIONS

We have considered the scalar Yukawa-like model
within the framework of partially reduced field theory.

The Lagrangian of the model is a time-nonlocal func-
tional, and a transition to the Hamiltonian formalism
is a nontrivial problem. In the preceding work [4] the
perturbative Hamiltonization procedure and a quantiza-
tion of the model were proposed. This procedure leads
to a loss of manifest covariance of the description. The
question whether the procedure preserves a relativistic
invariance of the model has remained open so far.

One of the aims of our work is a proof of the Poincaré-
invariance of quantum Hamiltonian description of the
reduced Yukawa-like model. For this purpose, the Hamil-
tonian counterparts to nonlocal Noether integrals of an-
gular momentum and centre-of-mass of the system found
earlier [4] have been built in the first-order approx-
imation in a coupling constant squared g2 and then
have been quantized canonically. In order a Poincaré-
invariance be guaranteed these operators together with
the Hamiltonian and momentum of the system obtained
in [4] must satisfy the commutation relations of Poincaré
algebra, at least with the precision of up to g2. This is
indeed demonstrated in the paper.

Upon calculations of the commutators it wass been no-
ticed that the availability or absence of a normal ordering
in the expressions for generators does not influence the
result of calculation of commutators of these generators.
Moreover, the commutational relation remains preserved
in the case when only separate items with the fixed num-
ber of creation and annihilation operators are retained in
the interaction terms of canonical generators, (i. e., sep-
arate lines only in expressions (44) and (45)). It can be
interpreted as if the Poincaré-invariance is held approx-
imately on every finite sector of the Fock space of the
model. It is expected also that the Poincaré-invariance is
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preserved in higher-order approximations in the coupling
constant though this is difficult to realized even in the
second-order (i.e., in g4) approximation.

The other aim of our work concerns to scattering ma-
trix for the investigated model. The explicit construction
of S-matrix is realized and its approximate unitarity is
proved. These results allow one to extend the field of
application of this model to a scattering problem.

It is not surprising that the problem with unitarity

does not arise in the present approach. The first reason
is that we consider only lower-order approximations. The
second reason is that the present model is close to the
local Yukawa model rather than to typical models in the
nonlocal field theory.

The investigation of more realistic systems such as the
partially reduced spinor electrodynamics is addressed to
the subsequent works.
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ЧАСТКОВО РЕДУКОВАНЕ ФОРМУЛЮВАННЯ СКАЛЯРНОЇ МОДЕЛI ЮКАВИ:
ПУАНКАРЕ-IНВАРIАНТНIСТЬ ТА УНIТАРНIСТЬ

I. Загладько, А. Дувiряк
Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, Львiв, 79011, Україна

Ми розглядаємо скалярну модель типу Юкави в межах частково редукованої квантової теорiї поля. Реду-
кований лаґранжiан складається з членiв вiльних скалярних полiв та нелокальних членiв взаємодiї струмiв.
У першому наближеннi за квадратом константи взаємодiї знайдено iмпульсне представлення гамiльтоно-
вих виразiв для збережуваних величин, що виникають внаслiдок лоренц-iнварiантностi моделi. Здiйснено
канонiчне квантування системи. Показано, що отриманi збережуванi величини i знайденi ранiше гамiльто-
нiан та iмпульс системи задовольняють комутацiйнi спiввiдношення групи Пуанкаре. У цьому наближеннi
побудовано вираз для S-матрицi. Прямими обчисленнями доведено унiтарнiсть цього оператора.
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