МАСИ ЙОНІЗОВАНОГО ГАЗУ В ОБОЛОНКАХ ГАЛАКТИЧНИХ ПЛАНЕТАРНИХ ТУМАННОСТЕЙ

В. В. Головатий, А. В. Демчина

Кафедра астрофізики Львівського національного університету імені Івана Франка, вул. Кирила і Мефодія, 8, Львів, 79005, Україна (Отримано 29 травня 2012 р.; в остаточному вигляді — 25 лютого 2013 р.)

отримано 29 травня 2012 р., в остаточному вигляді — 25 лютого 2015 р

Визначено маси йонізованого газу $M_{\rm neb}$ в оболонках 151 галактичної планетарної туманності. Враховано наявність у їхній оболонці атомів H та He. Прийнято до уваги як рекомбінаційне, так і ударне збудження емісійних ліній H_{β} і HeI туманностей. Показано, що врахування ударних ефектів на збудження ліній H_{β} і HeI при визначенні маси оболонок ПT не суттєве. Воно може бути лише при точному визначенні хімічного складу оболонок ПТ.

Обчислені значення $M_{\rm neb}$ порівнюються з відповідними даними інших авторів. Показано, що найбільша кількість туманностей має маси йонізованого газу $M_{\rm neb} \simeq 0.1 M_{\odot}$. В основному, це молоді об'єкти, вік яких $t_{\rm age} \leq 5000$ років. Виявлена залежність маси qонізованого газу в оболонках ПТ від об'єму, який він займає: log $M_{\rm neb} = 0.37 \log V_{\rm neb} - 20.5$.

Ключові слова: планетарні туманності, маса йонізованого газу.

PACS number(s): 98.38.Ly, 98.58.Li, 98.58.Ay, 98.38.Bn, 97.20.Rp

I. ВСТУП

Питання про маси оболонок планетарних туманностей (ПТ) астрофізики обговорюють уже багато років [1–11]. При цьому зазвичай пропонується, що оболонка повністю йонізована й займає об'єм небулярної сфери $V = \frac{4}{3}\pi R^3$ з радіусом туманності R, а при врахуванні вмісту гелію приймається $\frac{\text{He}}{\text{H}} \approx 0.1 = \text{const}$ за кількістю атомів для всіх ПТ. У таких випадках для врахування неоднорідного розподілу густини газу в небулярній сферичній оболонці вводиться фактор заповнення ϵ . Однак основним джерелом невизначеності M_{neb} все ж вважається відстань до ПТ (або лінійний радіус її оболонки) та потік випромінювання в лінії Н_{β} від її оболонки.

Крім того, розрахунок фотойонізаційних моделей світіння ПТ показує, що в газових оболонках туманностей міститься досить багато нейтрального водню H^0 та гелію He^0 [12,13]. Це приводить до збільшення ударного складника збудження світіння в лініях H_β та HeI. Очевидно, що, обчислюючи значення маси небулярної оболонки ПТ, цей фактор слід ураховувати [14–23].

У цій роботі наведено результати точнішого визначення значень $M_{\rm neb}$ для 151 галактичної ПТ. Величини різних фізичних параметрів ПТ, необхідні для обчислення $M_{\rm neb}$, узято з праць [24–29]. Ми їх проаналізували за даними різних авторів на предмет їхньої придатності для вивчення еволюційних особливостей оболонок ПТ та їхніх ядер. Ми вважаємо, що це найбільш самоузгоджена шкала значень відповідних параметрів ПТ на сьогодні.

Усі обчислення в цій роботі зроблено для ліній ${\rm H}_\beta,$ $\lambda4471~{\rm HeI}$ і $\lambda4686~{\rm HeII}.$

II. ВИЗНАЧЕННЯ МАС ЙОНІЗОВАНИХ ОБОЛОНОК ГАЛАКТИЧНИХ ПЛАНЕТАРНИХ ТУМАННОСТЕЙ

Масу йонізованого газу $M_{\rm neb}$ в оболонці ПТ з урахуванням H та He запишемо так:

$$M_{\rm neb} = n({\rm H^+})V({\rm H^+})m_{{\rm H^+}} + n({\rm He^+})V({\rm He^+})m_{{\rm He^+}} + n({\rm He^{++}})V({\rm He^{++}})m_{{\rm He^{++}}};$$
(1)

де $n(A^{+i})$ — концентрація атомів H⁺, He⁺ чи He⁺⁺ в одиничному об'ємі небулярного газу; $V(A^{+i})$ — об'єм частини туманності, у якій випромінюють атоми H⁺, He⁺ або He⁺⁺; $m_{A^{+i}}$ — маса протона H⁺ чи йонів He⁺, He⁺⁺. Надалі ми прийняли $m_{\rm H^0} = m_{\rm H}$ і $m_{\rm He^+} = m_{\rm He^{++}} = m_{\rm He}$ та позначення концентрації "n" опустили.

Визначаючи масу йонізованої оболонки ПТ, потрібно враховувати те, що випромінювання в лініях H_{β} , HeI і HeII займає різний об'єм небулярного газу. Очевидно, що найменший об'єм має випромінювання в лінії HeII та дещо більше в лінії HeI. Випромінення в лінії H_{β} займає практично весь об'єм оболонки туманності. Тоді весь об'єм оболонки туманності $V_{\rm neb} \simeq V({\rm H}^+).$

Об'єми небулярного газу в оболонці ПТ, який заповнюють атоми H^+ , He^+ або He^{++} , можна визначити з таких виразів:

$$V(\mathrm{H}^+) = 4\pi D^2 F(\mathrm{H}_\beta) / \epsilon(\mathrm{H}_\beta)$$

для зони йонізованого водню та

$$V(\text{He}^{+}) = 4\pi D^2 F(\text{HeI})/\epsilon(\text{HeI})$$
(2)
$$V(\text{He}^{++}) = 4\pi D^2 F(\text{HeII})/\epsilon(\text{HeII});$$

для зон йонізованого гелію, де D — відстань до туманності; $F(\lambda)$ — виправлені за міжзоряне поглинання потоки випромінювання в лініях H_{β} , HeI і HeII на

відстані до Землі; $\epsilon(\lambda)$ — випромінювальна здатність у відповідних лініях H і He.

Основним механізмом збудження випромінювання в лініях H і He, безперечно, є рекомбінації. Вираз для $\epsilon(\lambda)$ тоді запишемо так:

$$\epsilon(\mathrm{H}_{\beta})^{\mathrm{rec}} = 4\pi j(\mathrm{H}_{\beta})n_{e}\mathrm{H}^{+}$$
$$\epsilon(\mathrm{HeI})^{\mathrm{rec}} = 4\pi j(\mathrm{HeI})n_{e}\mathrm{He}^{+}$$
(3)

$$\epsilon$$
(HeII)^{rec} = $4\pi j$ (HeII) n_e He⁺⁺,

де $4\pi j(\lambda)$ — коефіцієнти випромінювання у відповідних лініях, які враховують рекомбінаційний складник їх виникнення, та які залежать тільки від електронної температури T_e і концентрації n_e . Значення цих коефіцієнтів ми взяли з праці [14]. У цьому випадку в кожній із ліній їх можна записати загальним виразом:

$$4\pi j(\lambda) = a(\lambda)t_e^{b(\lambda)}e^{\frac{c(\lambda)}{t_e}}$$

або

$$4\pi j(\mathbf{H}_{\beta}) = \begin{cases} 1.37 \cdot 10^{-25} \cdot t_e^{-0.982} \cdot e^{-0.104/t_e}, \\ 1.36 \cdot 10^{-25} \cdot t_e^{-0.979} \cdot e^{-0.095/t_e}, \\ 1.36 \cdot 10^{-25} \cdot t_e^{-0.979} \cdot e^{-0.078/t_e}, \end{cases}$$

$$4\pi j(\text{HeI}) = \begin{cases} 6.68 \cdot 10^{-26} \cdot t_e^{-1.048} \cdot e^{-0.080/t_e}, \\ 3.36 \cdot 10^{-26} \cdot t_e^{-0.092} \cdot e^{-0.665/t_e}, \\ 3.03 \cdot 10^{-26} \cdot t_e^{-0.286} \cdot e^{-0.793/t_e}, \end{cases}$$
$$4\pi j(\text{HeII}) = \begin{cases} 1.65 \cdot 10^{-24} \cdot t_e^{-1.118} \cdot e^{-0.087/t_e}, \\ 1.63 \cdot 10^{-24} \cdot t_e^{-1.110} \cdot e^{-0.086/t_e}, \\ 1.56 \cdot 10^{-24} \cdot t_e^{-1.091} \cdot e^{-0.078/t_e}, \end{cases}$$
(4)

де коефіцієнти $a \ b$ і c в кожному рівнянні відповідають $n_e = 10^2$, 10^4 , $10^6 \ cm^{-3}$ зверху вниз відповідно та де прийнято, що $t_e = T_e/10^4 \ K$. Як видно, залежність цих коефіцієнтів для $4\pi j({\rm H}_{\beta})$ і $4\pi j({\rm HeII})$ від n_e незначна. Чутливішими до $n_e \ \epsilon$ коефіцієнти при $4\pi j({\rm HeI})$. Очевидно, що для точніших обчислень $4\pi j({\rm HeI})$ залежність від n_e необхідно враховувати. У цьому випадку в наших обчисленнях можна прийняти такі вирази для $4\pi j(\lambda)$:

$$4\pi j (\mathrm{H}_{\beta})^{\mathrm{rec}} = 1.36 \cdot 10^{-25} \cdot t_e^{-0.095} \cdot e^{-0.095/t_e};$$

$$4\pi j (\mathrm{HeI})^{\mathrm{rec,col}} = a (\mathrm{HeI}) t_e^{b (\mathrm{HeI})} e^{c (\mathrm{HeI})/t_e};$$

$$4\pi j (\mathrm{HeII})^{\mathrm{rec}} = 1.63 \cdot 10^{24} \cdot t_e^{-1.110} \cdot e^{-0.086/t_e};$$
 (5)

$$a (\mathrm{HeI}) = [0.374 (\log n_e)^2 - 3.90 \log n_e + 13.0] 10^{-24};$$

$$b(\text{HeI}) = [-0.118(\log n_e)^2 + 1.28\log n_e - 3.13];$$

$$c(\text{HeI}) = [-0.0771(\log n_e)^2 + 0.835\log n_e - 1.44],$$

де числові значення коефіцієнтів відповідають різним $T_e \cong 5000 \div 20000 \, K$ і $n_e \cong 10^2 \div 10^6 \, \mathrm{cm}^{-3}$, характерним для ПТ. Значення коефіцієнтів a, b, c, n_e для $4\pi j$ (HeI) ми представили параболічною апроксимацією відповідних даних [3] з коефіцієнтом кореляції близьким до 1.

Як уже згадувалося, основним механізмом випромінювання в лінях H⁺, He⁺ і He⁺⁺⁺ є рекомбінації. Останнім часом з'ясувалося, що на коефіцієнт випромінювання $4\pi j(\lambda)$ в лініях H_β та HeI впливає ударне збудження електронами атомів H⁰ та He⁰ відповідно. Ударні процеси, що приводять до збільшення коефіцієнта випромінювання $4\pi j$ (HeI) вже враховані в роботі [14] і виражені у другому рівнянні (5). Для ліній HeII λ 4686 цей ефект незначний через відносно високе розміщення відповідних ерґетичних рівнів атома HeII (50 eB), при переходах з яких вони виникають.

Можливість ударного механізму збудження атомів H⁰, що приводить до збільшення інтенсивностей бальмерівських ліній у газових туманностях, обговорено в роботі [12], де відзначено вплив цього процесу на бальмерівський декремент. Можливість урахування ударних зіткнень електронів з атомами H і He обговорена також в працях [14–23] при визначенні вмісту He/H в оболонках HII Голубих Компактних Карликових Галактиках по різних лініях гелію.

Розгляньмо докладніше питання про вплив ударного механізму збудження випромінення в лінії H_{β} в ПТ. У цьому випадку об'ємний коефіцієнт у лінії H_{β} запишемо так:

$$\epsilon(\mathbf{H}_{\beta})^{\rm col} = 1.14 \cdot 10^{-12} \cdot q_{14}(T_e) n_e \mathbf{H}^0; \tag{6}$$

де $q_{14}(T_e)$ — імовірність збудження випромінення лінії Н_{β} ударом. Аналогічно запишемо вираз для рекомбинаційного механізму випромінення в лінії Н_{β}:

$$\epsilon(\mathbf{H}_{\beta})^{\mathrm{rec}} = 1.36 \cdot 10^{-25} \cdot t_e^{-0.979} n_e e^{-0.995/t_e} n_e \mathbf{H}^+; \quad (7)$$

тоді

$$\frac{\epsilon(\mathbf{H}_{\beta})^{\mathrm{col}}}{\epsilon(\mathbf{H}_{\beta})^{\mathrm{rec}}} = \frac{8.38 \cdot 10^{12} q_{14}(T_e)}{t_e^{-0.979} e^{-0.995/t_e}} \cdot \frac{\mathbf{H}^0}{\mathbf{H}^+} = \frac{C}{R}(\mathbf{H}_{\beta}) \cdot \frac{\mathbf{H}^0}{\mathbf{H}^+}; \quad (8)$$

Загальний вплив рекомбінаційного та ударного механізмів збудження випромінювання в лінії H_β матиме вигляд:

$$\epsilon(\mathbf{H}_{\beta})^{\mathrm{rec/col}} = \epsilon(\mathbf{H}_{\beta})^{\mathrm{rec}} + \epsilon(\mathbf{H}_{\beta})^{\mathrm{col}};$$

$$\epsilon(\mathbf{H}_{\beta})^{\mathrm{rec/col}} = \epsilon(\mathbf{H}_{\beta})^{\mathrm{rec}} \left[1 + \frac{C}{R}(\mathbf{H}_{\beta})\frac{\mathbf{H}^{0}}{\mathbf{H}^{+}}\right], \qquad (9)$$

де індекс C або R вказує на ударне чи рекомбінаційне виникнення ліній H_{β} відповідно. Аналогічно $\epsilon(H_{\beta})^{\rm rec+col}$. Зауважимо, що ударні процеси, які збагачують інтенсивність рекомбінаційної лінії λ 4471 HeI, в роботі Бенжаміна та ін. [14] враховані. Таким чином, рівняння (1) з урахуванням (2)–(9) можна записати так:

$$M_{\rm neb}/M_{\odot} = 4\pi D^2 \left[\frac{F({\rm H}_{\beta}){\rm H}^+ m_H}{\epsilon({\rm H}_{\beta})^{\rm (rec+col)}} + \frac{F({\rm HeI}\lambda4471){\rm He}^+ m_{{\rm He}^+}}{\epsilon({\rm HeI})^{\rm rec+col}} + \frac{F(HeII\lambda4686){\rm He}^{++} m_{{\rm He}^{++}}}{\epsilon({\rm HeII})^{\rm rec}} \right]/M_{\odot};$$
(10)

де враховано тільки рекомбінаційний механізм утворення лінії λ4686 HeII. Після неважких обчислень рівняння (10) кінцево матиме такий вигляд:

$$M_{\rm neb}/M_{\odot} = \frac{4\pi D^2 F(\mathbf{H}_{\beta})m_H}{n_e} \left[\frac{1}{4\pi j(\mathbf{H}_{\beta})^{\rm rec+col}} + \frac{4\mathrm{HeI}/\mathrm{H}_{\beta}}{4\pi j(\mathrm{HeI})^{\rm rec+col}} + \frac{4\mathrm{HeII}/\mathrm{H}_{\beta}}{4\pi j(\mathrm{HeII})^{\rm rec}} \right]/M_{\odot},\tag{11}$$

де чисельні значення коефіцієнтів випромінювання в лініях H_{β} , HeI, HeII обчислено рівнянням (5). Невідомим параметром у цьому рівнянні є лише ударний складник випромінювання в лінії H_{β} , т. с. значення $C/R(H_{\beta})$ та відношення H^0/H^+ для індивідуальних ПТ. Для визначення $C/R(H_{\beta})$ ми використовували дані про ймовірність ударного збудження H^0 , наведені в працях [21–23]. Отримані відповідні значення $C/R(H_{\beta})$ наведені в таблиці 1 для різних електронних температур T_e , характерних в оболонках ПТ. У наших обчисленях використано сучасніші дані [12– 23], що суттєво відрізняються від попередніх значень [21–22] як величиною C/R, так і характером залежності від T_e . Параболічну апроксимацію цих значень $C/R(H_{\beta})$ можна виразити таким співвідношенням:

$$\frac{C}{R}(\mathrm{H}_{\beta}) = \mathrm{dex}(-1.57T_e^2 + 8.19T_e - 8.09); \qquad (12)$$

яке з точністю $\leq 10\%$ відповідає індивідуальним значенням $C/R(\mathrm{H}_{\beta})$, обрахованими згідно з даними [23] для діапазону температур $T_e = 10000 - 25000 \mathrm{K}$.

Рис. 1. Залежність відношення K від температури центральної зорі.

Для обчислення відносної концентрації H^0/H^+ в йонізованій області оболонки туманності ми використовували залежність відношення $\frac{H^+/H^0}{O^{++}/O^+}$ від температури центральної зорі T_* (рис. 1), отриману з фотойонізаційних моделей світіння ПТ [12]. Апроксимація цієї залежності від Т_{*} дає такий вираз:

$$\log \frac{\mathrm{H}^+/\mathrm{H}^0}{\mathrm{O}^{++}/\mathrm{O}^+} = 5.139e^{-1.964t_*}; \tag{13}$$

правильний у діапазоні $T_* \approx 40000 - 200000 \,\mathrm{K}$ (ко-ефіцієнт кореляції близький до 1). Тоді відношення вмісту:

$$\frac{\mathrm{H}^{0}}{\mathrm{H}^{+}} = \left[\frac{\mathrm{O}^{++}}{\mathrm{O}^{+}} \cdot 10^{k}\right]^{-1},\tag{14}$$

де $k = 5.139 e^{-1.964 \cdot 10^{-5} T_*}$. Потрібно пам'ятати , що в розрахунках цієї залежності не враховано процесів перезарядки.

T_e, \mathbf{K}	[-21]	[-22]	[-23]
8000	1.90×10^{-4}	7.89×10^{-5}	$5.71 imes 10^{-4}$
10000	9.23×10^{-3}	4.06×10^{-3}	2.78×10^{-2}
12000	0.130	5.86×10^{-2}	0.380
14000	0.825	0.407	—
15000	_	—	5.38
16000	3.80	1.78	—
18000	11.6	5.70	_
20000	29.5	14.7	80.2
25000	_	83.9	423
30000	507	279	1320

Таблиця 1. Значення параметра $C/R(H_{\beta})$ для різних T_e .

Слід відзначити, що в рівняннях (10) чи (11) не потрібно брати до уваги фактор заповнення ϵ_{neb} тому, що спостережувальний потік випромінення від ПТ, наприклад у лінії Н_β, відповідає не всьому об'єму її сферичної (геометричної) оболонки, а тільки тієї частини, яка світиться саме в тій лінії та займає відповідний об'єм. Навпаки, знайдені таким способом значення мас M_{neb}/M_{\odot} або об'ємів $V(\lambda)$ можна використати для обчислення ϵ_{neb} , якщо відомі кутові розміри туманності та відстань до неї. Це буде предметом нашого подальшого вивчення та опубліковане в наступних роботах.

В. В. ГОЛОВАТИЙ, А. В. ДЕМЧИНА

PNe	$\log F(\mathbf{H}_{\beta})$	D	n_e	T_e	O^{++}/O^{+}	T^*	$\mathrm{HeI/H}_{\beta}$	$\mathrm{HeII}/\mathrm{H}_{\beta}$	C/R	V(H)	$M_{\rm neb}/M_{\odot}$	$M(H)/M_{\odot}$
_	$(erg/cm^{3}c)$	(pc)	$({\rm cm}^{-3})$	(K)	_	(K)	$(\lambda 4471)$	$(\lambda 4686)$	_	cm^3	_	_
1	2	3	4	5	6	7	8	9	10	11	12	13
NGC 650	-10.51	650	975	10450	0.91	135800	0.043	0.55	3.55E - 04	1.46E + 52	0.0178	0.0119
NGC1535	-10.32	1300	2950	11500	78.98	80800	0.039	0.14	1.22E-04	1.19E + 52	0.0384	0.0295
NGC2022	-10.71	3200	2200	14200	69.59	110400	0.006	0.93	1.95E-03	8.03E + 52	0.2008	0.1484
NGC2371	-10.86	2600	1650	10900	3.31	105400	0.020	0.94	1.53E - 03	3.95E + 52	0.0794	0.0548
NGC2392	-10.24	920	1850	11550	3.48	73700	0.029	0.45	2.10E-03	1.84E + 52	0.0384	0.0286
NGC2438	-10.73	1000	1490	10850	4.25	139900	0.033	0.42	7.71E-05	9.58E + 51	0.0164	0.0120
NGC2440	-10.03	1000	3600	12350	2.49	198100	0.041	0.69	5.07 E - 09	1.06E + 52	0.0477	0.0321
NGC2452	-10.82	4800	2700	10150	4.38	115800	0.029	0.63	2.80E - 04	4.79E + 52	0.1540	0.1086
NGC2610	-11.23	2600	200	18300	94.44	112300	0.012	1.08	1.97E - 02	3.20E + 54	0.7891	0.5383
NGC2792	-10.60	3500	2500	14800	68.79	119400	0.015	0.93	1.97E - 03	1.04E + 53	0.3060	0.2184
NGC2818	-11.09	2600	1310	13500	1.73	192400	0.041	0.71	1.13E - 07	5.64E + 52	0.0923	0.0621
NGC2867	-10.14	3800	5400	10200	2.71	120100	0.041	0.32	3.66E - 04	3.62E + 52	0.2310	0.1643
NGC2899	-10.70	2000	2650	13600	0.79	188600	0.055	0.48	7.39E-07	2.03E + 52	0.0668	0.0452
NGC3132	-10.29	670	550	9550	0.77	124100	0.060	0.16	3.99E - 04	6.76E + 52	0.0470	0.0312
NGC3211	-10.73	1800	1800	13500	46.40	164200	0.015	0.80	2.75E - 06	3.28E + 52	0.0675	0.0496
NGC3242	-9.72	1200	3750	11800	84.97	94500	0.034	0.22	2.05E - 04	2.63E + 52	0.1069	0.0829
NGC3587	-10.41	660	140	11600	2.97	118200	0.04	0.11	2.13E - 03	1.13E + 54	0.1787	0.1326
NGC3918	-9.65	2100	6250	12050	7.03	112300	0.032	0.39	2.10E - 03	3.55E + 52	0.2479	0.1863
NGC4361	-10.44	1600	660	20700	162.79	98700	0	1.16	3.74E - 02	8.77E+53	0.6894	0.4861
NGC5189	-9.91	1500	770	10750	2.80	109800	0.035	0.50	1.28E - 03	5.24E + 53	0.4787	0.3390
NGC5307	-10.61	2200	1900	12300	35.97	91300	0.03	0.22	8.31E - 04	4.82E + 52	0.0971	0.0769
NGC5315	-9.85	4200	23100	9900	4.66	62700	0.056	0.027	9.12E - 05	4.43E + 51	0.1244	0.0860
NGC5873	-10.96	6100	7100	12200	19.40	97800	0.035	0.47	1.38E - 03	1.16E + 52	0.0954	0.0694
NGC5882	-9.96	2700	11800	8300	3.91	59600	0.053	0.014	8.31E - 06	3.85E + 51	0.0572	0.0382
NGC6058	-11.73	2800	4500	13400	90.53	83800	0.018	0.57	8.83E-04	1.25E + 51	0.0061	0.0047
NGC6153	-9.78	2000	6000	7700	4.61	97000	0.051	0.14	$1.42E{-}05$	1.07E + 52	0.0828	0.0538
NGC6210	-10.08	3100	6550	9750	14.26	54800	0.049	0.0074	1.13E - 05	1.72E + 52	0.1305	0.0946
NGC6302	-9.14	560	31000	13150	1.03	238800	0.062	0.66	2.77E - 14	3.93E + 50	0.0161	0.0102
NGC6309	-10.55	3300	5950	10250	22.47	107600	0.030	0.59	9.21E - 05	8.84E + 51	0.0625	0.0442
NGC6326	-10.7	4800	1300	11200	21.97	109300	0.032	0.34	2.89E - 04	3.31E + 53	0.4809	0.3616
NGC6369	-9.23	1700	9550	11350	14.86	59900	0.053	0	1.38E-04	2.32E + 52	0.2519	0.1866
NGC6445	-10	1000	2050	10450	2.55	156400	0.031	0.39	6.82E - 06	2.52E + 52	0.0586	0.0435
NGC6537	-9.87	1300	21050	13800	3.30	298600	0.041	0.77	$6.51 E{-}27$	9.42E + 50	0.0247	0.0167
NGC6563	-10.67	950	420	9500	0.76	125300	0.05	0.17	3.42E - 04	9.61E + 52	0.0487	0.0339
NGC6565	-10.9	1800	2750	10200	1.55	134500	0.042	0.19	1.75E-04	5.45E + 51	0.0172	0.0126
NGC6567	-10.27	2800	7200	11000	24.83	71900	0.053	0.017	1.38E - 04	9.52E + 51	0.0787	0.0576
NGC6572	-9.39	2400	28000	8700	0.80	63300	0.051	0.003	1.03E-04	2.20E + 51	0.0759	0.0517

Таблиця 2. Фізичні параметри галактичних планетарних туманностей.

МАСИ ЙОНІЗОВАНОГО ГАЗУ В ОБОЛОНКАХ ГАЛАКТИЧНИХ ПЛАНЕТАРНИХ ТУМАННОСТЕЙ

PNe	$\log F(\mathbf{H}_{\beta})$	D	n_e	T_e	O^{++}/O^{+}	T^*	$\mathrm{HeI/H}_{\beta}$	$\mathrm{HeII}/\mathrm{H}_{\beta}$	C/R	V(H)	$M_{\rm neb}/M_{\odot}$	$M(H)/M_{\odot}$
—	(erg/cm^3c)	(pc)	(cm^{-3})	(K)	_	(K)	$(\lambda 4471)$	$(\lambda 4686)$	_	cm^3		_
1	2	3	4	5	6	7	8	9	10	11	12	13
NGC6578	-10.23	3500	4100	8900	37.10	57400	0.051	0.012	1.73E-06	3.31E + 52	0.1625	0.1140
NGC6620	-11.5	3000	3350	9250	2.24	135500	0.048	0.30	2.96E - 05	2.11E + 51	0.0088	0.0059
NGC6720	-9.97	460	1230	9700	1.15	132400	0.043	0.30	1.51E-04	1.37E + 52	0.0201	0.0142
NGC6741	-10.24	5000	6600	11700	2.50	156400	0.033	0.51	3.17E - 05	4.37E + 52	0.3354	0.2425
NGC6778	-10.78	2800	1750	8000	2.69	84400	0.078	0.095	3.46E - 05	2.65E + 52	0.0666	0.0390
NGC6781	-10.03	290	510	10350	1.42	115600	0.060	0.150	1.14E-03	3.14E + 52	0.0200	0.0135
NGC6804	-10.51	1500	460	13100	160.65	95100	0.015	0.96	4.31E-04	5.45E + 53	0.3004	0.2108
NGC6807	-11.07	15400	25650	12900	36.41	53100	0.054	0.004	$1.53E{-}04$	4.91E + 51	0.1388	0.1059
NGC6818	-10.15	2500	2700	11950	20.83	106800	0.021	0.53	7.98E-04	8.39E + 52	0.2496	0.1904
NGC6833	-11.21	14900	25750	13050	5.78	37500	0.051	0	$1.39E{-}04$	3.38E + 51	0.0943	0.0732
NGC6853	-9.42	350	350	10150	0.69	134900	0.045	0.33	3.52E - 04	3.81E + 53	0.1616	0.1120
NGC6879	-11.21	6300	4050	10200	41.68	55300	0.048	0.031	7.42E - 06	1.51E + 52	0.0697	0.0513
NGC6881	-10.47	4400	20700	11650	4.02	96100	0.036	0.31	3.63E - 03	2.00E + 51	0.0466	0.0349
NGC6884	-10.27	3900	7200	11000	18.48	91200	0.046	0.10	3.63E - 04	1.85E + 52	0.1504	0.1117
NGC6886	-10.55	6800	9350	10900	2.93	142200	0.03	0.43	8.88E - 05	1.71E + 52	0.1819	0.1347
NGC6894	-10.66	1200	670	8900	4.23	120100	0.045	0.087	3.91E - 05	5.42E + 52	0.0421	0.0305
NGC6905	-10.82	3300	910	12100	44.12	112800	0.009	0.83	3.45E - 04	2.82E + 53	0.2887	0.2159
NGC7009	-9.63	1600	4650	9950	28.95	88700	0.051	0.061	5.88E - 05	2.67E + 52	0.1461	0.1043
NGC7026	-10.08	2200	7500	8950	5.73	78200	0.049	0.11	5.42E - 05	5.57E + 51	0.0509	0.0351
NGC7027	-8.75	980	54900	13900	8.30	172700	0.035	0.48	3.97E - 06	1.05E + 51	0.0653	0.0484
NGC7139	-11.07	1100	200	10700	2.10	117200	0.055	0.15	1.09E-03	2.86E + 53	0.0705	0.0481
NGC7293	-9.37	180	180	10150	0.61	118100	0.072	0.10	$1.74E{-}03$	4.27E + 53	0.1025	0.0646
NGC7662	-9.79	1700	3850	12700	89.39	102500	0.027	0.50	$4.71E{-}04$	4.93E + 52	0.2122	0.1595
IC351	-11.14	4500	3200	12100	95.20	96000	0.026	0.45	$2.54E{-}04$	2.03E + 52	0.0717	0.0546
IC418	-9.23	1200	10300	8900	0.26	38000	0.037	0	2.07 E - 05	$6.15E{+}51$	0.0702	0.0533
IC972	-11.87	1400	100	10100	3.40	110900	0.056	0.20	$4.37E{-}04$	2.62E + 53	0.0333	0.0220
IC1297	-10.64	2400	4050	9900	8.62	93200	0.041	0.36	$1.92E{-}04$	7.66E + 51	0.0371	0.0261
IC1747	-10.4	2500	2900	10100	20.22	81000	0.05	0.098	8.42E - 05	2.93E + 52	0.0999	0.0714
IC2003	-10.88	3600	5700	12600	20.66	94700	0.028	0.50	2.01E - 03	8.06E + 51	0.0516	0.0386
IC2149	-10.22	2200	5400	9250	1.15	34000	0.047	0	4.11E-06	8.32E + 51	0.0520	0.0378
IC2165	-10.31	4300	6350	11600	4.13	105000	0.039	0.45	2.86E - 03	2.92E + 52	0.2189	0.1560
IC2448	-10.74	2800	580	12900	147.69	93400	0.039	0.310	3.83E - 04	6.83E + 53	0.4526	0.3328
IC2553	-10.42	4100	10750	10800	36.93	96800	0.044	0.23	$1.43E{-}04$	6.24E + 51	0.0781	0.0564
IC2621	-10.3	2500	23250	10650	2.36	94800	0.033	0.45	1.86E - 03	6.35E + 50	0.0172	0.0124
IC3568	-10.62	3500	4100	10500	50.41	52600	0.045	0.012	$6.71E{-}06$	1.87E + 52	0.0852	0.0644
IC4191	-10.29	4400	14850	11350	17.91	97600	0.049	0.15	5.69E - 04	5.60E + 51	0.0962	0.0699
IC4406	-10.48	920	825	9900	1.10	125900	0.054	0.12	3.86E - 04	3.93E + 52	0.0391	0.0272

Таблиця 2. (Продовження.)

В. В. ГОЛОВАТИЙ, А. В. ДЕМЧИНА

PNe	$\log F(\mathbf{H}_{\beta})$	D	n_e	T_e	O^{++}/O^{+}	T^*	$\mathrm{HeI/H}_{\beta}$	$\mathrm{HeII}/\mathrm{H}_{\beta}$	C/R	V(H)	$M_{\rm neb}/M_{\odot}$	$M(H)/M_{\odot}$
—	$(erg/cm^{3}c)$	(pc)	(cm^{-3})	(K)	_	(K)	$(\lambda 4471)$	$(\lambda 4686)$	_	cm^3	_	_
1	2	3	4	5	6	7	8	9	10	11	12	13
IC4593	-10.48	2100	1550	9400	5.46	40900	0.045	0	3.12E - 06	5.23E + 52	0.0916	0.0681
IC4634	-10.39	4900	6000	10150	8.69	41900	0.043	0	6.25E - 06	2.72E + 52	0.1803	0.1369
IC4673	-10.81	4100	2250	11000	27.25	106600	0.043	0.74	2.03E - 04	6.04E + 52	0.1756	0.1141
IC4846	-10.85	7600	9500	9850	10.82	50500	0.045	0.005	1.04E-05	8.51E + 51	0.0915	0.0679
IC4997	-10.36	7500	44000	13400	5.28	55900	0.059	0.001	2.35E - 03	2.19E + 51	0.1068	0.0808
IC5117	-10.29	5900	56500	12600	13.36	91800	0.045	0.093	3.09E - 03	8.53E + 50	0.0525	0.0405
IC5217	-10.73	4500	8200	10750	13.73	86700	0.045	0.072	3.36E - 04	6.28E + 51	0.0579	0.0433
A 2	-11.78	3000	100	11500	11.67	131900	0.032	0.65	1.52E - 04	1.91E + 54	0.2372	0.1608
A 4	-12.38	4000	150	11100	11.94	116900	0.028	0.23	$3.19E{-}04$	3.54E + 53	0.0577	0.0446
A 70	-12.27	2800	100	10900	8.97	119400	0.052	0.46	2.83E - 04	4.85E + 53	0.0640	0.0408
H $2 - 1$	-10.68	3900	5300	10900	0.10	33100	0.23	0	3.51E - 04	1.30E + 52	0.1495	0.0580
Hb 4	-10.30	3500	6450	9700	13.79	93200	0.051	0.16	9.18E - 05	1.35E + 52	0.1057	0.0731
Hb~5	-9.74	2300	14250	12000	6.69	118300	0.036	0.71	1.48E-03	6.59E + 51	0.1156	0.0789
He $2-5$	-11.07	6400	9600	11000	4.67	56600	0.046	0.024	$2.09E{-}04$	4.43E + 51	0.0473	0.0357
He $2-7$	-10.88	4100	5100	12600	5.74	88800	0.044	0.018	6.96E - 03	1.31E + 52	0.0710	0.0560
He $2{-}15$	-9.60	2100	1400	12350	1.64	218400	0.015	0.57	$1.37E{-}11$	8.34E + 53	1.2633	0.9817
He $2-108$	-10.96	3200	1600	9600	1.06	34500	0.054	0	7.91E - 06	3.93E + 52	0.0744	0.0529
He $2-123$	-10.40	5900	4000	7600	1.87	44700	0.066	0	1.05E-06	4.89E + 52	0.2677	0.1642
He $2-131$	-9.87	2200	16000	7100	0.01	33400	0.017	0	$1.30\mathrm{E}{-}05$	1.25E + 51	0.0201	0.0169
He $2-138$	-10.45	2400	8700	5800	0.02	30300	0.002	0	5.65 E - 07	8.91E + 50	0.0067	0.0065
He $2{-}141$	-10.93	1700	1700	12450	5.26	77000	0.021	0.46	$4.49E{-}03$	1.76E + 52	0.0324	0.0252
Hu $1-2$	-10.56	4900	6700	14650	2.27	130300	0.037	1.200	$2.12 \text{E}{-02}$	3.04E + 52	0.2750	0.1714
J 320	-11.19	3200	1750	12150	42.56	89700	0.046	0.041	$5.87 E{-}04$	3.09E + 52	0.0592	0.0454
J 900	-10.59	5800	8700	11050	3.15	117300	0.029	0.46	1.11E-03	1.35E + 52	0.1333	0.0987
K 1–7	-11.98	4200	100	10800	4.45	12100	0.052	0.13	$1.16\mathrm{E}{-07}$	2.09E + 54	0.2566	0.1756
M 1-1	-11.73	7500	1450	15300	28.82	94500	0.008	0.96	$1.65 \mathrm{E}{-02}$	1.12E + 53	0.1885	0.1370
M 1-4	-10.57	2800	4950	11000	33.65	85500	0.045	0.19	$1.82\mathrm{E}{-04}$	1.01E + 52	0.0575	0.0420
M 1-8	-11.30	2700	640	12600	4.44	153300	0.046	0.42	7.99E - 05	1.37E + 53	0.1064	0.0737
M 1–14	-10.75	5100	1700	10500	1.13	35100	0.046	0	2.69E - 05	1.71E + 53	0.3244	0.2448
$M \ 1{-}26$	-9.84	2300	59700	9600	0.05	33600	0.027	0	$1.31E{-}04$	1.91E + 50	0.0117	0.0096
M $1-72$	-11.12	16600	30000	12700	0.32	45900	0.041	0	$5.82 \mathrm{E}{-03}$	3.60E + 51	0.1126	0.0909
M $2-51$	-11.29	2300	200	10450	1.15	131600	0.048	0.14	$4.43E{-}04$	7.19E + 53	0.1706	0.1209
M $2-55$	-11.26	3900	1400	10400	1.93	142300	0.054	0.33	7.08E - 05	4.48E + 52	0.0787	0.0527
M 3-1	-11.14	6600	4400	10800	2.78	72900	0.051	0.017	$1.02 \mathrm{E}{-03}$	1.84E + 52	0.0926	0.0681
M 3-2	-12.11	4400	730	14750	0.41	147600	0.074	0.85	$1.55 \mathrm{E}{-02}$	5.92E + 52	0.0630	0.0363
Me $1-1$	-10.86	3800	12300	10450	7.49	55400	0.055	0.034	$5.77 E{-}05$	$1.39E{+}51$	0.0203	0.0144
Me $2-1$	-11.10	3400	1650	12700	20.65	170500	0.012	0.84	$7.91 \mathrm{E}{-07}$	5.26E + 52	0.0991	0.0730
Me $2-2$	-10.92	12500	15950	10950	6.48	58100	0.073	0.0026	$1.65 \mathrm{E}{-04}$	8.56E + 51	0.1727	0.1147
PB 4	-11.02	4300	4900	10200	32.10	91800	0.052	0.20	7.64 E - 05	7.43E + 51	0.0442	0.0306

Таблиця 2. (Продовження.)

PNe	$\log F(\mathbf{H}_{\beta})$	D	n_e	T_e	O^{++}/O^{+}	T^*	$\mathrm{HeI/H}_{\beta}$	${\rm HeII/H}_{\beta}$	C/R	V(H)	$M_{\rm neb}/M_{\odot}$	$M(H)/M_{\odot}$
_	$(\mathrm{erg}/\mathrm{cm}^{3}\mathrm{c})$	(pc)	(cm^{-3})	(K)	—	(K)	$(\lambda 4471)$	$(\lambda 4686)$	—	cm^3	—	—
1	2	3	4	5	6	7	8	9	10	11	12	13
PB 6	-11.25	5400	2800	12900	4.62	108800	0.021	1.33	9.20E - 03	3.36E + 52	0.1248	0.0792
SwSt 1	-10.09	3700	11700	11700	0.03	33900	0.030	0	3.18E - 03	1.08E + 52	0.1260	0.1057
Tc 1	-10.31	2200	3150	8200	0.18	33800	0.036	0	5.52E - 06	1.57E + 52	0.0546	0.0415
Vy 2-3	-11.96	8700	2400	11100	58.31	49500	0.046	0.0308	8.47E - 06	1.72E + 52	0.0459	0.0347
BD+30	-9.64	1800	13200	9400	0.02	33600	0.008	0	2.82E - 03	3.65E + 51	0.0432	0.0405
NGC 6439	-10.80	9100	5600	9800	8.77	101200	0.052	0.22	1.55E - 04	3.90E + 52	0.2697	0.1837
NGC 6644	-10.57	6500	15650	11500	3.01	98100	0.045	0.17	4.02E - 03	5.93E + 51	0.1054	0.0780
IC 4776	-10.64	6700	12950	12200	18.31	72700	0.049	0.005	7.84E - 04	8.81E + 51	0.1247	0.0958
$Cn \ 1-5$	-10.81	7900	3550	8200	0.60	49500	0.061	0	1.55E-05	5.03E + 52	0.2310	0.1500
H $1{-}47$	-11.35	9800	9800	6500	0.01	32700	0	0	8.00E - 06	1.85E + 51	0.0152	0.0152
H $1 - 50$	-11.08	9000	4600	12150	20.50	91000	0.057	0.15	1.24E - 03	4.55E + 52	0.2465	0.1757
H $1-54$	-10.99	7800	31500	9550	1.09	36500	0.041	0	9.84E - 06	5.54E + 50	0.0196	0.0147
H $1 - 55$	-11.39	10800	3400	5400	0.03	34400	0.025	0	3.02E - 07	1.18E + 52	0.0445	0.0337
$M \ 1{-}20$	-10.81	8300	8450	11050	5.10	59900	0.054	0.011	2.81E - 04	1.77E + 52	0.1719	0.1254
$M \ 1{-}25$	-10.70	8700	12450	7800	0.71	54300	0.062	0	1.22E - 05	5.78E + 51	0.0979	0.0604
$M \ 1{-}30$	-10.91	9400	10050	6600	0.49	44600	0.06	0	7.55E-07	4.59E + 51	0.0662	0.0387
M $1 - 37$	-11.16	7800	9300	5900	0.02	32700	0.0088	0	9.05E - 07	1.66E + 51	0.0145	0.0130
$M \ 1{-}38$	-10.85	5000	13000	7000	0.00	32700	0.011	0	3.59E - 05	1.00E + 51	0.0123	0.0109
$M \ 1{-}42$	-11.15	7700	3550	9450	3.67	95700	0.063	0.17	2.44E - 04	2.89E + 52	0.1334	0.0863
M 2-4	-10.96	10300	5400	9100	7.60	56300	0.048	0	$1.00\mathrm{E}{-}05$	3.21E + 52	0.2030	0.1458
M $2-5$	-11.28	9700	2100	5700	0.13	37600	0.045	0	2.10E - 07	3.58E + 52	0.0957	0.0631
M 2–22	-11.69	5200	2150	9250	1.61	81800	0.056	0.30	3.41E - 04	9.95E + 51	0.0276	0.0180
M 2 - 30	-11.39	7000	6200	11200	51.21	95100	0.036	0.42	$1.69E{-}04$	6.31E + 51	0.0454	0.0329
M 2-33	-11.23	5700	2400	8300	8.08	48400	0.048	0.01	$1.17\mathrm{E}{-06}$	2.23E + 52	0.0637	0.0450
M 3-7	-10.99	7200	20900	7750	3.08	37100	0.05	0	2.66E - 07	7.10E + 50	0.0189	0.0125
M 3–11	-11.37	8400	480	8200	0.25	39200	0.05	0	8.98E - 06	8.57E + 53	0.4855	0.3459
M 3–21	-11.04	6100	15250	10500	9.60	90100	0.054	0.069	3.70E - 04	1.56E + 51	0.0282	0.0200
M 3–29	-11.40	7000	590	9400	10.74	50500	0.045	0	5.68E - 06	4.82E + 53	0.3209	0.2390
M 3-33	-11.66	5500	3750	11300	34.49	84700	0.042	0.22	2.49E - 04	5.82E + 51	0.0248	0.0183
M 3-41	-11.14	5600	5100	7200	0.02	31900	0.017	0	7.94E - 06	4.43E + 51	0.0223	0.0190
M 4-3	-11.04	9500	7250	9800	5.49	72009	0.048	0.016	1.34E - 04	1.46E + 52	0.1221	0.0889
PC 12	-11.21	10300	8650	8850	0.62	35000	0.04	0	5.03E - 06	6.66E + 51	0.0650	0.0484
Th $3-14$	-11.44	5700	12200	10100	1.15	30700	0.012	0	7.47E - 06	7.83E + 50	0.0088	0.0080
BB 1	-12.3	18200	3500	11950	11.54	96300	0.036	0.26	1.78E - 03	1.87E + 52	0.0724	0.0551
DdDm 1	-11.77	17300	9000	11700	1.52	39000	0.047	0	1.57E - 04	8.30E + 51	0.0817	0.0628
H 4-1	-12.42	25300	1660	11300	1.93	93400	0.045	0.1	5.03E - 03	$1.09E{+}53$	0.2036	0.1525
PRMG 1	-12.91	10200	930	16100	1.70	80800	0.038	0.14	3.87E - 01	3.69E + 52	0.0363	0.0289
Ps 1	-12.02	10900	3100	12550	5.47	8700	0.046	0	$1.06E{-}04$	1.80E + 52	0.0599	0.0468

Таблиця 2. (Продовження.)

III. РЕЗУЛЬТАТИ

Знайдені таким способом значення мас йонізованих оболонок 151 галактичної ПТ наведені в таблиці 2 з урахуванням атомів Н (кол. 12), а також Н і Не (кол. 13). Як уже зазначалося, величини різних фізичних параметрів ПТ, необхідних для визначення $M_{\rm neb}$, узяті з робіт [24–29], а значення відстані, яку обчислив Мальков [28] — на основі рівності динамічного віку оболонки й віку ядра (метод Шкловського не використовували). Найбільш важливі з цих параметрів наведені в кол. 2-9 табл. 2. Слід зауважити, що ми проаналізували на предмет їхньої відповідності для дослідження еволюційних особливостей оболонок та центральних зір ПТ. Ми вважаєм, що це найбільш однорідна шкала значень основних фізичних параметрів ПТ на сьогодні. У кол. 1 табл. 2 наведено позначення ПТ, а в наступних колонках — величини $M_{\rm neb}$: потоки в лінії Н_в від оболонок туманностей на відстані Землі, виправлені за міжзоряне поглинання (кол. 2); концентрація n_e і температура $T_e($ кол. 4 і 5); відношення йонів O^{++}/O^{+} , знайдене з розрахунку фотойонізаційних моделей випромінювання ПТ (кол. 6); ефективна температура центральної зорі T_* , близька до ефективної температури ядра $T_{\rm eff}$ [26] (кол. 7); відносні інтенсивності ліній $HeI\lambda 4471/H_{\beta}$ і $HeII\lambda 4686/H_{\beta}$ (кол. 8,9). У кол. 10-13 таблиці 2 наведено значення фізичних параметрів ПТ, отриманих під час виконання цих розрахунків. Як видно, відношення ударної складової інтенсивності лінії Н_в до рекомбінаційної $C/R({\rm H}_{\beta}) \leq 10^{-2}$ (кол. 10) практично для всіх ПТ. Це означає, що ударний механізм утворення ліній Н та Не є незначним при обрахунку мас йонізованого газу в оболонках практично всіх ПТ. Інакше кажучи, тільки у випадку дуже низької йонізації водню $\rm H^+/\rm H^0 \leq 10^{-2}$ механізм ударного утворення ліній H стає важливим при визначенні M_{neb}. Істотнішим параметром оболонки ПТ, що становить інтерес для дослідження її еволюційних особливостей, є об'єм V_{neb}, займаний йонізованим воднем (кол. 11). Він визначає величину маси газу йонізованої частини оболонки туманності M_{neb} (кол. 12) або її водневого складника M(H) (кол. 13).

IV. ОБГОВОРЕННЯ ОТРИМАНИХ РЕЗУЛЬТАТІВ

Як і попередні дослідники, при визначенні $M_{\rm neb}$ ми прийняли спрощену модель світіння ПТ: однорідна (але не обов'язково сферична) небулярна оболонка, заповнена Н та Не, світиться під дією йонізуючого L_C -випромінювання її центральної зорі. Наявність Не в туманностях приводить до збільшення густини газу в оболонці, яка обчислюється її електронною концентрацією n_e . Внеском важчих хімічних елементів ми знехтували. Просторовий розподіл Н та Не в газовій оболонці ПТ може бути неоднорідним, а його центр необов'язково збігається з геометричним центром туманності, пов'язаним з її центральною зорею. Маса йонізованого газу в оболонці ПТ визначається внеском H⁺, He⁺ та He⁺⁺, т. с. M_{neb} , $\frac{F(\text{H}_{\beta})}{\epsilon(\text{H}_{\beta})} + \frac{F(\text{HeI})}{\epsilon(\text{HeI})} + \frac{F(\text{HeII})}{\epsilon(\text{HeII})}$. При такому підході до визначення M_{neb} не потрібно в рівняння (11) вводити параметр заповнення ϵ . Це нам здається виправданим, оскільки зображення оболонки ПТ у вигляді сфери, частково заповненої газом однакової густини, не має сенсу [30].

Рис. 2. Гістограма кількості галактичних планетарних туманностей від маси їх оболонок.

Рис. 3. Гістограма кількості галактичних планетарних туманностей від їх віку.

На рис. 2 показано розподіл кількості галактичних ПТ залежно від маси йонізованих оболонок. Видно, що найбільша кількість ПТ має масу $M_{\rm neb} \leq 0, 1 M_{\odot}$. В основному це молоді ПТ, вік яких $t_{\rm age} \leq 5000$ років (рис. 3). Дані про вік ПТ взято з роботи [27]. Як і слід було очікувати, порівняння знайдених значень $M_{\rm neb}$ з відповідними даними інших авторів, наприклад [9,10], не показали жодної залежності. Такі порівняння не мають сенсу, оскільки при визначення маси йонізованого газу ПТ ці та інші автори використовували занадто спрощену геометричну модель світіння оболонки ПТ і для обчислень $M_{\rm neb}$ враховували фактор заповнення ϵ . Його величина вельми різниться в різних туманностях [1–11], але повинна бути завжди менше

1. Однак, вона визначається невпевнено, і в багатьох випадках $\epsilon > 1$ (наприклад, [9]). Це означає, що використання ϵ при моделюванні йонізаційної оболонки ПТ у вигляді сфери, частково заповненої газом однакової густини в радіальному напрямі, може бути джерелом великих похибок у визначенні $M_{\rm neb}$ [30]. Важливим еволюційним параметром, який безпосередньо обчислюється в цій роботі, може бути об'єм йонізованого газу в оболонці туманності $V_{\rm neb}$. Якою мірою він є функцією радіуса R, якщо оболонка сферична. Точні значення R невідомі та розраховуються ненадійно. Через те ми розглядали залежність $M_{\rm neb}$ від $V_{\rm neb}$, показану на рис. 4. Її можна записати лінійною апроксимацією

$$\log M_{\rm neb} = 0.37 \log V_{\rm neb} - 20.5, \tag{15}$$

де коефіцієнт кореляції r = 0.71. Зрозуміло, що залежність не чітка, оскільки маса оболонки та, відповідно, її об'єм є функцією електронної концентрації n_e і температури T_e , значення яких значно різняться в різних ПТ [11]. Це підтверджується слабкою залежністю $M_{\rm neb}$ від даних параметрів: її значення зростає зі збільшенням T_e та спадає зі збільшенням n_e . Для оцінки точності наших досліджень $M_{\rm neb}$ ми, також як і Баклей та Шнайдер [10], використали відомий вираз із теорії похибок обчислень.

Рис. 4. Залежність між масою іонізованого газу оболонки ПТ та її об'ємом.

У нашому випадку похибка обчислень $\Delta M/M_{\rm neb}$ обраховується точністю параметрів $D, F({\rm H}_{\beta}), n_e$ та T_e . Після аналізу похибок цих параметрів у роботі Малькова [28] було прийнято, що точність обчислень відстаней до ПТ $\Delta D/D \leq 20$ %, потоків випромінення $\Delta F({\rm H}_{\beta})/F({\rm H}_{\beta}) \leq 10$ %, електронної концентрації $\Delta n_e/n_e \leq 10\%$ та температур $\Delta T_e/T_e \leq 10\%$. В такому випадку точність визначення $\Delta M/M_{\rm neb} \leq 20\%$, що не вплине на характер та результати обговорення в нашій роботі.

V. ВИСНОВКИ

Важливою перевагою такої моделі для визначення $M_{\rm neb}$ є можливість обчислити масу йонізованого газу для великої кількості оболонок ПТ без необхідності врахувати фактор заповнення. Однак відстань до туманності (чи кутові розміри оболонки ПТ) та потоки випромінювання від них у лінії $F(H_{\beta})$ і далі залишаються найбільш невизначеними параметрами при обрахунку M_{neb}. Меншою мірою чутливими для обчислення $M_{\rm neb} \in n_e$ та $T_e,$ але в цьому методі так, як і пропонували інші автори, вони сталі по всьому об'єму йонізованого газу оболонки. Незнання точних значень цих параметрів поки що не дозволить докладніше вивчати еволюційні особливості зміни $M_{\rm neb}$ з часом. Для цього необхідно краще знати механізм та динаміку утворення оболонки ПТ. У роботі [30] ми показали, що оболонка ПТ в процесі розширення не взаємодіє безпосередньо з міжзоряним середовищем, а є внутрішніми йонізованими частинами "повільного" міжзоряного вітру. Оболонка ПТ являє собою протяжну неоднорідну структуру, густина газу в якій міняється на порядок та більше. Відповідно використовування понять "середня густина" та "фактор заповнення" не має сенсу. Це означає, що для моделювання ПТ зображення її оболонки у вигляді сфери, частково заповненої газом однакової густини, приведе до великих похибок. Вивчення еволюційних особливостей зміни $M_{\rm neb}$ є предметом наших майбутніх досліджень, результати яких будуть опубліковані в наступних працях.

- [1] Г. С. Хромов, Астрон. Журн. **39**, 468 (1962).
- [2] G. Vaucair, Ann. Astrophys. **31**, 199 (1968).
- [3] M. Perinotto, Astron. Astrophys. 39, 383 (1975).
- [4] W. Maciel, S. R. Pottash, Astron. Astrophys. 88, 1 (1980).
- [5] S. R. Pottash, Astron. Astrophys. 89, 336 (1980).
- [6] J. P. Phillips, S. R. Pottash, Astron. Astrophys. 130, 91 (1984).
- [7] S. R. Pottash, Planetary Nebulae (Reidel, Dordrecht-Boston-Lancaster, 1984).
- [8] Г. С. Хромов, Планетарные туманности. Физика. Эволюция. Космогония (Наука, Москва, 1985).
- [9] F. R. Boffi, L. Stangelini, Astron. Astrophys. 284, 248 (1994).

- [10] D. Buckley, S. E. Schneider, Astrophys. J. 446, 279 (1995).
- [11] D. E. Osterbrock, G. J. Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd Ed. (University Science books Sausalito, California, 2006).
- [12] В. В. Головатый, В. И. Пронык, О. Я. Яцик, Цирк. Львов. астрон. обсерв. №51, 3 (1976).
- [13] В. В. Головатый, Ю. Ф. Мальков, препринт ИТФ-91-66р (1991).
- [14] R. A. Benjamin, E. D. Skillman, D. P. Smits, Astrophys. J. 514, 307 (1999).
- [15] V. Luridina, Astrophys. Space. Sci. **324**, 361 (2009).
- [16] B. E. J. Pagel, E. A. Simonson, R. J. Terlevich, M. G. Edmunds, Mon. Not. R. Astron. Soc. 255, 325 (1992).

- [17] G. Stasinska, Yu. Izotov, Astron. Astrophys. **397**, 71 (2003).
- [18] V. Luridiana, A. Peimbert, M. Peimbert, M. Cervino, Astrophys. J. 592, 846 (2003).
- [19] Yu. Izotov, T. Thuan, G. Stasinska, Astrophys. J. 15, 662 (2007).
- [20] M. Peimbert, V. Luridiana, A. Peimbert, Astrophys. J. 666, 636 (2007).
- [21] Р. Е. Гершберг, А. Коровяковская, Ю. Коровяковский, Изв. Крым. астрофиз. обсерв. 43, 49 (1971).
- [22] C. Giovanardi, A. Notta, F. Palla, Astron. Astrophys. Suppl. Ser. **70**, 269, (1987).
- [23] В. В. Сагун, Ю. И. Изотов, Кинем. физ. небесн. тел

28, 3 (2011).

- [24] В. В. Головатый, Ю. Ф. Мальков, Астрон. Цирк. №1544,7 (1990).
- [25] В. В. Головатый, Ю. Ф. Мальков, Астрон. Цирк. №1544, 97 (1990).
- [26] Yu. F. Malkov, V. V. Golovatyj, O. V. Rokach, Astrophys. Space Sci. 232, 99 (1995).
- [27] Ю. Ф. Мальков, Астрон. Журн. 74, 853 (1997).
- [28] Ю. Ф. Мальков, Астрон. Журн. **75**, 334 (1998).
- [29] Ю. Ф. Мальков, Кинем. физ. небесн. тел 18, 35 (1994).
- [30] В. В. Головатый, Ю. Ф. Мальков, Астрон. Журн. 69, 1156 (1992).

MASS OF IONIZED GAS IN GALACTICAL PLANETARY NEBULAE ENVELOPES

V. V. Holovatyy, A. V. Demchyna

Department for Astrophysics, Ivan Franko National University of Lviv, 8 Kyryla i Mefodija St., Lviv, UA-79005, Ukraine e-mail: vholovaty@gmail.com, ademchyna@gmail.com

The masses of the ionized gas $M_{\rm neb}$ in the envelopes of 151 planetary nebulae (PNe) are determined. The presence of H and He atoms is taken into account. The recombination as well as collisional contributions to emission of H_{β} and HeI lines, were is considered as well. It is shown that these collisional effects have not a strong influence on the determination of the PNe envelopes masses. Collisional contribution may be effective only in the task of precisional determination of the chemical composition of the PNe envelopes.

The obtained values of $M_{\rm neb}$ are compared with the corresponding data from other authors. It is shown that most of nebulae have mass of the ionized gas $M_{\rm neb} \simeq 0.1 M_{\odot}$. It is mainly young objects with ages $t_{\rm age} \leq 5000$. The dependence of the ionized gas mass on PNe volume is obtained: log $M_{\rm neb} = 0.37 \log V_{\rm neb} - 20.5$.