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Based on Chraplyvy’s generalization of the Foldy–Wouthuysen method to the two-body case, the
problem of expansion of relativistic equations for two particles in powers of 1/c to higher orders is
considered. For the case of particles with unequal masses, the transformed Hamiltonian is obtained
up to order 1/c4. It is found that, depending on the order of application of the generating functions
for the first iteration, one can get two different forms for the higher-order part of the transformed
two-body Hamiltonian, which, however, can be converted one into the other by an additional unitary
transformation. Ambiguities like this in the procedure are discussed. As an example for illustration,
the Hermitian part of the three-dimensional Bethe–Salpeter equation with the Breit interaction is
taken and its reduction to an approximate form including all the 1/c4-order terms is carried out
using the method under consideration. The results obtained here can be applied for a nonrelativistic
expansion of two-body wave equations with various interaction potentials, for the study of the fine
and hyperfine structure of the levels in hydrogen-like atoms. They can be of general theoretical
interest as well.
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I. INTRODUCTION

In spite of considerable achievements in quantum field
theory, particularly in quantum electrodynamics (QED),
relativistic two-body wave equations are widely used to
learn about various relativistic effects in quantum sys-
tems and also to study and calculate their energy spectra
(see, e.g., [1–6] and references therein). However, to get
an acceptable description of a two-body system, it is not
essential to solve the original equations of motion, and
one can often restrict oneself to the consideration of their
approximate forms with a small parameter, such as the
inverse speed of light. As a rule, for many applications,
they usually restrict themselves to an expansion of wave
equations in powers of 1/c to second order. Thus, e.g.,
the well-known Breit–Fermi Hamiltonian and its special
case for a vector exchange, which can be derived from the
nonrelativistic reduction of different two-body equations,
are often used to describe spectra of atomic, nuclear, and
quark systems [7–9].

A relatively simple description of a system of two spin-
half particles, including relativistic effects and its energy
spectrum, can be given with the help of equations of
the Breit type. In order to obtain a semirelativistic ap-
proximation of equations of this type, they usually apply
the Foldy–Wouthuysen (FW) method [10] generalized by
Chraplyvy to the two-body problem [11,12].

According to this method, one represents a relativistic
two-body Hamiltonian in the following general form:

H = β1m1c
2+β2m2c

2+(EE)+(EO)+(OE)+(OO). (1)

This is a sum of the two “large” terms β1m1c
2 + β2m2c

2

and even-even, even-odd, odd-even, and odd-odd terms,

respectively. In the case of two Dirac particles, they are,
in fact, matrices of 16 × 16 = 256 elements, and can
be written as direct products of four-by-four matrices of
each particle. In order to remove the undesirable terms
(even-odd, etc.), the Hamiltonian must be subjected to
canonical transformations of the type

eiSHe−iS = H + i[S, H ] +
(i)2

2!
[S, [S, H ]]

+
(i)3

3!
[S, [S, [S, H ]]] + · · · , (2)

provided that the generating functions S are suitably-
chosen Hermitian operators, and where the inverse speed
of light (or, equivalently, the inverse masses) can be taken
as an expansion parameter.

Though in the case of interacting particles one cannot
determine a unitary transformation which cancels all the
undesirable terms in all orders in principle, the original
Hamiltonian can be converted by the procedure (2) into
an even-even operator to any desired degree of approxi-
mation. There are a lot of sets of S to reduce a two-body
Hamiltonian to approximate forms [12, 13]. In this pa-
per, we apply the generating functions in a simple form,
which, for the first iteration, read as follows:

Soe = −
iβ1

2m1c2
(OE), (3a)

Seo = −
iβ2

2m2c2
(EO), (3b)

Soo = −
i(β1m1 − β2m2)

2(m2
1 − m2

2)c
2

(OO). (3c)
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The generators for the next iterations differ from (3) by
the structure of their odd-even, even-odd, and odd-odd
factors and enable us to reduce a sixteen-component two-
body equation to its four-component approximate forms
relative to the chosen energy states of the particles. They
were first introduced by Chraplyvy in [11] to convert the
two-body Hamiltonian (1) into an even-even operator to
order 1/c2 (under the assumption that (EE), (OO) are
of order c0, and (OE), (EO) of order c1),

Htr = β1m1c
2 + β2m2c

2 + (EE) (4a)

+
β1

2m1c2
(OE)2 +

β2

2m2c2
(EO)2 (4b)

+
1

8m2
1c

4
[(OE), [(EE), (OE)]]

+
1

8m2
2c

4
[(EO), [(EE), (EO)]] (4c)

−
β1

8m3
1c

6
(OE)4 −

β2

8m3
2c

6
(EO)4 (4d)

+
β1β2

8m1m2c4

{

[(OE), [(EO), (OO)]+]+

+ [(EO), [(OE), (OO)]+]+

}

(4e)

+
β1m1 − β2m2

2(m2
1 − m2

2)c
2
(OO)2 (4f)

+
β2m1 − β1m2

8m1m2(m2
1 − m2

2)c
6
[(OE), (EO)]2 (4g)

−
β1m1 + β2m2

16m2
1m

2
2c

6
[(OE)2, (EO)2]+ (4h)

+
β1

8m1m2
2c

6
(EO)(OE)2(EO)

+
β2

8m2
1m2c6

(OE)(EO)2(OE) (4i)

+
β1β2(m

2
1 + m2

2) − 2m1m2

8m1m2(m2
1 − m2

2)c
4

× [[(EO), (OE)], (OO)] . (4j)

Because of the form of (3c) this prescription is ap-
plicable for the case of unequal masses only, however, it
enables one to get four forms of the reduced Hamiltonian
relative to the four different energy states of the system.

They often use prescription (4) in atomic physics. For
example, it was applied by Barker and Glover in order
to transform the Salpeter equation [14], which they her-
mitize for this purpose, and the Breit equation with the
Breit interaction and a phenomenological correction tak-
ing into account the intrinsic magnetic moments of the
particles to sixteen-component approximate forms [15].
Using the obtained transformed Hamiltonians, correct to
1/c2, they carried out a perturbation calculation of the
fine and hyperfine structure for hydrogen and positroni-
um up to the order α5mc2.

Although, as a rule, the Chraplyvy transformation is
often used to order 1/c2, so that they restrict themselves

to Eq. (4), the properties and features of the transformed
Hamiltonians valid to the nth order in expansion param-
eters are discussed in the literature [16,17]. Still, the two-
body, and n-body in general, transformation to higher
orders in 1/c can be of some interest not only from the
theoretical point of view. Thus, e.g., in addition to the
effects of the order 1/c2, relativistic equations for Dirac
particles with electromagnetic interactions contain some
information about the form of terms giving relativis-
tic and radiative corrections up to 1/c3 and 1/c4, and
which can also be obtained from the nonrelativistic re-
duction [18,19]. However, in a general case, one needs to
apply QED to get the α5mc2, α6mc2 corrections to the
energy (see, e.g., [20–26]), but the problem of derivation
of the higher-order effective Hamiltonian for an arbitrary
light atom remains difficult. Nevertheless, an expansion
of relativistic equations to higher orders provides a rather
straightforward derivation of an effective Hamiltonian for
bound states, although this way does not give a complete
treatment of relativistic and quantum field effects.

This paper focuses on some further development of the
two-body reduction techniques of Chraplyvy and also its
application to the problem of the expansion of equal-
time relativistic wave equations for two Dirac particles
up to the order 1/c4, with the help of the generating func-
tions (3), and it is organized as follows. Section II deals
with the two-body Hamiltonian transformed to higher
orders, for which all the 1/c4-order terms are found,
and which is a continuation of the transformation (4)
for the case of commutation of (OE) and (EO). It oc-
curs that the form of the higher-order part of the trans-
formed Hamiltonian depends on the order of application
of the functions (3), namely, it can involve certain extra
terms having a difference of masses in the denominators
even though both particles are in a positive energy state.
Here, we are concerned with additional unitary transfor-
mations canceling terms of this type as well.

In Section III, for the sake of illustration, we consider
the 1/c expansion of the Salpeter equation (its Hermi-
tian part, to be exact) with the Breit interaction, and
calculate all the terms of the order 1/c4 in its trans-
formed Hamiltonian. Finally, Section IV contains a sum-
mary and conclusions of the article.

II. THE TRANSFORMED HAMILTONIAN

Proceeding with the procedure of transformation of
the Hamiltonian (1), using generators (3), and with due
regard for the commutation relation

[(OE), (EO)] = 0, (5)

which causes a considerable simplification in Htr, we get
new even-even terms coming after the terms written in
Eq. (4), and which are of a lower order of magnitude.
They form the higher-order, with respect to 1/c, part of
the transformed Hamiltonian.

Thus one obtains the following prescription for the
transformation of H :
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Htr = β1m1c
2 + β2m2c

2 + (EE) +
β1

2m1c2
(OE)2 +

β2

2m2c2
(EO)2 +

β1m1 − β2m2

2(m2
1 − m2

2)c
2
(OO)2

+
1

8m2
1c

4
[(OE), [(EE), (OE)]] +

1

8m2
2c

4
[(EO), [(EE), (EO)]] +

β1β2

4m1m2c4
[(OE), [(EO), (OO)]+]+

−
β1

8m3
1c

6
(OE)4 −

β2

8m3
2c

6
(EO)4 (6a)

−
β1

8m3
1c

6
[(OE), (EE)]2 −

β2

8m3
2c

6
[(EO), (EE)]2 (6b)

+
β1

8m1m
2
2c

6
[(EO), (OO)]2+ +

β2

8m2
1m2c

6
[(OE), (OO)]2+ (6c)

−
β1m1 − β2m2

16m2
1(m

2
1 − m2

2)c
6
[(OO), [(OE), [(OE), (OO)]+]+]+ −

β1(β1m1 − β2m2)
2

16m1(m2
1 − m2

2)
2c6

[(OO), [(OO), (OE)2]+]+

−
β1m1 − β2m2

16m2
2(m

2
1 − m2

2)c
6
[(OO), [(EO), [(EO), (OO)]+]+]+ −

β2(β1m1 − β2m2)
2

16m2(m2
1 − m2

2)
2c6

[(OO), [(OO), (EO)2]+]+ (6d)

−
β1m2 − β2m1

8m1m2(m2
1 − m2

2)c
6
[(OO), [(OE), [(EO), (EE)]]]+

+
β1

8m1m
2
2c

6
[[(EO), (EE)], [(OE), (OO)]+] +

β2

8m2
1m2c

6
[[(OE), (EE)], [(EO), (OO)]+] (6e)

+
(β1m1 − β2m2)

2

8(m2
1 − m2

2)
2c4

[(OO), [(EE), (OO)]] (6f)

+
1

384m4
1c

8

{

[(OE), [(OE), [(OE), [(OE), (EE)]]]] + 32[(OE)3, [(OE), (EE)]]
}

+
1

384m4
2c

8

{

[(EO), [(EO), [(EO), [(EO), (EE)]]]] + 32[(EO)3, [(EO), (EE)]]
}

(6g)

+
1

64m2
1m

2
2c

8
[(OE), [(OE), [(EO), [(EO), (EE)]]]] (6h)

−
β1β2

96m3
1m2c

8

{

[(OE), [(OE), [(OE), [(EO), (OO)]+]+]+]+ + 8[(OE)3, [(EO), (OO)]+]+

}

−
β1β2

96m1m
3
2c

8

{

[(OE), [(EO), [(EO), [(EO), (OO)]+]+]+]+ + 8[(OE), [(EO)3, (OO)]+]+

}

(6i)

+
β1

16m5
1c

10
(OE)6 +

β2

16m5
2c

10
(EO)6. (6j)

The FW method allows one to expand the Hamilto-
nian to any desired degree of approximation, keeping its
Hermitian character. Here, we assume that (EE), (OO)
are of the order c0, and (OE), (EO) of the order c1, and
we retain the terms up to order 1/c4. So, under this
assumption, expression (6) represents the transformed
Hamiltonian approximate out to the fourth order. It can
be divided into two parts. The first part consists of the
terms (6a) and the transformed Hamiltonian is correct
to 1/c2, into which expression (4) goes over under the
commutation relation (5). The second part, which we
will refer to as the higher-order transformed Hamilto-

nian, involves all the 1/c4-order terms (6b. . . j). It is
a sixteen-component equation, and as usual, to obtain
its four-component forms, i.e. reduced Hamiltonians, one
has to put β1 = β2 = ±1 or β1 = −β2 = ±1. Notice that
if the inverse mass is considered as an expansion param-
eter, the terms (6b. . . e), which are nonlinear in (EE)
and (OO), are of the order 1/m3. Many of them have a
mass difference in the denominators. The terms (6g, h,
i), which are linear in (EE), (OO), are of the order 1/m4.
The term (6f), which consists of the even-even and odd-
odd operators, is the only one of the order 1/m2 in the
higher-order transformed Hamiltonian.
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For the case when the mass of one particle becomes
considerably great in comparion with the mass of the
other one, i.e. m1 → ∞ or m2 → ∞, equation (6) goes
over into the corresponding formula for a single Dirac
particle in external fields:

Htr = βmc2 + E +
β

2mc2
O2 +

1

8m2c4
[O, [E ,O]]

−
β

8m3c6
O4 −

β

8m3c6
[O, E ]2

+
1

384m4c8
[O, [O, [O, [O, E ]]]]

+
1

12m4c8
[O3, [O, E ]] +

β

16m5c10
O6, (7)

which is the transformation of the Hamiltonian

H = βmc2 + E + O,

with the use of the generator

S = −
iβ

2mc2
O.

Under this condition only the terms of (6b, g, j) remain
in the higher-order transformed Hamiltonian and pass
into the last four terms in Eq. (7); the rest of the com-
mutators and anticommutators, which involve the (OO)
terms in expression (6), vanish.

The transformed Hamiltonian written out in Eq. (4)
to the second order is derived with the use of the gener-
ating functions (3), and it is not so important which of
them is used first in the first iteration in series (2); re-
gardless of the order of their application in this iteration,
the same expression in the form of (4) will be obtained.
In other words, it is not important which of the unde-
sirable terms in Eq. (1) will be destroyed first. But this
statement is correct only if one needs to get the expan-
sion up to the terms written in Eq. (4), or the same, to
the second order in 1/c under our assumption. The use
of Soe or Seo first in the sequence in the first iteration
leads to the transformed Hamiltonian in the form (6),
however, if one applies Soo first (instead of Soe or Seo)
in (2), certain “extra” terms of the fourth order will arise
in the transformed Hamiltonian in addition to those in
Eq. (6); namely,

β1m2 − β2m1

8m1m2(m2
1 − m2

2)c
6
[[(OE)(EO), (OO)], (EE)]

+
β1m2 + β2m1

8m1m2(m2
1 − m2

2)c
6

×[(EO)(OO)(OE) − (OE)(OO)(EO), (EE)]

+
m2 − β1β2m1

16m2
1m2(m2

1 − m2
2)c

8
[[(OE)(EO), (OO)], (OE)2]

+
β1β2m2 − m1

16m1m2
2(m

2
1 − m2

2)c
8
[[(OE)(EO), (OO)], (EO)2]

+
m2 + β1β2m1

16m2
1m2(m2

1 − m2
2)c

8

×[(EO)(OO)(OE) − (OE)(OO)(EO), (OE)2]

+
β1β2m2 + m1

16m1m2
2(m

2
1 − m2

2)c
8

×[(EO)(OO)(OE) − (OE)(OO)(EO), (EO)2]. (8)

As follows from this equation, the terms having a mass
difference in the denominators appear even though both
particles are in positive or negative energy states (those
correspond to setting β1 = β2 = ±1). Such terms, but
with other numerical factors, also appear in Htr, if one
takes the sum S = Soe + Seo + Soo as a generator [27].
Obviously, some extra terms enter the expansion in the
sixth order and higher. The dependence of the form for a
higher-order part of the transformed Hamiltonian on the
order of application of the generating functions can be
an important feature of the expansion to higher orders,
and makes the difference between the second-order and
higher-order expansions.

Nevertheless, terms (8) can be eliminated provided
that the transformed Hamiltonian is subjected to an ad-
ditional unitary transformation like (2) with a generating
function in the form of a Hermitian even-even operator,
which we represent in such a manner:

See = −
i(β1m2 − β2m1)

8m1m2(m2
1 − m2

2)c
6
[(OO), (OE)(EO)] (9a)

−
i(β1m2 + β2m1)

8m1m2(m2
1 − m2

2)c
6

×
{

(OE)(OO)(EO) − (EO)(OO)(OE)
}

. (9b)

Taking into account its higher order, one can retain
only the first two terms in series (2), while the rest of
the terms might be discarded because they are of a low-
er order of magnitude,

eiSeeHtre
−iSee ≈ Htr + i[See, Htr]. (10)

Since See has an even-even form, it commutes with the
two large terms from Htr :

[See, β1m1c
2 + β2m2c

2] = 0. (11)

Actually, to remove the terms (8), it is quite convenient
to retain the members of the order c0 in Htr standing in
the commutator in (10) and to omit the rest. It is suf-
ficient to get the terms which coincide with the ones in
Eq. (8) up to a sign. One sees that the operators (9a) and
(9b) act separately. The former destroys the first, third,
and fourth terms in Eq. (8), and the latter destroys the
rest. We note that in general while removing the extra
terms, this procedure gives rise to the new ones instead,
but all of them are of a lower order of magnitude.

Thus the generating function See allows one to modify
the higher-order transformed Hamiltonian, subtracting
(or removing) the terms (8). One can express it in terms
of the original operators Soe, Seo, and Soo in a convenient
brief form:

See = [Soe, [Seo, Soo]]. (12)

Still, this additional transformation is not the only one,
and any transformation with Hermitian even-even func-
tions can be used to modify the higher-order transformed
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Hamiltonian. Using transformations of this kind, one can
destroy and create a number of higher-order terms in the
approximate Hamiltonian (see, e.g., [28]). Meanwhile, as
a rule, these procedures, except the one considered above,
produce new terms instead of the removed ones.

In conclusion of this section we should point out that if
the commutation relation (5) had not been satisfied, the
expression for Htr would be much lengthier than that in
Eq. (6) and many new terms would appear in it as well.
Moreover, the structure of the extra terms and thus of
the generator See would be more complicated than that
we had in equations (8), (9a), (9b) and (12).

III. APPLICATION TO THE SALPETER
EQUATION

Consider the Hamiltonian of the Hermitian part of the
three-dimensional Bethe–Salpeter equation in coordinate
space [14, 15]:

H = H1 + H2 +
1

2

[(

Λ+

1 Λ+

2 − Λ−

1 Λ−

2

)

, V (r)
]

+
, (13)

where

H1 = c α1 · p1 + β1m1c
2, H2 = c α2 · p2 + β2m2c

2,

Λ±

1 =
E1 ± H1

2E1

, Λ±

2 =
E2 ± H2

2E2

,

E1 = +
(

m2
1c

4 + p
2
1c

2
)1/2

, E2 = +
(

m2
2c

4 + p
2
2c

2
)1/2

.

Our main goal here is to apply the results obtained above
to get the transformation of Hamiltonian (13) up to or-
der 1/c4. For illustrative purposes, we will consider the
case of particles with unequal masses and of charges ε1

and ε2, interacting through the potential

V (r) =
ε1ε2
r

−
ε1ε2
2r

(

α1 · α2 +
(α1 · r)(α2 · r)

r2

)

, (14)

where r = r1 − r2 and r = |r|. One should remember,
however, that in general the complete form of the origi-
nal interaction of two electromagnetic particles also has
to include many other components of lower order of mag-
nitude in addition to the Breit interaction (14), e.g., such
as the intrinsic magnetic moment terms [15], the terms
involving the electron self-energy and vacuum polariza-
tion [29], etc. Nevertheless, here for simplicity we restrict
ourselves to consideration of an expansion of the equa-
tion only with the potential in the form (14).

Using the expression (6a), one performs the 1/c ex-
pansion of the Hamiltonian (13) to the second order and,
putting β1 = β2 = 1, gets the Breit correction derived
also in QED (see, e.g., [30, 31]). Based on Eq. (4), or
the same on part (6a), the expansion of (13) to order
1/c2 and the study of the properties of the obtained
transformed Hamiltonian were carried out by Barker and

Clover [15]. Note that the Breit correction is divergent
as it involves the Dirac δ-functions appearing because of
the Coulomb singularity in the initial interaction, and
because of the same singularity, the δ-functions, already
together with their derivatives, will appear as well and
in the expansion terms in higher orders.

In order to reduce the Hamiltonian to form (1), we
evaluate the anticommutator, keeping the terms which
contribute up to 1/c4 in the expansion. Hence we have

(EE) = (β1 + β2)
ε1ε2
2r

−

[

β1p
2
1

8m2
1c

2
+

β2p
2
2

8m2
2c

2
,
ε1ε2
r

]

+

+

[

3β1p
4
1

32m4
1c

4
+

3β2p
4
2

32m4
2c

4
,
ε1ε2
r

]

+

,

(OE) = c α1 · p1 +

[

α1 · p1

4m1c
−

(α1 · p1)p
2
1

8m3
1c

3
,
ε1ε2
r

]

+

−

[

α2 · p2

4m2c
,
ε1ε2
2r

(

δij +
rirj

r2

)

αi
1α

j
2

]

+

+

[

(α2 · p2)p
2
2

8m3
2c

3
,
ε1ε2
2r

(

δij +
rirj

r2

)

αi
1α

j
2

]

+

,

(EO) = c α2 · p2 +

[

α2 · p2

4m2c
−

(α2 · p2)p
2
2

8m3
2c

3
,
ε1ε2
r

]

+

−

[

α1 · p1

4m1c
,
ε1ε2
2r

(

δij +
rirj

r2

)

αi
1α

j
2

]

+

+

[

(α1 · p1)p
2
1

8m3
1c

3
,
ε1ε2
2r

(

δij +
rirj

r2

)

αi
1α

j
2

]

+

,

(OO) =

[

β1p
2
1

8m2
1c

2
+

β2p
2
2

8m2
2c

2
,
ε1ε2
2r

(

δij +
rirj

r2

)

αi
1α

j
2

]

+

.

One can easily see that to carry out the transformation
of the Salpeter equation in general, as a matter of fact,
we ought to apply the prescription in a general form like
(4), but extended to higher orders, as the odd-even and
even-odd terms do not commute in the case under consid-
eration. Still, if we supplement expression (6) with terms
(4h, i), we will get a prescription for the transformation
of the equation up to the fourth order in 1/c. It should
be noted, however, that as the operator (OO) is of the
order 1/c2, all the terms that contain this one in the thus
obtained expression, except the ninth term from (6a), do
not make any contribution to the desired accuracy, and
hence, can be ignored (all of the terms with a difference
of the masses in the denominators are among them).

Thus, after the evaluation, one obtains the transfor-
mation of the initial Hamiltonian (13) up to the order
1/c4 in the following form:
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Htr = β1m1c
2 +

β1p
2
1

2m1

+ (β1 + β2)
ε1ε2
4r

−
β1 + β2

16m2
1c

2

[

(σ1 · p1),

[

(σ1 · p1),
ε1ε2
r

]]

−
β1 + β2

16m1m2c2

[

(σ1 · p1),

[

(σ2 · p2),
ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]

+

]

+

−
β1p

4
1

8m3
1c

2
(15a)

−
β1

32m3
1c

4

[

(σ1 · p1),
ε1ε2
r

]2

+
β1

32m1m2
2c

4

[

(σ2 · p2),
ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]2

+

+
β1

32m1m2
2c

4

[[

(σ1 · p1),
ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]

+

,

[

(σ2 · p2),
ε1ε2
r

]]

(15b)

+
β1 + β2

768m4
1c

4

{[

(σ1 · p1),

[

(σ1 · p1),

[

(σ1 · p1),

[

(σ1 · p1),
ε1ε2
r

]]]]

+ 32

[

(σ1 · p1),

[

(σ1 · p1)p
2
1,

ε1ε2
r

]]}

+
β1 + β2

256m2
1m

2
2c

4

[

(σ1 · p1),

[

(σ1 · p1),

[

(σ2 · p2),

[

(σ2 · p2),
ε1ε2
r

]]]]

+
β1 + β2

192m1m3
2c

4

{[

(σ1 · p1),

[

(σ2 · p2),

[

(σ2 · p2),

[

(σ2 · p2),
ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]

+

]

+

]

+

]

+

+8

[

(σ1 · p1),

[

(σ2 · p2)p
2
2,

ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]

+

]

+

}

(15c)

−
1

64m3
1c

4

[[

p
2
1,

ε1ε2
r

]

,
β1p

2
1

m1

+
β2p

2
2

m2

+ (β1 + β2)
ε1ε2
r

]

+
1

64m1m2
2c

4

[[

(σ1 · p1),

[

(σ2 · p2),
ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]]

+

,
β1p

2
1

m1

+
β2p

2
2

m2

+ (β1 + β2)
ε1ε2
r

]

(15d)

+
β1p

6
1

16m5
1c

4
+ symm. terms.

Although this formula is only an intermediate result,
the Hamiltonian written in such a form is quite transpar-
ent and suitable for a qualitative analysis. In addition,
it is represented in the form similar to the one in (6)
rewritten with due regard for the following notations:

(EE) =
ε1ε2

r
, (OE) = c α1 · p1, (EO) = c α2 · p2,

(OO) = −
ε1ε2

2r

(

α1 · α2 +
(α1 · r)(α2 · r)

r2

)

, (16)

therefore, is convenient to compare with the transformed
Hamiltonian of the corresponding Breit equation [27].

It is well known that, in the Pauli approximation, the
Breit equation and the Hermitian part of the Salpeter
equation differ from one another by the e4 terms coming
from (4f), and which are responsible for the disagree-
ment between the predicted and experimental values for
the fine structure of helium. Obviously, the difference
between the approximate forms for these equations will
only increase in higher orders. Still, there are also many
similarities between the 1/c4-order parts of their trans-
formed Hamiltonians. Thus the terms in (15), except
(15d), are similar to the ones entering the transformed

Hamiltonian of the Breit equation. The e4 terms, which
we put together in (15b) and which are of the order 1/m3,
do not disappear when one particle is in a positive ener-
gy state and the other is in a negative energy state. The
similar terms, together with their symmetric ones, also
occur among the terms coming from (6b, c, e) rewritten
with the use of the notations of (16). Note that all of
them agree with those e4 terms in the expansion of the
Breit equation, which do not have the mass difference in
the denominators, however, they are four times higher.
Meanwhile, the e2 terms (15c), which are of the order
1/m4, exhibit another behavior. They have the factor
β1 + β2, and thus, become zero, if one particle is in a
positive energy state and the other one is in a negative
energy state. When both particles are in positive energy
states, these terms coincide with the ones from (6g, h, i)
rewritten for the case of the Breit equation, but all of
them are opposite in sign to those provided that the two
particles are in negative energy states. What concerns
the terms (15d), there are no similar ones in the expan-
sion of the Breit equation. One should remark that this
part includes e4 terms having the factor β1 + β2 (the
e4 terms of (15b) are without this factor) and e2 terms
which do not disappear when the particles are in different
energy states, as opposed to the terms (15c).
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It is easy to check, however, that these terms can be removed by an additional unitary transformation like that
considered in the previous section. Namely, applying procedure (2) with generator

S = −
i

32c4

[

p
2
1

m3
1

+
p

2
2

m3
2

,
ε1ε2
r

]

+
i

32m1m2
2c

4

[

(σ1 · p1),

[

(σ2 · p2),
ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]]

+

+
i

32m2
1m2c4

[

(σ1 · p1),

[

(σ2 · p2),
ε1ε2
2r

(

δij +
rirj

r2

)

σi
1σ

j
2

]

+

]

, (17)

to Hamiltonian (15), one eliminates the terms (15d) together with their symmetrical terms. This transformation only
destroys these terms, without changing the rest part of the approximate Hamiltonian and without producing any new
terms to the desired accuracy. Thus, with neglect of the terms (15d), Htr, in the case under consideration, contains
only the terms similar in their structure to those that occur in the transformed Hamiltonian for the Breit equation.

After calculating, we can thus represent the final form of the transformed Hamiltonian from expression (13),
accurate to the order 1/c4, as

Htr = β1m1c
2 +

β1p
2
1

2m1

+ (β1 + β2)
ε1ε2
4r

− (β1 + β2)
ε1ε2

8m2
1c

2

(

2πδ(r) +
(r × p1) · σ1

r3

)

− (β1 + β2)
ε1ε2

16m1m2c2

×

{

2

r

(

δij +
rirj

r2

)

pi
1p

j
2 +

4

r3
(r × p1) · σ2 −

1

r3

(

δij − 3
rirj

r2

)

σi
1σ

j
2 +

8π

3
δ(r)σ1 · σ2

}

−
β1p

4
1

8m3
1c

2
(18a)

+
β1(ε1ε2)

2

32m3
1c

4r4
+

β1(ε1ε2)
2

16m1m2
2c

4r

{

2

r3
−

8π

3
δ(r) +

1

r3

(

(r× p2) · σ2 +
3

2
(r × p2) · σ1 − (r× p1) · σ2

)

−
11

r3
σ1 · σ2 +

(

9

2r3
−

2π

3
δ(r)

) (

3δij −
rirj

r2

)

σi
1σ

j
2 +

1

2r

(

δij + 3
rirj

r2

)

pi
2p

j
2 −

i

r3
r · p2

}

(18b)

+ (β1 + β2)
ε1ε2

256m4
1c

4

{

6

[

p
2
1, 4πδ(r) +

2

r3
(r × p1) · σ1

]

+

+ 5

[

p
2
1,

[

p
2
1,

1

r

]]}

+ (β1 + β2)
ε1ε2

256m2
1m

2
2c

4

×

{

−4π∆δ(r) − 8π(∇δ(r) × p1) · σ1 + 8π(∇δ(r) × p2) · σ2 + 4

[

4π

3
δ(r)δij +

1

r3

(

δij − 3
rirj

r2

)]

× (σ1 × p1)
i
(σ2 × p2)

j

}

+
β1 + β2

64m1m3
2c

4

(

2pi
1 + (σ1 ×∇)

i
)

{

(

2pj
2 − (σ2 ×∇)

j
)

[

p
2
2,

ε1ε2
r

(

δij +
rirj

r2

)]

+

+
(

σ2 × (2ip2 + ∇)
)j

[

p
2
2,

ε1ε2
2r

(

δij +
rirj

r2

)]}

(18c)

+
β1p

6
1

16m5
1c

4
+ symm. terms.

Here the terms to the second order are put together
in (18a), and the others form the 1/c4-order part of the
transformed Hamiltonian.

The Chraplyvy transformation applied to Hamiltoni-
an (13) gives its semirelativistic approximation involving
terms (15d), which can be referred to extra terms, and
which there is no need to include in the final equation
in Htr. Yet, one cannot claim that they also arise in the
1/c expansion obtained by a different method, e.g., by
the method of expressing the small components of the
spinor of the wave equation through its large compo-
nents.

IV. SUMMARY

In the present paper we have dealt with the two-body
reduction method of Chraplyvy, and by its means we

have briefly considered the problem of the expansion of
equal-time relativistic two-body wave equations to high-
er orders in 1/c. For the case of two particles with un-
equal masses, we have found the fourth-order part of the
transformed Hamiltonian in a general form expressed in
terms of the initial even-even, even-odd, odd-even, and
odd-odd operators. It turned out that in contrast with
the case of the transformation to the second order, the
final result of the transformation to higher orders de-
pended on the order of application of the generators, i.e.,
as these functions do not commute with each other in a
general case, certain extra terms can appear in the thus
obtained 1/c expansion of the equation. Still, as we have
shown, the two transformed Hamiltonians, each correct
to 1/c4, can be converted one into the other by an addi-
tional unitary transformation, so that terms of this kind
are eliminated, and without changing the remaining part
of the Hamiltonians as well. The occurrence of the ex-
tra terms in Htr may be a feature of the expansion of

1004-7



ALEXEI TUROVSKY

relativistic equations to higher orders, within the frame
of the method under consideration at least. Thus, the
higher-order transformed Hamiltonian is defined up to
a unitary transformation with an even-even generating
function of the order 1/c4. This is in agreement with the
conclusions made by Pursey in [16], where ambiguities
in the method were discussed.

For illustration, we have considered the 1/c expansion
of the Salpeter equation with the Breit interaction up to
the terms of the fourth order. Due to the Casimir pro-
jection operators, the 1/c4-order part of the transformed
Hamiltonian obtained from equation (13) is much sim-
pler than the analogous part in the transformation of the
corresponding Breit equation, and involves no terms with
mass differences in the denominators or terms similar to
those of (6d) by their structure. However, none of the ob-
tained e4 terms in the expansion, except the extra terms,
disappears when one particle is in a positive energy state
and the other is in a negative energy state, meanwhile all
the e2 terms become zero. With that all the interaction
terms to the order 1/c2 in the transformed Hamiltonian
derived from the equation under consideration have the
factor β1 + β2, but all of them are e2 terms and vanish
provided one particle is in a positive energy state and the
other is in a negative energy state (see also [15]). This
may indicate that the e4 terms in the obtained expan-
sion are nonphysical ones similarly to the nonphysical e4

terms of 1/c2 coming from (4f) in the case of the cor-
responding Breit equation. Notice that a number of the
1/c4-order terms obtained here agree up to a numeri-
cal multiplier, and in many features, are similar to the

relativistic corrections in the α6mc2 Hamiltonian for an
arbitrary light atom [22]. We should note, however, that
here we have dealt with the initial equation represented
in the Hermitian form, which in general differs from the
original Salpeter equation (see, e.g., [32] for details).

In fact, the approach applied here to expand two-body
equations is a straightforward way of deriving many 1/c4-
order terms giving α6mc2 corrections to the energy levels
for a hydrogen-like atom. We emphasize, however, that
this work has been devoted mainly to the generalization
of the FW canonical transformation to the two-particle
problem. Although we have illustrated the application of
the results on the example of a relativistic equation, the
application to a real atomic system and calculation of the
energy eigenvalues are beyond the purpose of the paper.
Because of the simple form of the initial interaction we
used in the equation, the obtained approximate Hamilto-
nian is not complete and does not take into consideration
many QED effects. The derivation of the total effective
Hamiltonian contributing to α6mc2 to the energy levels
of a hydrogen-like atom by means of the method treat-
ed here requires the use of quantum field theories and
the diagram technique as well, is of interest in itself, and
could be the subject of future investigations.
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[9] W. Lucha, F. F. Schöberl, D. Gromes, Phys. Rep. 200,

127 (1991).
[10] L. L. Foldy, S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);

J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechan-

ics (McGraw-Hill, New York, 1964).
[11] Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953).
[12] Z. V. Chraplyvy, Phys. Rev. 92, 1310 (1953).
[13] M. L. Lewis, V. W. Hughes, Phys. Rev. A 8, 625 (1973).
[14] E. E. Salpeter, Phys. Rev. 87, 328 (1952).
[15] W. A. Barker, F. N. Glover, Phys. Rev. 99, 317 (1955).
[16] D. L. Pursey, Nucl. Phys. 8, 595 (1958).
[17] E. de Vries, J. E. Jonker, Nucl. Phys. B 6, 213 (1968).

[18] H. Janyszek, Acta Phys. Pol. B5, 447 (1974); Acta Phys.
Pol. B5, 583 (1974).

[19] C. E. Aguiar, A. N. F. Aleixo, C. A. Bertulani, Phys.
Rev. C 42, 2180 (1990).

[20] M. Douglas, N. M. Kroll, Ann. Phys. (N.Y) 82, 89
(1974).

[21] J. W. Darewych, A. Duviryak, Phys. Rev. A 66, 032102
(2002).

[22] K. Pachucki, Phys. Rev. A 71, 012503 (2005).
[23] K. Pachucki, V. A. Yerokhin, Phys. Rev. Lett. 104,

070403 (2010).
[24] A. P. Martynenko, Yad. Fiz. 71, 126 (2008) [Phys. At.

Nucl. 71, 125 (2008)]; N. A. Boikova, Yu. N. Tyukhtyaev,
R. N. Faustov, Yad. Fiz. 74, 68 (2011) [Phys. At. Nucl.
74, 67 (2011)].

[25] E. N. Elekina, A. A. Krutov, A. P. Martynenko, Pis’ma
Fiz. Elem. Chast. At. Yadra 8, 554 (2011) [Part. Nucl.
Lett. 8, 331 (2011)].

[26] S. G. Karshenboim, V. G. Ivanov, E. Yu. Korzinin, Phys.
Rev. A 85, 032509 (2012).

[27] A. I. Turovsky, Ukr. J. Phys. 56, 5 (2011).
[28] N. Brambilla, D. Eiras, A. Pineda, J. Soto, A. Vairo,

Phys. Rev. D 67, 034018 (2003).
[29] P. Indelicato, O. Gorceix, J. P. Desclaux, J. Phys. B 20,

651 (1987); P. Indelicato, J. P. Desclaux, Phys. Rev. A
42, 5139 (1990).

1004-8



ON THE CHRAPLYVY TRANSFORMATION AND SOME FEATURES OF ITS APPLICATION. . .

[30] A. I. Akhiezer, V. B. Berestetskii, Quantum Electrody-

namics (Wiley, New York, 1965).
[31] V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii, Quan-

tum Electrodynamics (Pergamon Press, Oxford, 1982).
[32] G. Feldman, T. Fulton, J. Townsend, Phys. Rev. A 8,

1149 (1973).

ПЕРЕТВОРЕННЯ ХРАПЛИВОГО ТА ДЕЯКI ОСОБЛИВОСТI
ЙОГО ЗАСТОСУВАННЯ ДЛЯ РОЗКЛАДIВ ДО ВИЩИХ ПОРЯДКIВ

Олексiй Туровський
Iнститут теоретичної фiзики iм. М. М. Боголюбова НАН України,

вул. Метрологiчна, 14б, Київ, 03680, Україна

На базi узагальнення Храпливого методу Фолдi–Вутгайзена до двочастинкового випадку розглянуто

проблему розкладу релятивiстських рiвнянь для двох частинок за степенями 1/c до вищих порядкiв. Для

частинок iз рiзними масами отримано трансформований гамiльтонiан до порядку 1/c4. Установлено, що

залежно вiд порядку застосування ґенеруючих функцiй для першої iтерацiї частину трансформованого

гамiльтонiана, яка мiстить члени вищого порядку, можна отримати у двох рiзних формах, якi, однак, пе-

ретворюються одна в одну за допомогою додаткового унiтарного перетворення. Обговорено подiбнi неод-

нозначностi в такiй процедурi. Як приклад для iлюстрацiї взято рiвняння Солпiтера в ермiтовiй формi iз

взаємодiєю Брейта та, використовуючи метод, що розглядається, виконано його редукцiю до наближеного

рiвняння, яке включає всi члени порядку 1/c4. Отриманi результати можна застосувати для нерелятивiстсь-

кого розкладу двочастинкових хвильових рiвнянь iз рiзноманiтними потенцiалами взаємодiї, для вивчення

тонкої та надтонкої структури рiвнiв воднеподiбних атомiв. Вони можуть становити загальний теоретичний

iнтерес.
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