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Using a sequence of canonical transformations with the generating functions for the case of
particles with arbitrary masses, valid for particles of equal masses as well, the transformation of
the relativistic two-body Hamiltonian containing even–even, even–odd, odd–even, and odd–odd
terms into an even–even form is carried out up to the order 1/c4. It is shown that, similarly to the
transformation based on the set of generators excluding the case of equal masses of the particles,
the final form of the obtained approximate Hamiltonian is not uniquely defined; namely, it depends
on the order of application of the initial generators in the procedure, and can involve certain extra
terms, which are eliminated with an additional unitary transformation.
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In our recent paper [1], we considered the Chraplyvy
transformation with the set of generating functions used
in the sequence of canonical transformations, which is
not applicable to the singular case of equal masses of
the particles, and which is known as the “radical” trans-
formation. The starting point in this procedure is the
Hamiltonian of a relativistic two-body wave equation,
which is represented in the following general form:

H = β1m1c
2 + β2m2c

2 + (EE) + (EO)

+ (OE) + (OO), (1)

and involves even–even, even–odd, odd–even, and odd–
odd terms, respectively (here for definiteness, it is as-
sumed that (EE), (OO) are of order c0, and (OE), (EO)
of the order c1). We obtained the higher-order trans-
formed Hamiltonian which, in fact, was a continuation
of the transformation in [2] for the case when the even–
odd and odd–even terms from (1) commuted. At once, it
was found there that the procedure under consideration
had some ambiguity which consisted in the fact that the
form of the transformed Hamiltonian depended on the
order of application of the initial generators, and besides
the “regular” terms, it could involve certain extra terms.
We showed that the last ones could be removed by an
additional unitary transformation.

Nevertheless, the case of equal masses is not less im-
portant and interesting for many problems. For exam-
ple, the Chraplyvy transformation applied for higher-
order expansions may be of some interest for the study
of fine and hyperfine structure of the spectra of helium
and positronium.

In his article [3], Chraplyvy proposed and justified the
whole class of generating functions for the arbitrary-mass
case, which included the special case of only different
masses as a partial one. Using one set of them, which,
for the first iteration, is

Soe = − iβ1(1± β2)
4m1c2

(OE), (2a)

Seo = − iβ2(1± β1)
4m2c2

(EO), (2b)

Soo = − i(β1 + β2)
4(m1 + m2)c2

(OO), (2c)

a transformation called the “least change” trans-
formation, was performed to the second order in detail.
It is well seen that these functions do not contain any
mass differences in the denominators, and thus can be
applicable to wave equations for two particles with arbi-
trary masses (see also [4, 5]). One can easily verify that
generators (2) do not commute with the large terms from
Eq. (1) and thereby get, after all the iterations, the even–
odd, odd–even, and odd–odd terms of the same order
and higher with the factors 1

2 (1 ∓ β1), 1
2 (1 ∓ β2), and

1
2 (1 − β1β2), respectively. Thus this transformation has
one feature consisting in the fact that the final trans-
formed Hamiltonian Htr, in addition to the “effective”
terms, involves some undesirable terms of the order c1,
c0, and so on. However, as shown by Chraplyvy [3], such
terms are acceptable in the expression because all of
them vanish when both particles are in positive or neg-
ative energy states.

Our main scope here is to convert the Hamiltonian (1)
into an even–even form up to the order 1/c4 for the case
of particles with arbitrary masses and therefore to find
the higher-order transformed Hamiltonian. Yet, the use
of the generating functions written above for this purpose
encounters great difficulties and excessively cumbersome
calculations because of the structure of the first two of
them. In the paper, we will apply the generators in a
simpler form, which, for the first iteration, read
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Soe = − iβ1

2m1c2
(OE), (3a)

Seo = − iβ2

2m2c2
(EO), (3b)

Soo = − i(β1 + β2)
4(m1 + m2)c2

(OO). (3c)

Here the former two of them are similar to those from the
“radical” transformation, and the latter coincides with
the generator (2c). We note that this set of generators
is a partial case of the ones proposed in [3] and was also
considered by Pursey in [6].

First, we consider the transformation of the Hamilto-
nian (1) to the order 1/c2. After the calculations we get
the following expression:

Htr = β1m1c
2 + β2m2c

2 + (EE) +
β1

2m1c2
(OE)2 +

β2

2m2c2
(EO)2 +

1
8m2

1c
4
[(OE), [(EE), (OE)]]

+
1

8m2
2c

4
[(EO), [(EE), (EO)]]− β1

8m3
1c

6
(OE)4 − β2

8m3
2c

6
(EO)4

+
β1β2

8m1m2c4

{
[(OE), [(EO), (OO)]+]+ + [(EO), [(OE), (OO)]+]+

}
+

β1 + β2

4(m1 + m2)c2
(OO)2

+
(β1 − β2)(m2

1 −m2
2) + 2(β1 + β2)m1m2

32m2
1m

2
2(m1 + m2)c6

[(OE), (EO)]2 − β1m1 + β2m2

16m2
1m

2
2c

6
[(OE)2, (EO)2]+

+
β1

8m1m2
2c

6
(EO)(OE)2(EO) +

β2

8m2
1m2c6

(OE)(EO)2(OE)

+
(1 + β1β2)(m1 −m2)
16m1m2(m1 + m2)c4

[[(EO), (OE)], (OO)] (4a)

+
1
2
(1− β1β2)

{
(OO) +

∑
Noo

}
. (4b)

It is easy to see that due to the form of Soe and Seo

in (3) the obtained transformation is considerably sim-
pler than the one based on the generating functions (2).
It consists of the “effective” terms (4a), and because of the
form of Soo, of the odd–odd terms (4b), which, however,
disappear when β1 = β2 = ±1 (here it is meant that
±1 is the unit or the minus unit matrix of the fourth
rank), i.e. when both particles are in positive or negative
energy states; but the expression (4) can be applicable
only for these cases, and it leads to the same reduction of
wave equations as the “least change” transformation. We
should note that, though we used Soo in the form (3c),
many terms in this expression remain unchanged and
coincide with the ones from the “radical” transformation
(see [2]).

In general, the procedure of continuation of the trans-
formation to higher orders is rather laborious and leads
to tedious calculations. But we can simplify considerably
the calculations provided that the (EO) and (OE) terms
commute with one another. Thus, let us consider the
transformation of the Hamiltonian (1) to the order 1/c4

subjected to satisfaction of the following commutation
relation:

[(OE), (EO)] = 0. (5)

Recall that for this case, we calculated the transformed
Hamiltonian up to the fourth order for the “radical”
transformation in [1].

After relative cumbersome calculations we get

Htr = β1m1c
2 + β2m2c

2 + (EE) +
β1

2m1c2
(OE)2 +

β2

2m2c2
(EO)2 +

β1 + β2

4(m1 + m2)c2
(OO)2

+
1

8m2
1c

4
[(OE), [(EE), (OE)]] +

1
8m2

2c
4
[(EO), [(EE), (EO)]] +

β1β2

4m1m2c4
[(OE), [(EO), (OO)]+]+

− β1

8m3
1c

6
(OE)4 − β2

8m3
2c

6
(EO)4 (6a)
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− β1

8m3
1c

6
[(OE), (EE)]2 − β2

8m3
2c

6
[(EO), (EE)]2 (6b)

+
β1

8m1m
2
2c

6
[(EO), (OO)]2+ +

β2

8m2
1m2c

6
[(OE), (OO)]2+ (6c)

− β1 + β2

32m2
1(m1 + m2)c6

[(OO), [(OE), [(OE), (OO)]+]+]+ −
β1 + β2

32m1(m1 + m2)2c6
[(OO), [(OO), (OE)2]+]+

− β1 + β2

32m2
2(m1 + m2)c6

[(OO), [(EO), [(EO), (OO)]+]+]+ −
β1 + β2

32m2(m1 + m2)2c6
[(OO), [(OO), (EO)2]+]+ (6d)

+
β1 + β2

16m1m2(m1 + m2)c6
[(OO), [(OE), [(EO), (EE)]]]+

+
β1

8m1m
2
2c

6
[[(EO), (EE)], [(OE), (OO)]+] +

β2

8m2
1m2c

6
[[(OE), (EE)], [(EO), (OO)]+] (6e)

+
1 + β1β2

16(m1 + m2)2c4
[(OO), [(EE), (OO)]] (6f)

+
1

384m4
1c

8

{
[(OE), [(OE), [(OE), [(OE), (EE)]]]] + 32[(OE)3, [(OE), (EE)]]

}
+

1
384m4

2c
8

{
[(EO), [(EO), [(EO), [(EO), (EE)]]]] + 32[(EO)3, [(EO), (EE)]]

}
(6g)

+
1

64m2
1m

2
2c

8
[(OE), [(OE), [(EO), [(EO), (EE)]]]] (6h)

− β1β2

96m3
1m2c

8

{
[(OE), [(OE), [(OE), [(EO), (OO)]+]+]+]+ + 8[(OE)3, [(EO), (OO)]+]+

}
− β1β2

96m1m
3
2c

8

{
[(OE), [(EO), [(EO), [(EO), (OO)]+]+]+]+ + 8[(OE), [(EO)3, (OO)]+]+

}
(6i)

+
β1

16m5
1c

10
(OE)6 +

β2

16m5
2c

10
(EO)6 (6j)

+
1
2
(1− β1β2)

{
(OO) +

∑
N′

oo

}
. (6k)

The group of terms which we put together in (6a) rep-
resents the transformation that is correct to the order
1/c2. One can easily verify that the expression (4) goes
over into this part under the commutation relation (5).
The terms (6b. . . j) are of the order 1/c4 and form the
part in Htr which we called the higher-order transformed
Hamiltonian. Furthermore, all the conclusions that we
made for Htr in the case of only different masses of par-
ticles (see [1]) are also correct for the case under con-
sideration. As to the terms (6k), where we put togeth-
er all the odd–odd terms arisen in the procedure, they,
obviously, do not play any role due to the factor
1
2 (1− β1β2).

We remark that the number of the “effective” terms
from (6) (and also from (4)) coincides with the num-
ber of the ones from the “radical” transformation; more-
over, each term has its analog in that transformation, in
contrast to the “least change” transformation. All of the
terms which are linear in (EE) and (OO) coincide with
the analogous ones from the “radical” transformation,

though Soo has a different form. The terms (6b, c) and
the last two terms from (6e) saved their forms too. In gen-
eral, a comparison of the expression (6) with that trans-
formation shows that the changes affected only those
members which involved the difference of masses in their
denominators. Provided that β1 = β2 = ±1, only these
cases are our main point of interest, the obtained trans-
formation leads to the same expressions for the reduced
Hamiltonians as the “radical” transformation.

As in the case of the “radical” transformation, the form
of the transformed Hamiltonian (6) depends on the order
of application of the initial generating functions. Indeed,
the expression (6) is obtained provided that the gener-
ator Soe (or the same Seo, as we put that the relation-
ship (5) is satisfied) was used first in the sequence of the
unitary transformations canceling the undesirable terms
from the Hamiltonian (1), but if we destroy the (OO)
terms first, in addition to the terms from the higher-order
Hamiltonian (6b. . . j), we will get the following ones:

2003-3



ALEXEI TUROVSKY

− β1 + β2

16m1m2(m1 + m2)c6
[[(EO)(OE), (OO)], (EE)]− β1 − β2

16m1m2(m1 + m2)c6
[(EO)(OO)(OE)− (OE)(OO)(EO), (EE)]

− 1 + β1β2

32m2
1m2(m1 + m2)c8

[[(EO)(OE), (OO)], (OE)2]− 1 + β1β2

32m1m2
2(m1 + m2)c8

[[(EO)(OE), (OO)], (EO)2]

− 1− β1β2

32m2
1m2(m1 + m2)c8

[(EO)(OO)(OE)− (OE)(OO)(EO), (OE)2]

+
1− β1β2

32m1m2
2(m1 + m2)c8

[(EO)(OO)(OE)− (OE)(OO)(EO), (EO)2] (7a)

+
β1 − β2

16m2
1(m1 + m2)c6

{
(OE)(OO)(OE)(OO) + (OO)(OE)(OO)(OE)

}
− β1 − β2

16m2
2(m1 + m2)c6

{
(EO)(OO)(EO)(OO) + (OO)(EO)(OO)(EO)

}
. (7b)

Such terms, but with other numerical factors, also appear in Htr, if one takes the sum S = Soe + Seo + Soo as a
generating function.

Similarly to the case of the “radical” transformation, the terms (7a) can be removed by an additional unitary
transformation with the generating function in the form of a Hermitian even–even operator:

See = − i(β1 + β2)
16m1m2(m1 + m2)c6

[(EO)(OE), (OO)] (8a)

− i(β1 − β2)
16m1m2(m1 + m2)c6

{
(EO)(OO)(OE)− (OE)(OO)(EO)

}
. (8b)

The same procedure of destroying this type of terms,
which we called the “extra” ones, was previously de-
scribed in [1] in detail.

As far as the terms (7b) are concerned, due to a dif-
ference of the beta-matrices in their numerators, they
vanish for the states of the two-body system in which we
are interested.

We note that the expression (8) can be represented in
the same brief form as the generator See in the case of
the “radical” transformation:

See = [Soe, [Seo, Soo]], (9)

which probably is of a general unique nature and can
be considered as a prescription for the proper choice of
See to destroy the extra terms in the Chraplyvy trans-
formation and with other sets of generating functions as
well.

It is interesting to point out the following. One can
easily verify that, although (OE) and (EO) do not com-
mute with (OO), the commutator (9) and thus See is
equal to zero for the case of a set of generating func-
tions (2), whereby it can be assumed that there are no
extra terms in the “least change” transformation (except

the terms that vanish when both particles are in positive
or negative energy states, like those ones from (7b)).

In conclusion we should also remark that the problem
of generalization of the Foldy–Wouthuysen transforma-
tion to the three- and many-particle problems, in gener-
al, remains interesting, but, it has not been completely
solved yet. Although a problem like this was considered a
little bit in [6], where one of the possible ways of general-
ization of the generating functions to the many-particle
case was proposed as well, no transformed Hamiltoni-
ans have been obtained for these cases until now even
up to the order 1/c2, let alone higher orders. Apparent-
ly, the calculation of such approximate Hamiltonians can
be carried out, with the use of a sequence of canonical
transformations, with generators which are generaliza-
tion of the ones from (3) because an extension of the
“least change” transformation is hardly suitable for these
purposes.
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ПЕРЕТВОРЕННЯ ХРАПЛИВОГО ТА ДЕЯКI ОСОБЛИВОСТI
ЙОГО ЗАСТОСУВАННЯ ДЛЯ РОЗКЛАДIВ ДО ВИЩИХ ПОРЯДКIВ. II

Олексiй Туровський
Iнститут теоретичної фiзики iм. М. М. Боголюбова НАН України,

вул. Метрологiчна, 14б, Київ, 03680, Україна

Використовуючи послiдовнiсть канонiчних перетворень iз ґенеруючими функцiями для частинок iз довi-
льними масами, справедливими також для однакових мас, виконано перетворення релятивiстського двочас-
тинкового гамiльтонiана, що мiстить члени рiзної парностi, у парно-парну форму до порядку 1/c4 включно.
Показано, що подiбно до перетворення, яке ґрунтується на ґенераторах, що виключають випадок iз частин-
ками, маси яких однаковi, остаточний вигляд наближеного гамiльтонiана не є однозначно визначеним. А
саме, його форма залежить вiд порядку застосування стартових ґенераторiв у процедурi та може включати
деякi додатковi члени, якi, однак, вдається усунути за допомогою унiтарного перетворення.
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