ПЕРСОНАЛІЇ, ХРОНІКА, БІБЛІОГРАФІЯ PERSONALIA, MEETINGS, BIBLIOGRAPHY

СЕМІНАР ІЗ СУЧАСНИХ ПРОБЛЕМ ФІЗИКИ
(Лъвів, 08-09 липня 2014 року)
WORKSHOP ON CURRENT PROBLEMS IN PHYSICS
(Lviv, 08-09 July 2014)
On 08-09 July 2014, the Physics Faculty of the Ivan Franko National University of Lviv hosted the Workshop on Current Problems in Physics. The representatives from the scientific institutions of Ukraine and Poland participated in the Workshop, which was the fifth meeting of this series. The talks covered quantum mechanics, condensed matter physics, statistical physics, astrophysics, and some other subjects. The abstracts of the presentations are given below.

ON THE FERROMAGNETISM OF ITINERANT ELECTRONS

O. Derzhko

Institute for Condensed Matter Physics, NAS of Ukraine, Lviv, Ukraine,
I shall consider the history of understanding of the ferromagnetism of itinerant electrons, review some basic results on the flat-band Mielke-Tasaki scenario for the appearance of the ferromagnetic ground states, and discuss how a flat-band Hubbard system, which is not ferromagnetic in the ground state, may become ferromagnetic due to a small dispersion of the flat band in the presence of strong on-site Hubbard correlations [1].
[1] O. Derzhko, J. Richter, Dispersion-driven ferromagnetism in a flat-band Hubbard system, arXiv:1404.2230.

TWO-PARAMETRIC FRACTIONAL STATISTICS AS AN EFFECTIVE MODEL OF PHYSICAL SYSTEMS

Andrij Rovenchak
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

A two-fold parametrization of the expression for the distribution function (occupation numbers) is suggested aiming to find an effective mathematically simple tool for the study of several physical systems. The following two systems are analyzed in detail: weakly-interacting bosons and free anyons. The first parameter of the model is introduced by considering the Polychronakos and Haldane-Wu statistics. The second one is obtained by modifying the ordinary exponential in the Boltzmann factor. It can be made within the nonextensive statistics (using the Tsallis q-exponential) or within the so called incomplete statistics.
In the case of the weakly-interacting Bose-system, the parameters of the introduced fractional statistics models are linked to the effects of interactions as well as finite-size corrections. The behavior of the specific heat and condensate fraction of three-dimensional isotropic harmonic oscillators with respect to the values of the statistics parameters is studied in the temperature domain including the BEC-like phase transition point [1].

An approximate correspondence is shown to hold between the anyonic statistics and three twoparametric fractional statistics models, namely the nonextensive Polychronakos statistics and both the incomplete and the nonextensive modifications of the Haldane-Wu statistics. The values of the parameters are linked to the anyonic parameter α using the expressions of the second and third virial coefficients. It is suggested that the search for the expression of the anyonic distribution function should be made within some modifications of the Haldane-Wu statistics [2].
[1] A. Rovenchak, Phys. Rev. A 89, 052116 (2014).
[2] A. Rovenchak, preprint arXiv:1403.3577, to appear in Eur. Phys. J. B (2014).

SPECTROSCOPY AND LOCAL STRUCTURE OF THE RARE-EARTH IMPURITY IONS IN LITHIUM TETRABORATE GLASSES

B. V. Padlyak ${ }^{1,2}$, I. I. Kindrat ${ }^{1}$, V. O. Protsiuk ${ }^{1}$, A. Drzewiecki ${ }^{1}$
${ }^{1}$ University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, Zielona Góra, Poland
${ }^{2}$ Vlokh Institute of Physical Optics, Sector of Spectroscopy, Lviv, Ukraine

The electron paramagnetic resonance (EPR), ground state optical absorption and photoluminescence (emission and excitation) spectra as well as luminescence kinetics of the Nd-, Er-, Dy-, and Gd-doped lithium tetraborate $\left(\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right)$ glass have been investigated and analysed. The rare-earth doped lithium tetraborate glasses were obtained from the corresponding polycrystalline compounds using standard glass technology [1-4]. The EPR and optical spectroscopy shows that rare-earth impurities are incorporated into the $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ glass network of as trivalent ions $\left(\mathrm{Nd}^{3+}, \mathrm{Er}^{3+}, \mathrm{Dy}^{3+}\right.$, and $\left.\mathrm{Gd}^{3+}\right)$, exclusively, which is revealed in their characteristic EPR and optical (absorption, emission, and luminescence excitation) spectra as well as luminescence kinetics. In the EPR spectra of all the investigated glasses there have been observed characteristic signals, which were assigned to the $\mathrm{Nd} 3{ }^{3+}, \mathrm{Er}^{3+}, \mathrm{Dy}^{3+}$, and Gd^{3+} isolated centres and corresponding rare-earth pair centres, coupled by magnetic dipolar and exchange interactions. All the optical bands of the $\mathrm{Nd}^{3+}, \mathrm{Er}^{3+}$, and Dy^{3+} rare-earth centres in the optical absorption, emission and luminescence excitation spectra in the $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ glasses were identified. The luminescence decay curves for $\mathrm{Nd} 3^{3+}, \mathrm{Er}^{3+}$, and Dy^{3+} centres in the $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ glasses were fitted by exponential function with the corresponding lifetimes, which were determined at $T=300 \mathrm{~K}$.

Based on the EPR and optical spectroscopy results [2-4] supported by XRD structural data for $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ glass and crystal [1] the local structure of rare-earth impurity centres in the Li^{+}cationic sites was proposed. The proposed local structure for $\mathrm{Nd}^{3+}, \mathrm{Er}^{3+}, \mathrm{Dy}^{3+}$ and Gd^{3+} ions is confirmed in [5] by direct Extended X-ray Absorption Fine Structure (EXAFS) investigation and analysis of the L_{3} edge of Nd, Er, Dy, and Gd impurities in the $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ glass network.
[1] B. V. Padlyak, S. I. Mudry, Y. O. Kulyk, A. Drzewiecki, V. T. Adamiv, Y. V. Burak, I. M. Teslyuk, Mater. Sci. Poland 30, 264 (2012).
[2] B. V. Padlyak, W. Ryba-Romanowski, R. Lisiecki, V. T. Adamiv, Ya. V. Burak, I. M. Teslyuk, Proc. of the Int. Conf. on Oxide Materials for Electron. Engneering (OMEE-2012) (National University "Lviv Polytechnic", Lviv, 2012), p. 200-201.
[3] B. Padlyak, A. Drzewiecki, J. Non-Cryst. Solids 367, 58 (2013).
[4] B. V. Padlyak, I. I. Kindrat, V. O. Protsiuk, A. Drzewiecki, Ukr. J. Phys. Opt. 15, 103 (2014).
[5] T. D. Kelly et al., Front. Phys.: Cond. Matt. Phys. 2, (Art. 31) 1 (2014).

DYNAMICAL DARK ENERGY AFTER PLANCK-2013 RESULTS: ADVANCES AND PROBLEMS

B. Novosyadlyj, O. Sergijenko
Astronomical Observatory of Ivan Franko National University of Lviv, Ukraine

We analyze the possibility of the reconstruction of a scalar field dark energy and determination of its parameters: density Ω_{de}, equation of state parameter w_{0} and effective sound speed c_{s} together with other cosmological parameters on the basis of a dataset including Planck- 2013 results on CMB anisotropy, BAO distance ratios from recent galaxy surveys, magnitude-redshift relations for distant SNe Ia from SNLS3 sample and the HST determination of the Hubble constant. Using the Markov Chain Monte Carlo routine to map out the likelihood in the multi-dimensional parameter space we have obtained the best-fit values and 2σ confidence limits for the main dark energy and cosmological parameters. It is shown that the phantom scalar field model of dark energy is strongly preferred by this dataset $\left(-1.2<w_{0}<-1.04\right)$, so the Λ CDM model is disfavored at the 2σ confidence level. On the other hand, to reconstruct the Lagrangian we need to know the value of effective sound speed which is determined badly: no value of c_{s} from the range $[0,1]$ is preferred by this dataset because of the very weak influence of dark energy perturbations on the large scale structure formation and CMB temperature fluctuations. If the phantom type of dark energy is confirmed for reliable reconstruction of dark energy not only high accuracy data but also radically new ideas for its study would be necessary.

ALMOST-CIRCULAR ORBIT METHOD FOR QUANTIZATION OF THE FOKKER ACTION INTEGRALS

A. Duviryak
Institute for Condensed Matter Physics, NAS of Ukraine, Lviv, Ukraine

Fokker-type action integrals $[1,2]$ represent one of the action-at-a-distance approaches to the relativistic dynamics of interacting particles. They include semiphenomenological models and provide an alternative (or complementary) description of the known field-theoretical interactions, such as the Wheeler-Feynman electrodynamics [3], gravitation [3, 4], confining interactions [5, 6], and some others [7, 8].

A variational problem based on the Fokker-type action describes a dynamical system with time nonlocality, i.e., it leads to difference-differential or integral-differential equations of motion for which the Cauchy problem is unsuitable. Consequently, the study the phase space (i.e., a set of possible states), the construction of the Hamiltonian description and a quantization of such a system are non-trivial tasks.

A serious effort was made to develop Hamiltonization and quantization procedures for the Fokker-type action integrals. In general, this is attained by means of an approximated reformulation of the problem into another but time-local form $[8,9]$.

In the present report an alternative approach to this problem is considered. It is applicable to the action principle of the Fokker type determining a two-particle time-nonlocal dynamics.

The system is assumed general but invariant with respect to the 0 Aristotle group which is a common subgroup of the Galileo and Poincaré groups. By this both non-relativistic and relativistic cases are included.

It is shown that integral-differential equations of motion of the system admit circular orbit solutions. For this purpose the uniformly rotating reference frame is used. Then the dynamics of perturbations of circular solutions is derived and studied. On this ground the Hamiltonian description of the time-nonlocal two-particle system is built in an almost circular orbit (ACO) approximation. The Aristotle-invariance of the system is exploited in order to select physical degrees of freedom. They are subjected to a canonical quantization procedure. Then a construction of the energy spectrum of the system is proposed.

The method is applied in meson spectroscopy. Namely, a relativistic Fokker-type quark model of mesons is proposed, in which an interquark interaction is mediated by scalar-vector superposition of higher derivative fields. In the non-relativistic limit the model describes a two-particle system with a linear potential. In order to analyze the model in the essentially relativistic domain the ACO quantization is applied. It is shown that the model reproduces well specific features of the light meson spectroscopy.
[1] A. D. Fokker, Z. Phys. 28, 386 (1929).
[2] P. Havas, in Problems in the Foundations of Physics (Springer, Berlin, 1971), 31.
[3] Yu. S. Vladimirov, A. Yu. Turygin, Theory of direct interparticle interaction (Energoatomizdat, Moscow, 1986) [in Russian].
[4] F. Hoyle, J. V. Narilikar, Rev. Mod. Phys. 67, 113 (1995).
[5] A. Rivacoba, Nuovo Cimento B 84, 35 (1984); J. Weiss, J. Math. Phys. 27, 1015 (1986).
[6] A. Duviryak, Int. J. Mod. Phys. A 14, 4519 (1999); 16, 2771 (2001).
[7] D. J. Louis-Martines, Phys. Lett. B 632, 733 (2006); Found. Phys. 42, 215 (2012).
[8] V. I. Tretyak, Forms of relativistic Lagrangian dynamics (Naukova Dumka, Kyïv, 2011) [in Ukrainian].
[9] X. Jaén, R. Jáuregui, J. Llosa, A. Molina, J. Math. Phys 30, 2807 (1989).

THERMODYNAMIC ASPECTS AND CORRELATION FUNCTION INTERCEPTS IN $\tilde{\mu}, q$-DEFORMED BOSE GAS MODELS

Yu. A. Mishchenko, A. M. Gavrilik
Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kiev

Being a deformation (nonlinear extension) of the standard Bose gas model, deformed Bose gas models can effectively take into account different sides of nonideality like in real gases. Deformed oscillators are often used as a building block when constructing deformed Bose gas models. Note that deformed oscillators (deformed bosons) can realize [1] composite bosons, in algebraic sense. Some deformed Bose gas models were applied [2] for the thermodynamic description of such an aspect of real gases as interaction of particles. In those models, certain thermodynamic or statistical relations of ideal gas undergo deformation (say, by means of Jackson derivative), and the others can be deduced as consequences.

In this work we deal with the $\tilde{\mu}, q$-deformation which combines the quadratically nonlinear $\tilde{\mu}$-deformation appearing in [1], and the Arik-Coon type q-deformation, applied to incorporate [2] interparticle interaction. This combined $\tilde{\mu}, q$-deformation is described by the deformation structure function $\varphi_{\tilde{\mu}, q}(n)=(1+\tilde{\mu})[n]_{q}-$ $\tilde{\mu}\left([n]_{q}\right)^{2}$ where $[n]_{q} \equiv\left(1-q^{n}\right) /(1-q)$. The $\tilde{\mu}, q$-deformed Bose gas model, based on the deformed relation
for the total number of particles, namely $N_{(\varphi)}=\varphi\left(z \frac{d}{d z}\right) \ln Z$ (here the φ-deformed analog $\varphi\left(z \frac{d}{d z}\right)$ of derivative is used) was considered recently [3]. We give some arguments that the respective deformed virial expansion $\frac{P v}{k_{\mathrm{B}} T}=\sum_{k=1}^{\infty} V_{k}(\tilde{\mu}, q)\left(\frac{\lambda^{3}}{v}\right)^{k-1}$ can effectively account for certain interparticle interaction jointly with the composite structure of particles of a gas. Besides, for slightly different $\tilde{\mu}, q$-deformed Bose gas model, we calculate the deformed analogs of one- and two-particle distributions $\left\langle\left(a_{\mathbf{k}}^{\dagger}\right)^{r}\left(a_{\mathbf{k}}\right)^{r}\right\rangle$, $r=1,2$, as well as 2-particle correlation function intercept $\lambda^{(2)}(\mathbf{k})=\frac{\left\langle\left(a_{\mathbf{k}}^{\dagger}\right)^{2}\left(a_{\mathbf{k}}\right)^{2}\right\rangle}{\left\langle a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}\right\rangle^{2}}-1$ defined through the creation/annihilation operators of $\tilde{\mu}, q$-boson. The obtained momentum dependencies for the intercepts quantitatively agree with experimental data for π-mesonic correlation intercepts extracted in relativistic heavy ion collisions.
[1] A. M. Gavrilik, I. I. Kachurik, Yu. A. Mishchenko, J. Phys. A: Math. Theor. 44, 475303 (2011).
[2] A. Scarfone, P. Narayana Swamy, J. Stat. Mech. 2009, P02055 (2009).
[3] A. M. Gavrilik, Yu. A. Mishchenko, Ukr. J. Phys. 581171 (2013).

INVESTIGATION OF BOSON SPECTRUM OF TWO-DIMENSIONAL OPTICAL LATTICES WITH THE GRAPHENE TYPE STRUCTURE

I. R. Dulepa, O. V. Velychko

Institute for Condensed Matter Physics, NAS of Ukraine, Lviv, Ukraine
Energy spectrum of normal and superfluid phases of the Bose-atom system in the optical lattices of the graphene type is investigated. Calculation of dispersion laws in energy bands and single-particle spectral densities is performed in the random phase approximation on the basis of the hard-core boson formalism. Their changes at the transition from normal phase to superfluid one are described. During such a transformation the number of subbands is doubled; in the case of energetic equivalence of subbands the Dirac points in the spectrum are conserved but their number increases twice. The temperature-dependent gapless spectrum with Dirac points placed on the border of Brillouin zone is obtained for the lattice with energetically equivalent sites. The chemical potential is located outside of the allowed energy band. A difference between site energies of particles in different sublattices causes a gap in the spectrum and chemical potential can be located between subbands. It is shown that the shape of spectral densities is sensitive to the change of temperature and the site energy (Figure 1).

Fig. 1. Spectral density in NO- and SF-phases for energetically equivalent sublattices as a function of excitation energy for a sequence of values of the site energy $h((\mathrm{a})-(\mathrm{d}))$ at chemical potential $\mu=0$ and temperature $\Theta=0.2$ (all energetic parameter are given in units of transfer energy $J(0)=1$).

GEOMETRY OF THE MANIFOLD OF EIGENSTATES OF THE OPERATOR OF PROJECTION OF SPIN- s ON AN ARBITRARY DIRECTION

A. R. Kuzmak
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

We consider the rotation of the eigenstates of the operators of projection of spin- 1 and spin- $3 / 2$ on the direction \mathbf{n} about the axis directed along some unit vector. It is shown that rotation of such eigenstates takes place on some manifolds defined by two real parameters. Also, we show that the Fubini-Study metrics of these manifolds are the spheres with radii dependent on the value of the spin and on the value of the spin projection. We consider quantum evolution on these manifolds. Finally, we generalize these results for arbitrary spin s.

RELATIVISTIC DYNAMICS OF A CHARGE IN A PENNING TRAP
Yurij Yaremko
Institute for Condensed Matter Physics, NAS of Ukraine, Lviv, Ukraine

We are interested in the motion of a classical charge within a processing chamber of a Penning trap [1]. We examine the relativistic Lagrangian and Hamiltonian dynamics and show that the radial and axial motions are coupled to each other whenever the special relativity is taken into account. Because of the axial symmetry of restoring quadruple potential we reduce two redundant degrees of freedom and construct the four-dimensional Hamiltonian dynamical system. In the specific case of zero axial oscillation the equations of motion are solved. The solution is expressed in terms of Jacobi elliptic functions. If all the energy of a charge belongs to the axial oscillating mode, its time evolution is described by the nonlinearized equation of motion for a simple pendulum. If the energy flows alternatively between axial and radial oscillating modes, the dynamical system resembles a double pendulum [2].
${ }^{1}$ S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)
${ }^{2}$ G. L. Baker, J. A. Blackburn, The Pendulum. A Case Study in Physics (Oxford Univ. Press, 2005).

THE EPR AND OPTICAL SPECTROSCOPY OF THE Sm-DOPED BORATE GLASSES

I. I. Kindrat ${ }^{1}$, B. V. Padlyak ${ }^{1,2}$, A. Drzewiecki ${ }^{1}$
${ }^{1}$ University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, Zielona Góra, Poland
${ }^{2}$ Vlokh Institute of Physical Optics, Sector of Spectroscopy, Lviv, Ukraine

The electron paramagnetic resonance (EPR) and optical (absorption, photoluminescence emission and excitation) spectra as well as luminescence kinetics of the $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}: \mathrm{Sm}, \mathrm{LiKB}_{4} \mathrm{O}_{7}: \mathrm{Sm}, \mathrm{CaB}_{4} \mathrm{O}_{7}: \mathrm{Sm}$ and $\mathrm{LiCaBO}_{3}: \mathrm{Sm}$ are investigated and analysed. The Sm-doped borate glasses of high chemical purity and optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using standard glass synthesis according to [1]. The Sm impurity was introduced into the borate polycrystalline compounds in the form of $\mathrm{Sm}_{2} \mathrm{O}_{3}$ oxide in the amounts of 0.5 and $1.0 \mathrm{~mol} . \%$.

Based on the EPR and optical spectra analysis it was shown that the Sm impurity is incorporated into the borate glass network as $\mathrm{Sm}^{3+}\left(4 f^{5},{ }^{6} H_{5 / 2}\right)$ ions, exclusively. In EPR spectra of the Sm-doped borate glasses besides Fe^{3+} non-controlled impurity signals at low temperatures $(4.2 \div 20 \mathrm{~K})$ there have been clearly observed two additional signals, which are assigned to the Sm^{3+} isolated centres and Sm^{3+} Sm^{3+} pair centres coupled by magnetic dipolar and exchange interactions. All $4 f-4 f$ transitions of the Sm^{3+} ions observed in the optical absorption and photoluminescence spectra have been identified. Typical optical absorption spectrum of the Sm-doped borate glasses consists of intense broad band (fundamental absorption edge of the glass host), several weak bands in the visible spectral range, and several intense bands in the infrared spectral range. The photoluminescence spectra of the $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}: \mathrm{Sm}, \mathrm{LiKB}_{4} \mathrm{O}_{7}: \mathrm{Sm}$, $\mathrm{CaB}_{4} \mathrm{O}_{7}: \mathrm{Sm}$ and $\mathrm{LiCaBO}_{3}: \mathrm{Sm}$ glasses containing 0.5 and $1.0 \mathrm{~mol} . \% \mathrm{Sm}_{2} \mathrm{O}_{3}$ registered under excitation with $\lambda_{\text {exc }}=401 \mathrm{~nm}\left({ }^{6} H_{5 / 2} \rightarrow{ }^{6} P_{3 / 2}\right.$ absorption transition) at $T=300 \mathrm{~K}$ are closely similar and contain 3 characteristic emission bands peaked about 562,598 and 645 nm , which correspond to the ${ }^{4} G_{5 / 2} \rightarrow$ ${ }^{6} H_{5 / 2},{ }^{6} H_{7 / 2},{ }^{6} H_{9 / 2}$ transitions of the Sm^{3+} centres, respectively. Luminescence excitation spectra of the Sm-doped borate glasses consist of number weakly-resolved bands, which show good correlation with corresponding optical absorption bands. Weak resolution of some bands is related to inhomogeneous broadening caused by structural disordering of the glass host.

Luminescence kinetics for Sm^{3+} centres in the borate glasses are satisfactorily described by single exponential decay with lifetimes 2.65 and $2.57 \mathrm{~ms}\left(\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}: \mathrm{Sm}\right.$ glass), 2.78 and $2.68 \mathrm{~ms}\left(\mathrm{LiKB}_{4} \mathrm{O}_{7}: \mathrm{Sm}\right.$ glass), 2.52 and $2.37 \mathrm{~ms}\left(\mathrm{CaB}_{4} \mathrm{O}_{7}: \mathrm{Sm}\right.$ glass), and 2.31 and $2.13 \mathrm{~ms}\left(\mathrm{LiCaBO}_{3}: \mathrm{Sm}\right.$ glass) for samples, containing 0.5 and $1.0 \mathrm{~mol} . \% \mathrm{Sm}_{2} \mathrm{O}_{3}$, respectively. Various lifetimes for Sm^{3+} centres in different borate glasses are caused by some differences in the local structure of Sm^{3+} luminescence centres in the network of investigated borate glasses. The resonance energy transfer through cross-relaxation processes between the $\mathrm{Sm}^{3+}-\mathrm{Sm}^{3+}$ pair centres coupled by electric multipolar interactions is responsible for the quenching of lifetimes in the glass samples contained relatively high ($1 \mathrm{~mol} . \%$) concentration of the Sm impurity.

The peculiarities of electronic and local structure of the Sm^{3+} centres in the $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}: \mathrm{Sm}, \mathrm{LiKB}_{4} \mathrm{O}_{7}: \mathrm{Sm}, \mathrm{CaB}_{4} \mathrm{O}_{7}: \mathrm{Sm}$ and $\mathrm{LiCaBO}_{3}: \mathrm{Sm}$ glasses have been discussed in comparison with referenced data for Sm -doped borate glasses and crystals with similar chemical compositions as well as with other borate glasses doped with Sm.
[1] B. V. Padlyak, S. I. Mudry, Y. O. Kulyk, A. Drzewiecki, V. T. Adamiv, Y. V. Burak, I. M. Teslyuk, Mater. Sci. Poland 30, 264 (2012).

AREA QUANTIZATION OF THE PARAMETER SPACE OF THE RIEMANN SURFACES IN GENUS TWO

A. V. Nazarenko
Bogolyubov Institute for Theoretical Physics, Kyiv

A model of compact Riemann surfaces in genus two represented geometrically by two-parametric hyperbolic octagons with an order four automorphism. We compute the generators of associated isometry group (Fuchsian group) and give a real-analytic description of the corresponding Teichmüller space, parametrized by the Fenchel-Nielsen variables (lengths and twists arising in pant decomposition of the surface), in terms of geometric data. Using the Weil-Petersson geometry and Wolpert's formula, we compute symplectic twoform in parameter space. Moreover, it turns out that this symplectic manifold can be densely covered by the orbits of constant perimeter of octagons (isoperimetric orbits). This fact permits us to introduce the action and angle variables, where the former are related to the Weil-Petersson area in parameter space. In these terms there is a possibility to evaluate the number of quantum "cells" inside domain bounded by isoperimetric orbits. Further, we apply our formalism to quantize a physical system, namely, the model with $\mathrm{SU}(1,1)$ symmetry, corresponding to (2+1)-dimensional loop gravity, inspiring us by the known results of area quantization.
[1] A. V. Nazarenko, Two-parametric octagons and reduced Teichmüller space in genus two, math-ph/1301.5446.
[2] A. V. Nazarenko, Quantization of parameter space of two-parametric Riemann surfaces in genus two, J. Geom. Phys. (in press).

MODERN VIEW OF LIQUIDS: VAN DER WAALS AND BEYOND
Andrij Trokhymchuk
Institute for Condensed Matter Physics, NAS of Ukraine, Lviv, Ukraine

It is generally assumed that the regular van der Waals theory is useful above the critical point temperatures, where it serves as an improvement of the ideal gas law. The van der Waals theory still can be applied for subcritical temperatures as well, where it continues to be qualitatively reasonable for the liquid states and the low-pressure gaseous states. However, the regular van der Waals theory is not appropriate for the rigorous quantitative calculations, thus remaining to be useful for teaching and qualitative purposes only.

Here we are arguing that there exists a way to separate the total pair interaction into two parts, namely, into the short-range interaction (includes both repulsion and attraction) and the long-range interaction, that do allow for the van der Waals theory to be used for accurate quantitative calculations as well. These ideas are illustrated by the calculations performed for the Sutherland and Lennard-Jones potentials. The applications of this approach to other kinds of fluids, like ionic and associating fluids, including water, are discussed as well.

PLANCK-SCALE EFFECTS ON QUANTUM AND CLASSICAL SYSTEMS

Tkachuk V. M.
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

The investigations in string theory and quantum gravity suggest the existence of the nonzero minimal uncertainty in position (minimal length) which is of the order of the Planck scale. The minimal length can be described in the frame of deformed commutation relation between operator of position and momentum. Note that the deformation of the Heisenberg algebra and the deformation of the Poisson brackets in the classical case bring not only technical difficulties in solving corresponding equations but also bring problems of a fundamental nature. The equivalence principle, gauge invariance, Galilean and Lorentz transformations, gauge invariance in the space with minimal length will be discussed in this talk.

TUNNELING METHOD AND QUASI-NORMAL MODES FOR KALUZA-KLEIN BLACK HOLES

M. Stetsko
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

Tunneling method was applied to Kaluza-Klein black holes. The temperature of the black holes is obtained for scalar particles as well as for fermions. We obtained identical expressions for temperature for both cases and this result coincides with the results obtained earlier by the methods of QFT in curved space-time. The quasi-normal modes method was also considered. Quasi-normal frequencies are calculated and analyzed.

DIFFERENTIAL CROSS-SECTION OF THE PHOTOELECTRIC EFFECT IN THE DEFORMED ELECTROMAGNETIC FIELD

I. O. Vakarchuk, Iu. M. Diakiv
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

We calculate the differential cross-section of the photoelectric effect of a system of a non-linear quantum field, where non-linearity is due to a deformation of the Poison brackets of the generalized coordinates and momenta. For $\beta \rightarrow \infty$ the differential cross-section reduces to a well-known expression of the differential cross-section of the photoelectronic effect for a non-deformed field. In the case of a considerable deformation of $(\beta \rightarrow \infty)$ the differential cross-section of the photoelectronic effect decreases as β^{-3}.

UNIVERSAL PROPERTIES OF RING POLYMERS IN A LONG-RANGE CORRELATED DISORDER

K. Haydukivska, V. Blavatska
Institute for Condensed Matter Physics, NAS of Ukraine, Lviv, Ukraine

We analyze universal size and shape characteristics of flexible ring polymers in solutions in the presence of structural obstacles (impurities) in dimensions. A special case when the impurities are correlated at large distances r according to the power law $\sim r^{-a}$ is considered. Applying a direct polymer renormalization scheme we evaluate the estimates for an averaged gyration radius $\left\langle R_{g}\right.$ ring \rangle and spanning radius $\left\langle R_{1 / 2 \text { ring }}\right\rangle$ of a typical ring polymer conformation up to the first order of the double $\varepsilon=4-d$, $\delta=4-a$ expansion. Our results quantitatively reveal an extent of an effective size and anisotropy of closed ring macromolecules in the disordered environment. In particular, the size ratio of ring and open (linear) polymers of the same molecular weight grows when increasing the strength of disorder according to $\left\langle R_{g \text { ring }}^{2}\right\rangle /\left\langle R_{g \text { chain }}^{2}\right\rangle=\frac{1}{2}\left(1+\frac{13}{48} \delta\right)$.

QUASI-EXACTLY SOLVABLE POTENTIALS WITH TWO ARBITRARY KNOWN EIGENSTATES FOR SYSTEMS WITH A POSITION-DEPENDENT MASS

O. Voznyak
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

The method of supersymmetric quantum mechanics has been applied to construct quasi-exactly solvable potentials for systems with a position-dependent mass. The conditions which provide regular potential energy in the case of a singular generating function have been established. The examples of the quasiexactly solvable potentials with two known eigenstates have been considered in the cases of regular and singular generating functions and the corresponding eigenfunctions have been found exactly.

ROTATIONAL SYMMETRY IN NONCOMMUTATIVE SPACE AND HYDROGEN ATOM

Kh. P. Gnatenko
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

We consider the problem of rotational symmetry breaking in a three-dimensional noncommutative space

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=i \hbar \theta_{i j} \tag{1}
\end{equation*}
$$

where $\theta_{i j}$ is a constant antisymmetric object. In order to solve this problem the generalization of the parameter of noncommutativity is proposed

$$
\begin{equation*}
\theta_{i j}=\frac{\alpha}{\hbar}\left(a_{i} b_{j}-a_{j} b_{i}\right) \tag{2}
\end{equation*}
$$

where α is a dimensionless constant, and a_{i}, b_{i} are governed by the harmonic oscillators

$$
\begin{equation*}
H_{o s c}=\frac{\left(p^{a}\right)^{2}}{2 m}+\frac{\left(p^{b}\right)^{2}}{2 m}+\frac{m \omega^{2} a^{2}}{2}+\frac{m \omega^{2} b^{2}}{2} . \tag{3}
\end{equation*}
$$

Therefore, we construct the noncommutative algebra which is rotationally invariant

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=i \alpha\left(a_{i} b_{j}-a_{j} b_{i}\right) \tag{4}
\end{equation*}
$$

The hydrogen atom is considered in a rotationally invariant noncommutative space. We find the corrections to the energy levels of this atom up to the second order in the parameter of noncommutativity.

A DYNAMICAL MODEL FOR THE ORIGIN OF LORENTZ-COVARIANT NONCOMMUTATIVE SPACETIME

Mykola Samar

Department for Theoretical Physics,
Ivan Franko National University of Lviv, Ukraine
We study generalized Lorentz-covariant deformed algebra. This algebra contains those of Snyder [1] and Quesne-Tkachuk [2] as partial cases. We demand the action of a relativistic particle to be invariant under the deformed Poincaré symmetry corresponding to the chosen algebra. It is shown that the Dirac constraint analysis of the model yields the clasical version of the algebra. In the case of the considered algebra leading to Snyder's one, our results coincide with those obtained in [3].
[1] H. S. Snyder, Phys. Rev. 71, 38 (1947)
[2] C. Quesne, V. M. Tkachuk, J. Phys. A 39, 10909 (2006).
[3] R. Banerjee et al., JHEP 05, 077 (2006).

