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The problem of defining the competitivity for the different states of an absorbing Markov chain
is formulated in a continuous time framework. Chain states are associated with the modules of
locally equilibrated, fluctuating energy levels formed due to strong adiabatic interactions within
a nonequilibrium system being nonadiabatically coupled weakly to the equilibrium environment.
Using a microscopic approach to the description of time evolution of the density matrix of the whole
system, we first reduce the corresponding Liouville–von Neumann equation to a master equation
for diagonal elements of the density matrix of a nonequilibrium system, then provide a calculus
of involved chaotic and stochastic averages with the supposed initial and completed energy-level
distributions, and finally arrive at the kinetic equation for the population of aggregated chain states.
The equation is in detail balanced by respective transition probabilities being well defined for all
the differences between energies and dimensionalities of the chain state modules. For the case of
an absorbing Markov chain, this makes it possible to define the competitivity for different modular
states, as an inverse slope of log odds of normalized peaks of their population with respect to log
of various input transition probabilities set to be free in the wide limits.
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I. INTRODUCTION

There exists no single definition of competitivity,
which can be applicable for all realizations of transition
processes in the natural, life, economic and information
chains. The finite state supply chain lies at the heart of
interpreting a time evolution of many kinetic processes.
For instance, a Markov chain is widely used for model-
ing the multistage dynamics of multidimensional states
in physics [1], chemistry [2] and biology [3]. The same is
true for the decision making and strategy development
chain models to implement in informatics [4] and econo-
my [5]. However, despite a great interest in lots of appli-
cations, the definitions of competitiveness known to date
for Markov chain states remain unstrict and do not lend
themselves to any systematic observations.

In general, competitiveness of a particular system de-
pends on the number of its characteristics, which as a
rule are interrelated and cannot be considered in isola-
tion. The main factors include: the initial conditions for
population of input states, the time evolution of popula-
tion of functionally significant intermediate and output
states, and the kinetic coefficients providing a growth of
population with the probabilities to transit some states
of interest toward others due to their weak competitive
coupling with the environment. Both the former and the
latter factors are usually maintained externally or im-
posed conventionally, rather the central factor is found
as a solution to the problem, given the two. However,
because of lack of the detailed information about the
microscopic states of Markov chains, using the heuris-
tic state-based models for evaluation of the insufficient-

ly understood quantities such as competitivity is largely
inconsistent. In this situation, which is often the case
for multiatomic and macromolecular systems, making a
consideration that will be compatible with microscopic
and phenomenological descriptions must be based upon
the general physical principles. Therefore, it is necessary
first to correctly define, for the whole system, a set of or-
thonormal states and introduce an equation for their op-
erator transformations and further average that equation
over irrelevant states to obtain the reduced balance kinet-
ic equation for the population of relevant states, and only
then calculate the between-state transition rates with al-
lowing their values to vary freely in the extended range.

Following the arguments above, contained in part in
the previous papers [6–9], this work aims at the attempt
to provide a microscopically rigorous formulation of the
problem of competitivity for the general case of a con-
tinuous time Markov chain having the absorbing states.
Here, the basic difficulty is entailed by the fact that an
absorbing Markov chain represents the non-ergodic pro-
cess of memoryless transitions between the non-recurrent
transient states that satisfy only zero stationary condi-
tions. Therefore, in this case, the measures of interest are
restricted to mainly cumulative probabilities character-
izing the time a chain spends in non-absorbing states be-
fore an absorbing state is ultimately reached [4]. Howev-
er, in the nonstationary irreversible systems, there are al-
so other characteristic features of the transitory dynam-
ics during which the states’ population increase, peak
and decline. Just with respect to the peaks of the pop-
ulation the competitivity of one state in regard to an-
other can be defined most accurately. To substantiate
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this statement, Section II of the paper sets forth a mi-
croscopic description of the nonequilibrium system with
fluctuating energy levels weakly coupled to the equilib-
rium environment. Sections III and IV are devoted to a
derivation of the corresponding kinetic equation for di-
agonal elements of the density matrix of the nonequilib-
rium system and the master equation for the population
of the different modules of a system’s states, respectively.
Rate constants of transitions between the modules corre-
sponding to the aggregated transition probabilities in an
absorbing Markov chain are found in Section V. Towards
the end, Section VI defines the competitivity of Markov
chain states and presents some discussion.

II. MICROSCOPIC BACKGROUND

Consider the microscopic formulation allowing for a fi-
nite state Markov chain to be mapped from an infinite
state condensed phase system onto its discrete (quan-
tum) and quasi-continuous (nuclear) coordinates. For
definiteness, let us regard a condensed phase system as
the whole system characterized by a finite set of quan-
tum states (energy levels) and an infinite set of vibra-
tion excitations (phonons). Let the former set comprise
a nonequilibrium system (S) which is nonadiabatically
coupled weakly to an equilibrium environment constitut-
ing the latter set, thus playing a role of the heat bath (B)
for the S. Let the energy levels Ej(t) = Ej + ~Ωj(t) of
the S adiabatically fluctuate round their means Ej with
the stochastic frequencies Ωj(t) while the quantum states
|j = 0, 1, . . . , J〉 are stationary (~ is the Planck constant).
Then the Hamiltonian of the whole closed system “the S
+ the B + their weak coupling” reads

H(t) =
∑

j

{
Ej(t) +

∑
λ

[κ(λ)
j (β+

λ + βλ)] + HB

}
|j〉〈j|

+
∑
jj′

Vjj′(1− δjj′)|j〉〈j′| (1)

where κ
(λ)
j are the parameters of nuclei displacements

(β+
λ − βλ) along λth normal coordinates of the B with

the Hamiltonian

HB =
∑

λ

~ωλ(β+
λ βλ + 1/2) (2)

provided that ωλ represent the corresponding vibration
modes (phonon frequencies) with β+

λ or βλ being the
operators of creation or annihilation of the respective
phonons.

Thus, the whole system is in fact decomposed into two
parts. The first part is the S with adiabatic (station-
ary) states |j〉 and stochastic energies Ej(t). The second
part is the B with normal modes ωλ. The transitions
between the states are determined by the matrix ele-
ments Vjj′ in (1) that are modeled depending on the
intensity of the coupling of the S to the B. In a weak
coupling limit, it is possible to expand the coupling over

(β+
λ −βλ) so that linear (one-phonon) or nonlinear (multi-

phonon) terms of expansion are considered as pertur-
bations. In a non-perturbation approach with Holstein’s
transformation [10], one commonly uses a unitary matrix
U = exp

(∑
j uj |j〉〈j|

)
, where uj =

∑
λ g

(λ)
j (β+

λ − βλ) is

the displacement operator of the jth state and g
(λ)
j =

κ
(λ)
j /~ωλ is a dimensionless coupling. Multiplying (1)

from the left by U and from the right by U+ gives exactly

H(t) = HS(t) + V + HB (3)

In this equation, the Hamiltonian of the S

HS(t) =
∑

j

[Ẽj + ~Ωj(t)]|j〉〈j| (4)

specifies the energies Ẽj = Ej −
∑

λ |κ
(λ)
j |2/~ωλ that are

adiabatically “dressed” by phonons (the tilda overbar is
dropped in the sequel), and

V =
∑
jj′

(1− δjj′)Vjj′ exp(ujj′)|j〉〈j′| (5)

is the operator of nonadiabatic relaxation interaction for
transitions between “phonon-dressed” adiabatic states,
with ujj′ =

∑
λ g

(λ)
jj′ (β

+
λ − βλ) being the operator of rel-

ative displacements due to the couplings g
(λ)
jj′ = [κ(λ)

j −
κ

(λ)
j′ ]/~ωλ.
The main characteristic feature of the microscopic

Hamiltonians (1)–(5) is providing an adiabatic refine-
ment of energies Ej(t) (4) of the S with the stochastic
additions ~Ωj(t) corresponding to an account of random
back actions of the B on the S then to follow nonadia-
batic transitions between the states (5). Just due to the
presence of random fluctuations of adiabatic (station-
ary) levels Ej the process of their nonadiabatic (tran-
sient) relaxation becomes irreversible by manifesting it-
self as a memoryless exchange of phonon excitation en-
ergy between the S and the B. Moreover, making the
energy levels fluctuate allows for a straightforward pos-
sibility to directly relate an adsorbing Markov chain to a
non-recurrent evolution process by introducing the cor-
responding modular chain states with potentially high or
even infinite dimensionality.

III. KINETIC EQUATION FOR
ENSEMBLE-AVERAGED POPULATIONS OF

STATES

Given Hamiltonians (1)–(5), the next step is to de-
scribe the dynamics of the density matrix ρ(t) of
the whole system following the Liouville–von Neumann
quantum evolution equation

ρ̇(t) = −iL(t)ρ(t) (6)

where L(t) = (1/~)[H(t), . . .] is the Liouville superope-
rator related to the stochastic Hamiltonian (1). Since
the whole system is decomposed into two parts, the
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ρ(t) factorizes by the equilibrium density matrix ρB =
exp(−HB/kBT )/trB exp(−HB/kBT ) of the B and the
nonequilibrium density matrix ρS(t) = trBρ(t) of the S
so that

ρ(t) = ρS(t)ρB (7)

Therefore, it is sufficient to describe the dynamics in (6)
for only the diagonal part of ρS(t). To do that, one acts on
(6) by the projection operators T̂d and T̂nd = I−T̂d. This
gives the coupled set of differential equations for the diag-
onal ρ(d)(t) = T̂dρ(t) and off-diagonal ρ(nd)(t) = T̂ndρ(t)

parts of the density matrix ρ(t) of the whole system ρ̇(d)(t) = −iT̂dLV ρ(nd)(t),

ρ̇(nd)(t) = −iT̂nd[LS(t) + LV ]ρ(nd)(t)− iLV ρ(d)(t)
.

Substituting the second equation of this system into the
first one and owing to the definition of the nonequilibri-
um density matrix with factorization condition (7) lead
to the integral differential equation for ρ

(d)
S (t)

ρ̇
(d)
S (t) = −

∫ t

0

dt′ M̂(t, t′)ρ(d)
S (t′) (8)

where

M̂(t, t′) = trB

{
T̂dLV D̂ exp

[
−i

∫ t

t′
dτT̂nd (LS(τ) + LV )

]
LV ρB

}
(9)

is the stochastic transition kernel superoperator, and LS(t) = (1/~)[HS(t), . . .], LB = (1/~)[HB, . . .] and LV =
(1/~)[V, . . .] are the corresponding Liouville superoperators related to the Hamiltonians of system (4), environment
(2) and interaction (5), respectively, with D̂ being the Dyson time-ordering operator.

The form of (8), (9) is very convenient for the expansion over a weak interaction V . Thus, in the Born approximation
constraining the right hand side of (8) to the second-order terms, one has to be restricted in the integrand of the
exponent of (9) to only the case of V = 0. Using this yields

ρ̇
(d)
S (t) = −(1/~2)

∫ t

0

dt′ trB
{

T̂d[V,U(t, t′)[V, ρ
(d)
S (t′)ρB]U+(t, t′)]

}
(10)

where U(t, t′) = D̂ exp
[
−(i/~)

∫ t

t′
dτ (HS(τ) + HB)

]
is the two-time evolution superoperator. By substi-
tuting now the V (4) in (10) with the operators
Vjj′ exp(ujj′) considered as perturbations one can easily
derive a stochastic equation for the population pj(t) =
〈j|ρ(d)

S (t)|j〉 of the states

ṗj(t) = −
∑
j′

∫ t

0

dt′ [Gjj′(t, t′)pj(t′)−Gj′j(t, t′)pj′(t′)]

(11)
Here the two-time kernel

Gjj′(t, t′) = (2/~2)|Vj′j |2Re
{
Qjj′(t− t′)fjj′(t, t′)

× exp[i(∆Ejj′/~)(t− t′)]
}

(12)

exhibits a stochastic behavior via the random difference
frequency Ωjj′(τ) = Ωj(τ)−Ωj′(τ) involved in the func-
tional

fjj′(t, t′) = exp
{

i

∫ t

t′
dτ Ωjj′(τ)

}
(13)

while ∆Ejj′/~ = (Ej − Ej′)/~ and Qjj′(t − t′) =
trB {ρB exp [ujj′(0)] exp [ujj′(t− t′)]} are the natural dif-
ference frequency experienced within the uncoupled S

and the correlation function reflecting its weak cou-
pling to the B. If the latter is the heat bath with non-
interacting harmonic oscillators (phonon normal modes),
then

ujj′(τ) =
∑

λ

g
(λ)
jj′

[
β+

λ exp(−iωλτ)− βλ exp(iωλτ)
]
(14)

So

Qjj′(τ) = exp(−Djj′)Yjj′(τ) (15)

where Djj′ =
∑

λ

(
g
(λ)
jj′

)2

[2n(ωλ) + 1] is the Debye–
Waller factor and

Yjj′(t) =
∫ ∞

−∞
dω
∏
λ

exp(iωt) (16)

×
∞∑

q(λ)=−∞

I|q(λ)|(zλ)
[

n(ωλ)
n(ωλ) + 1

]q(λ)/2

δ

(
ω −

∑
λ

q(λ)ωλ

)

defines the time-dependence of the correlation
function Qjj′(t − t′) in (12) with Iq(z) be-
ing the modified Bessel function and n(ω) =
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[exp(~ω/kBT )− 1]−1. The coupling to the environ-
ment phonons is concentrated in the parameter

zλ ≡ 2
(
g
(λ)
jj′

)2√
n(ωλ)[n(ωλ) + 1], while the q(λ) in-

dex indicates the number of phonons of the λth mode
that accompanies the transition, with

∑
λ q(λ) ≥ 1 since

the minimal number of phonons is equal to 1. But if
the nuclear displacements along λth normal coordinate
in (15) are small, then zλ � 1. This allows one to use
the asymptote I|q|(z) ≈ (z/2)|q|/|q|! pointing to a single-
phonon process as the main contribution to transition.
Hence, setting I0(z � 1) ≈ 1 and I1(z � 1) ≈ (z/2),
and regarding the other terms in (16) as insignificant we
reduce it to

Yjj′(t) =
∑

λ

(
g
(λ)
jj′

)2

Rλ(t) (17)

where

Rλ(t) = n(ωλ) exp(iωλt) + [n(ωλ) + 1] exp(−iωλt) (18)

is the respective one-phonon correlation function. Since
for this case exp(−Djj′) ≈ 1, one specifies the stochastic
kinetic equations (11), (12) by a stationary single-phonon
kernel

Qjj′(t− t′) =
∑

λ

(
g
(λ)
jj′

)2
{

n(ωλ) exp[iωλ(t− t′)]

+ [n(ωλ) + 1] exp[−iωλ(t− t′)]
}

. (19)

This corresponds to the using in (3) of a bilinear (one-
phonon) coupling of the S to the E of the form

V =
∑
jj′

(δjj′ − 1)
∑

λ

χλ
jj′(β

+
λ − βλ)|j〉〈j′| (20)

instead of the nonlinear in general (multi-phonon) form
of (5), with χλ

jj′ = Vjj′g
(λ)
jj′ being the nonadiabatic (tran-

sient) coupling parameters provided that the energy bal-
ance within the whole system holds at every time in-
stant. Moreover, in the steady-state limit for transitions
between the random fluctuating energy levels at tran-
sient times ∆t ≥ τtr far larger than stochastic times so
as τtr � τst, the two-time randomization of a stochastic
functional (13) in the stochastic equation (11), as well as
in the stochastic kernel (12), is reduced to the one-time
stochastic behavior. This allows one to assume in (12) a
stationary approximation for the kernels

Gjj′(t, t′) = Gjj′(t, t− τ) ≈ Gjj′(τ) (21)

=
∑

λ

|χλ
jj′ |2fjj′(τ)Rλ(τ) exp(i∆Ejj′τ/~)

and instead (11) use the coarse-grained stochastic kinetic
equation for the ensemble-averaged populations of states
of the S

ṗj(t) =−
∑
j′

t∫
0

dτ [Gjj′(τ)pj(t− τ)−Gj′j(τ)pj′(t− τ)] .

(22)

IV. MASTER EQUATION FOR
STOCHASTICALLY AVERAGED POPULATIONS

The integral differential kinetic equation for a coarse-
grained evolution of populations (22) is averaged with
respect to an ensemble of stochastic trajectories, so as-
signing the slowest times τtr � τst to the occurrence of
nonadiabatic (transient) processes for relaxation transi-
tions between the adiabatic (steady-state) levels of the S.
As such, at the faster stationary times ∆t ≈ τst, any re-
laxation transitions between the levels of the S accom-
panied by the creation or annihilation of phonons in the
B might occur. However, effectively, adiabatically fluc-
tuating levels would exhibit the stochastic dynamics. It
is thus necessary to carry out an average over the re-
alizations of stochastic trajectories for populations (22)
(usually designated as 〈〈. . .〉〉), to find the averaged pop-
ulations of the levels

Pj(t) = 〈〈pj(t)〉〉 (23)

as well as the averaged probabilities of transitions be-
tween the levels Wjj′ .

In order to do this task correctly, one needs to treat a
non-Markovianity of integrands in (22) with providing an
explicit averaging of the involved stochastic functionals
〈〈Gjj′(τ)pj(t−τ)〉〉. The situation becomes simpler when
adiabatic energy level shifts in the S are stationary. In
this case, making an average on the transition time scale
τst � ∆t ≤ τtr factorizes the respective quantities on the
right-hand side of (22), for instance, as

〈〈fjj′(τ)pj(t− τ)〉〉 = Fjj′(τ)Pj(t). (24)

This means that in the second-order perturbation theory,
a non-Markovianity of the population of the metastable
level does not imply itself giving Pj(t−τ) ≈ Pj(t). More-
over, an arisen stochastically averaged functional

Fjj′(τ) = 〈〈fjj′(τ)〉〉 = 〈〈exp[i
∫ τ

0

Ωjj′(t)dt]〉〉 (25)

becomes exactly calculable, e.g., for the discrete stochas-
tic processes [6, 7] and a Gaussian white noise [11]. In
such cases, (25) reduces to the simple form

Fjj′(τ) = exp(−γjj′ τ) (26)

where γjj′ = γj′j is the symmetric effective level half-
width associated with a friction coefficient for the move-
ment of particles within the S when modeled to be open
to the B.

Using (23)-(26) reduces the integral differential equa-
tion (22) to the master evolution equation

Ṗj(t) = −Pj(t)
∑
j′ 6=j

Wjj′ +
∑
j′ 6=j

Pj′(t)Wj′j (27)

where populations (23) of the energy levels of the S are
nonconserved 0 ≤

∑
j Pj(t) ≤ 1 on the longest, nona-

diabatic (transient) time scale ∆t ≥ τtr while partially
normalized on the much shorter, adiabatic (stochastic)
time scale ∆t ≈ τst � τtr, whereas the probabilities of
transitions from level j to level j′ 6= j (stochastically
averaged transition rate constants)
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Wjj′ =
2
~2

∫ ∞

0

dτ exp
[
(
i

~
∆Ejj′ − γjj′)τ

]∑
λ

|χλ
jj′ |2{n(ωλ) exp(iωλτ) + [1 + n(ωλ)] exp(−iωλτ)} (28)

appear to be time-independent at all times. Formal-
ly, Wjj′ (28) can be calculated from the Fermi golden
rule [12] while paying attention not to summing over a
dense set of final levels but rather to weighting over the
stochastic trajectories for transitions with different sta-
tionary contributions concentrated in the form of their
amplitude and intensity distributions. However, deter-
mining the order of carrying out the calculation of (28)
entails some difficulties. At first, one needs to obtain a
sum over the number Λ of phonon modes λ = 1, . . . ,Λ,
which in general is infinite and may thus diverge, and
only then evaluate the integral over time τ in the inter-
val from 0 to∞, given ∆Ejj′ and γjj′ . Since in (23)–(26)
one provides an account of random additions to energy
levels with the single parameters γjj′ without using the
perturbation theory [6–9,11], this allows for the analysis
of different regimes for transitions dependently on the
values of stochastic intensity γjj′ and dynamic ampli-
tude |∆Ejj′ | parameters for the S in some limiting cases.
Therefore, making necessary assumptions about the re-
lation of these parameters and assuming the dependence
of nonadiabatic couplings |χλ

jj′ |2 on λ for different j 6= j′

will be sufficient for changing the orders of summation
and integration in (28) to represent the calculations most
accurately.

On the other hand, transition rate constants (28) can
be used to set up a transition rate matrix W̃ with the
components [13]

W̃jj′ = Wjj′ − δjj′

J∑
l=0

Wlj (29)

This allows one to write a master equation (27) for the
state vectors P(t) = col (P 0(t), . . . , PJ(t)) in the gener-
alized matrix form

dP(t)
dt

= W̃P(t) (30)

By its physical sense, Eq. (30) is nothing else than a re-
sult of procedure of multiple projection of the Liouville–
von Neumann quantum evolution equation (6) onto the
specified multidimensional states space in the imaginary
time space. The projection is made sequentially using
the following ordering: first, onto the space of the diag-
onal elements of the nonequilibrium density matrix (10)
(corresponds to a vector representation of density ma-
trix by retaining only its diagonal elements and avoiding
off-diagonal ones in terms of diagonalization); then, on-
to the microscopic energy-level population space (11),
(22) (corresponds to the integrating out of normal vibra-
tions of the heat bath); further, onto the stochastically
averaged state population space (27) (corresponds to an
averaging over the random fluctuations of microscopic
energy levels); and finally, onto the aggregated popula-
tion space (corresponds to involving the Markov chain

modular states given in (46), Section 5). In this con-
text, transition rate matrix W̃ in (30) will coincide with
the Liouville superoperator L(t) in (6) provided that the
imaginary time transformation t→ it is applied. In gen-
eral, if the W̃ (29) or −iL(t) (6) cannot be decomposed
into the block form, then the finite space system (27) has
a uniquely defined equilibrium state Peq = P(t → ∞)
for which

dP(t)
dt

∣∣∣∣
P(t)=Peq

=
dP(t)

dt

∣∣∣∣
t→∞

= 0 (31)

This implies that W̃ has a single zero eigenvalue λ0 = 0,
while all the other eigenvalues are real and negative [14].
If to use the independent kinetic modes (eigenmodes) be-
ing in fact the Debye relaxation rates {rj=0,...,J} and to
arrange them in ascending order instead of in order of
increasing the absolute algebraic value of their eigenval-
ues {|λj=0,...,J |}, then all these eigenmodes become real
and non-negative, that is 0 = r0 ≤ r1 ≤ . . . ≤ rJ . There-
fore, within the S, the set of relaxation rates {rj} will
be complete and, by definition, correspond to the char-
acteristic inverse transient times {τ (j)

tr }−1 determined by
transition probabilities (28) on the longest time scale.

However, in the S, there must always exist the funda-
mentally shortest time scale too, termed chaotic, namely
∆t ≈ τch � τst � τtr, on which the ergodically mixed
sets (or modules) of quasi-isoenergetic (i.e., nearly de-
generate) energy levels are formed [7, 8]. Just on this
time scale, the microscopic structure of the Hamiltoni-
ans of the whole closed system (1)–(5) conditioned with
the factorization of its density matrix (7) is created. Fur-
thermore, an attribute “chaotic” should mean that, to
proceed further from the very short times t � τch at
which the energy levels of the S were intrinsically highly
correlated to chaotic times t ≈ τch, one would reduce all
the groups of strongly interacted quasi-degenerate states
to the effectively uncoupled ones and then chaotize them
in accordance with some pre-existed distribution (for ex-
ample, a Gaussian). Therefore, that time could be ex-
pected to be close to an interaction/encounter/scattering
time or to the time of establishment of local equilibrium
within the S with a highest physical speed and, thus,
has to directly relate to the notion of quasi-averages in
statistical mechanics [15–18]. Meanwhile, for the coher-
ent dynamics of the S, initial chaotization implies that
individual positions of the energy levels become not time-
independent but rather statistically randomized accord-
ing to the some stochastic distribution completed at time
t ≈ τst. There is, no doubt, a situation of modeling such
positions of levels microscopically unchanged during the
elapsed times between two successive encounters. Con-
sequently, if microscopically approaching the problem as
in (1)–(4), one will have to additionally stochastize the
eigenenergy levels of the Hamiltonian of the S on the
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stochastic coupling time scale (i.e., the inverse encounter
rate scale) which must thus be largely extended from
both the corresponding relaxation transition time and
the pre-supposed random chaotic time such as τst � τtr

and τst � τch, respectively, or, jointly, as τch � τst � τtr.
The aforementioned arguments allow one to provide

a decomposition between the J + 1 energy levels, ini-
tially introduced for the S, with a combination of them
in the M modules m = 1, . . . ,M , to be the tran-
sient ones, and singling out the one module m =
0, to be an absorbing one. As such, each mth mod-
ule consists of µm energy levels. But all of the levels
are in turn decomposed into the corresponding mod-
ules {(j(10)

0 , j
(20)
0 , . . . , j

(µ0)
0 ), (j(11)

1 , j
(21)
1 , . . . , j

(µ1)
1 ), . . . ,

(j(1M )
M , j

(2M )
M , . . . , j

(µM )
M )} bearing the respective indexes

(j(1m)
m , j

(2m)
m , . . . , j

(µm)
m ) for every m, such that to con-

serve the total number of levels

M∑
m=0

µm ≡
M∑

m=0

µm∑
jm=1m

1 =
J∑

j=0

1 = J + 1 (32)

Moreover, without the loss of generality, the level degen-
eracy of an absorbing module can always be made high
enough to correctly justify the very absorbing proper-
ty of exactly the module m = 0. But, of course, this is
the case only if to reasonably substantiate an assump-
tion noted above on the bounding from below of a phys-
ical speed limit for the chaotization rate τ−1

ch of being
much higher than that corresponding to the stochasti-
zation τ−1

ch � τ−1
st and transition τ−1

ch � τ−1
st � τ−1

tr

rates, respectively, characteristic for the S. This straight-
forwardly points to a concern to calculate the rate con-
stant (28) of relaxation transitions between different lev-
els most rigorously.

V. TRANSITION RATE CONSTANTS

Expression (28) for the probability of environment-
induced transitions between the fluctuating energy levels
of the S is characteristic for the approaches of describing
a nonadiabatic relaxation in the different nonequilibrium
condensed phase systems [6, 9, 12]. Here, it appears as a
result of averaging over the random fluctuations complet-
ed at stochastic times τst and is approved for the calcula-
tion of rate constants at far longer relaxation transitions
times τtr. Importantly, the same expression (28) holds
at much shorter chaotic times too, obeying a natural hi-
erarchy with respect to the other two τch � τst � τtr.
Any information about the time scales involved is neither
lost nor filtered out but rather is correctly accounted for
in the master equation (27) for populations (23) by the
corresponding averages – equilibrium occupation phonon
numbers n(ωλ) formed in the B at chaotic times τch, in-
tensities γjj′ of the stationary adiabatic fluctuations of
energy levels established in the S at stochastic times τst,
and parameters |χλ

jj′ |2 of the environment-induced (as-
sisted by the phonons of the B) nonadiabatic interaction
between the S and the B responsible for the relaxation

processes occurred at the transition times τtr, respec-
tively. Moreover, within the steady-state approximation
(23)-(26), one can reduce this expression to the time-
convolutionless form. Indeed, taking on the integral over
τ in (28) with making an account of (23)–(26) yields

Wjj′ =
2π

~2

∑
λ

|χλ
jj′ |2

{
n(ωλ)Λ(+)

jj′ (ωλ)

+ [1 + n(ωλ)]Λ(−)
jj′ (ωλ)

}
(33)

where Λ(±)
jj′ (ωλ) = γjj′{π[γ2

jj′ + (ωλ ± ∆Ejj′/~)2]}−1 is
the high-frequency bound of stochastic field generated
Lorentzian [7]. However, to further take on the sum over
λ in (33) requires knowing the energy level spectrum of
the S as well as the most relevant environment-induced
relaxation parameters. Therefore, if focusing on a simple
but correct description of relaxation processes at chaot-
ic times including the stochastic and transient ones, one
should be interested mainly in the calculable cases for
transition probabilities (33). Also, in order to be associ-
ated with the observable reaction rates these probabili-
ties would be well interpretable.

To be concrete in concerning with a calculation of
(33) on the different time scales, let us assume that
the S represents the some flexible, intrinsically disordered
nanosystem able to make as fast diffusive jumps over its
adiabatic multidimensional energy surfaces by turning,
coiling, bending, twisting and looping as well slower re-
laxation transitions between these surfaces of forming
the covalent and non-covalent bonds [19–22]. This leads
to reducing the S to a system having that structure of
the energy level spectrum which is composed of the num-
ber of narrow quasi-isoergic bands. These bands are only
occasionally degenerated, not because of overlapping the
respective nearest-neighboring states between each oth-
er, but owing to the great number of near-degenerate
weakly interacting configurations of states. The latter
are normally present around the functional groups of the
S in the interior of inherently unstructured, disordered
regions [19, 20], as well as in the bulk of the B when
considering it to be in the open contact to the S [8,9,22].

Let us confine ourselves to considering two important
realizations of the S in only the limiting cases. Namely:
the case of nonadiabatic (nonstationary) transitions with

|∆Ejj′ |/~ ≈ ωλ � γjj′ → +0 (34)

and the case of adiabatic (stationary) transitions with

γjj′ � ωλ ≥ |∆Ejj′ |/~→ +0 (35)

Since the relation for thermal intensity of stochastic fluc-
tuations at room temperature [6, 7] is

γjj′ = kBT/~ (36)

the cases (34) and (35) directly correspond to the quan-
tum

|∆Ejj′ | � kBT (37)
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and classical

|∆Ejj′ | � kBT (38)

limits, respectively. Furthermore, irrespective of the tem-
perature, one can introduce a rate speed limit for sym-
metric frequency-independent asymptotes =jj′ = =j′j ≡
=jj′(ωλ ≈ |∆Ejj′ |/~) of the one-phonon spectral func-
tion

=jj′ = lim
ωλ→|∆Ejj′ |/~

(2π/~2)
∑

λ

(|χλ
jj′ |2/ωλ) =

= (2π/~2)
∑

λ

|χλ
jj′ |2δ(ωλ − |∆Ejj′ |/~) (39)

being of prime interest in any microscopic calculations
on multi-level systems [13]. Hence, by introducing the
generalized distribution function

n(∆Ejj′) = [exp(∆Ejj′/kBT )− 1]−1 (40)

with the anticommutation property n(∆Ejj′) +
n(∆Ej′j) = −1, and the signum function

sgn(∆Ejj′) =


1, ∆Ejj′ > 0
0, ∆Ejj′ = 0
−1, ∆Ejj′ < 0

(41)

defined for all ∆Ejj′ including ∆Ejj′ = 0 with a conven-
tion n(0)sgn(0) = 1, one can reduce rate constant (33) to
the form most appropriate for both cases above (34),(37)
and (35), (38):

Wjj′ = =jj′ n(∆Ejj′) sgn(∆Ejj′). (42)

This marginally correct expression is physically strict
and satisfies the principle of microscopic reversibility (a
condition of detailed balance)

Wjj′ = Wj′j exp(∆Ejj′/kBT ) (43)

regardless of the presence in the S of irreversible kinetic
stages, by considering the reverse rates for them to be
infinitely rare or almost insignificant. Moreover, expres-
sion (42) reproduces well the very fast (often fastest)

rate speed limit characteristic for activationless intra-
band transitions

Wj′j = =jj′ (44)

with the near zero or negligibly small activation energy
Eact ≡ |∆Ejj′ | � kBT , as well as the far slower Arrhe-
nius’s rate limit characteristic for activation-like inter-
band transitions

Wjj′ = =jj′ exp(−Eact/kBT )�Wj′j (45)

commonly having the much larger activation energy
Eact ≡ |∆Ejj′ | � kBT .

Consequently, the classification of environment-
induced transitions between the energy levels of the S is
as follows. At first, on the chaotic time scale τch, one can
provide the rates of intra-band transitions between fluc-
tuating energy levels belonging to the every mth band
of the S with an ergodic mixing property for all the µm

degenerate levels within that band, and regard each such
band as the mth module of levels to be combined in a
single modular state characterized by one the same level
of energy Em and dimensionality µm. At second, on the
stochastic time scale τst, one can let these modules to
be in a contact of one another in a bottleneck fashion
with allowing their energies to fluctuate with an inde-
pendent of m thermal intensity (36). And finally, on the
transient time scale τtr, one can additionally endow the
modules with inter-band transition rates to be the one
of only two important types: the mechanistic type (44)
of temperature-independent transitions and the Arrhe-
nius’s type (45) of exponentially temperature dependent
transitions. The reduced master equation for evolution
of the aggregated modular populations

Γm(t) =
µm∑

jm=1

Pjm
(t) (46)

corresponding to this classification is easily derived from
the general master equation (27) in the approximation
(45), given condition (32), in the following form

Γ̇m(t) = −Γm(t)µ−1
m

∑
m′ 6=m

Wmm′ +
∑

m′ 6=m

Γm′(t)Wm′mµ−1
m′ (47)

with

Wmm′ = =mm′ n(∆Emm′)sgn(∆Emm′)�Wjmj′m ≈Wjm′ j′
m′

(48)

being the inter-module (m 6= m′;m,m′ = 0, 1, . . . ,M)
transition rates significantly smaller than those for intra-
module transitions, and ∆Emm′ ≡ Em−Em′ are the re-

spective inter-module energy level differences being the
same for all pairs of levels (jm; j′m′) if taken from the
different modules.
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VI. DEFINITION OF COMPETITIVITY

Eq. (47) represents the coarse-grained master equation
for a consistent kinetic description of the time evolution
of population (46) of the multidimensional, ergodical-
ly mixed modular states of the some open system (S)
performing relaxation transitions between the fluctuat-
ing energy levels due to a weak coupling to the heat
bath (B) on the transient time scale. The main advan-
tage of this representation is that it allows the possibility
of interpreting an absorbing Markov chain as of the ir-
reversible environment-induced relaxation process in the
nonequilibrium system interacting with the equilibrium
environment. Furthermore, it correctly defines the tran-
sition rate constants (48) by admitting a controllabili-
ty of their potential change in the extended limits. For
example, one can easily associate an absorbing Markov
state with a singled out module m = 0 having the very
high or even infinite dimensionality so that the aggregat-
ed probability of all leavings of this module is regarded
exceptionally rare or infinitely uncommon with respect
to entering it:

M∑
m=1

Wm0 �
M∑

m=1

W0m → 0. (49)

Also, without an offer up to correctness of equations
(47), (48), one can restrict his/her attention to only the
operationally relevant case, where it is possible to reset
a Markov chain every time it reaches absorbing state by
singling out the other module, say, module m = M as
the starting one for another irreversible cycle. The lat-
ter can be initiated by presupposing a dimensionality of
this module to be infinite µM =∞ before the beginning
of each new cycle, whereas letting this value free but fi-
nite in the interval 1 ≤ µM < ∞ exactly after the cycle
begins.

In general, an M +1 state Markov chain, regardless of
being absorbing or recurrent, has 2M−1 free parameters
supposed a priori independent and time-homogeneous.
There are the M Debye relaxation rates rm=1,...,M , the
M weights Am of exponential contributions in decompo-
sition time series, and minus one parameter determined
through the initial condition Γm=1,...,M−1(t = 0) = 0;
ΓM (t = 0) = 1 [3, 24]. Since, by definition, an absorbing
Markov chain is characterized by the nonconserved popu-
lations Γm=1,...,M (t→∞) = 0 (but Γm=0(t→∞) = 1),
and has the relaxation rate spectrum with the real and
positive roots rm=1,...,M > 0 (but r0 = 0), the popula-
tions do not oscillate. However, function ΓM (t) will be
strictly monotonic while functions Γm=1,...,M−1(t) will
increase, peak and decline. Therefore, for the latter, one
can always introduce the amplitudes of their peaks

Γ̄m=1,...,M−1 = Γm=1,...,M−1(t = tpm) (50)

to find them from the equations

dΓm=1,...,M−1(t)
dt

= 0 (51)

for defining the corresponding peak times tpm, respective-
ly.

To implement the properties above in a straightfor-
ward representation, one can avoid any kinetic cycles in
an absorbing Markov chain by reducing it to a linear
chain with no loop configurations and also use the lead-
ing order for connecting transitions between the only ad-
jacent states 〈m〉, each of dimensionality µm and energy
separation from other states ∆Emm′ ≡ Em − Em′ :

〈M〉
WMM−1

−→
←−

WM−1M

〈M − 1〉 · · · 〈3〉
W32

−→
←−
W23

〈2〉
W21

−→
←−
W12

〈1〉 W10−→ (52)

In a linear absorbing Markov chain above, the M states
are characterized exactly by the 2M − 1 independent
leading-order rate constants Wmm′ (48) can potentially
vary in arbitrary limits. The complete set of them forms
both the necessary and sufficient conditions to define ki-
netics of the irreversible evolution of state populations
Γm=1,...,M (t) in the operational framework, given initial
conditions. Particularly for (52), one determines the re-
sponse laws which establish the functional relationships
Γ̄m(Wmm′), as well as rm(Wmm′), between the corre-
sponding variations in growth of transition rates Wmm′

and the variations of gain in population peaks Γ̄m, as well
as the variations in change of relaxation rates rm, respec-
tively. Since the problem (47)-(52) is transcendent, such
relationships remind of nonanalytic or fractal response
laws often included in the kinetic models a priori [25,26].
But contrary to this, in the aforedescribed microscopic
approach (23)-(28) to an absorbing Markov chain prob-
lem (50)-(52), the same relationships may be involved
analytically.

To correctly define the competitivity between differ-
ent states of an absorbing Markov chain (52), we realize
that every state, excluding the initial one, is in compe-
tition with other states. These, in accordance with the
physical laws of evolution, are all, themselves, directed
to compete between each other in terms of gaining their
population peaks for growth of logarithm of the supply
rates provided effective energy input to them. Further-
more, each state prefers to maximize respective gain in
a range of the most stable increase of population peak,
that is, in the vicinity of inflection point of the functional
dependence Γ̄m[log(Wmm′)], where the slope of the log
odds of population peak with respect to log(Wmm′) be-
comes maximal [9], and vice versa. For these reasons, we
may define the competitivity of state 〈m〉 as its ability
to provide a control of the energy supply input factor
log(Wm′m′′) (m,m′,m′′ = 1, . . . ,M − 1; m′ 6= m′′) by
the following general relation

η
(m)
m′m′′ =

d log(Wm′m′′)

d log[Γ̄m/(Γ̄(∞)
m − Γ̄m)]

=
d log(Wm′m′′)

d log
[
Γm/(1− Γm)

] (53)

where Γ̄(∞)
m = Γ̄m(Wm′m′′ → ∞) is the saturation

level of the sigmoid dependence Γ̄m[log(Wm′m′′)] and
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Γm ≡ Γ̄m/Γ̄(∞)
m . As we see, the procedure of determining

the competitivity η
(m)
m′m′′ is as follows. First of all, it is

necessary to solve the master equation (47) for a chain
(52) with the arbitrary transition rates Wmm′ , given ini-
tial conditions Γm=1,...,M−1(t = 0) = 0; ΓM (t = 0) = 1.
Further, it requires find the peaks for the functions
Γm=1,...,M−1(t) attained at peak times tpm (50), (51),
build for these peaks the sigmoid curves Γ̄m[log(Wm′m′′)]
of interest, normalize those curves to unity and calculate
the log odds of thus normalized peaks Γm (53). Then,
it needs vary both the transition rates Wm′m′′ and the
states 〈m〉 in (52) to associate the competitivity η

(m)
m′m′′

found in (53) with the involved triples (m,m′,m′′ 6= m′).
And finally, it allows to plot the resulting multidimen-
sional competitivity landscape for variation of η

(m)
m′m′′ in

the space of 2M − 1 rate variables Wm′m′′ to be set as
the free independent parameters in describing the com-
petitivity of every state each time to quantify it.

Obviously, in the general case of very large M , the
aforementioned procedure comprises the complex hard-
to-solve problem, also known as the number-of-states
problem [27]. Apart from some exceptions [28], the
Lyapunov-stable solution to this problem always exists
and is unique. Nonetheless, to perform an exact calculus
of kinetics of the S is often unnecessary and expensive
computationally. Instead, one intends to understand how
potentially many states are correlated such that to short-
en a description of microscopically reversible transitions
between the recurrent Markov states and macroscopi-
cally irreversible decay to an absorbing Markov state to
only a few effective transitions. And how is to control the
competitivity of states, so that to be consistent in relat-
ing between the normalized peaks of population and the

thermodynamic quasi-averages like states’ level energy
and dimensionality. Note that this corresponds to short-
ening the description of nonequilibrium systems original-
ly formulated by Bogoliubov as a principle of weakening
of correlations in solving the initial value problem, and
is equivalent to a procedure of contracting of the num-
ber of independent variables in the boundary condition
problem, both basing on the idea of a hierarchy of char-
acteristic relaxation rates in the system [15–18].

To conclude, a continuous time multidimensional ab-
sorbing Markov chain can consistently be represented by
the process of evolution of a nonequilibrium system with
adiabatically fluctuating energy levels, occurring due to
a weak nonadiabatic coupling to the equilibrium envi-
ronment on the different time scales. For this system, it
is possible to correctly define the competitivity of states
as an inverse slope of log odds of normalized peaks of
state population with respect to log of growth in vari-
ous input transition rates directed to population gain of
states (53). However, the procedure of quantitatively de-
termining the competitivity in the general case is very
complicated and needs further work. More specifically,
in the next paper we will show that, at least for a two-
state absorbing Markov chain, the competitivity cannot
be less than unity or “negative” but rather be larger than
unity or “positive” yet always bounded from above by a
particular value.
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ВИЗНАЧЕННЯ КОНКУРЕНТОСПРОМОЖНОСТI АДСОРБУЮЧОГО
ЛАНЦЮГА МАРКОВА

В. I. Тесленко, О. Л. Капiтанчук
Iнститут теоретичної фiзики iм. М. М. Боголюбова НАН України,

вул. Метрологiчна, 14б, Київ, 03680, Україна

Сформульовано проблему визначення конкурентоспроможностi для рiзних станiв адсорбуючого ланцюга
Маркова за неперервного розвинення в часi. Стани ланцюга спiввiдносяться з аґреґатами для локально-
рiвноважних флуктуючих енергетичних рiвнiв, що виникають унаслiдок адiабатичних взаємодiй усерединi
нерiвноважної системи, яка, своєю чергою, еволюцiонує за наявностi неадiабатичного зв’язку з рiвноважним
оточенням. Використовуючи послiдовний мiкроскопiчний пiдхiд до опису еволюцiї матрицi густини повної
системи, ми спершу редукуємо вiдповiдне загальне рiвняння Лiувiлля–фон Ноймана до основного рiвняння
для дiагональних елементiв матрицi густини нерiвноважної системи, вiдтак даємо розрахунок хаотичних та
стохастичних середнiх за певними розподiлами енерґетичних рiвнiв i нарештi виводимо кiнетичне рiвняння
для заселеностi аґреґатних станiв адсорбуючого ланцюга Маркова. Такий розгляд надає визначенню кон-
курентоспроможностi рiзних станiв вигляду зворотного нахилу функцiї логарифма переваг для нормованих
пiкiв їх агрегатних заселеностей щодо логарифма вiдповiдних вхiдних констант швидкостей переходiв, що
змiнюються в широких границях.
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