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The theory of quasi-neutral equilibrium state of charges above the surface of liquid dielectric
is built. The basis of the approach is the variation principle, modified for the considered system,
and the Thomas–Fermi model. In terms of this method we obtain the self-consistency equations
relating the parameters of such system description — the electrostatic field potential, the distribution
function of charges and the profile of liquid dielectric surface. The equations are used to study the
phase transition of the system to states with spatially periodic structure. The parameters of the
phase transition with the formation of dimple crystals are obtained.
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I. INTRODUCTION

The research of spatially periodic states in the system
of charged particles above the surface of liquid dielec-
tric since its prediction [1] and appearance of the first
works on its theoretical grounding [2–4] and experimen-
tal detection [5] already has a rather long history. Soon
after the discovery of the phenomenon of the spatially
periodic structures formation in the system of charges
above helium surface it was named Wigner crystalliza-
tion. This name is caused by the analogy between this
phenomenon and the phenomenon of three-dimensional
periodic structures formation in the system of electrons
in metals predicted by Wigner [6]. It should be noted that
one can come to the prediction of the phase transition
associated with a spatially periodic structures formation
in such systems also in a different way [7]. However, the
spatially periodic structures above the helium surface
have the advantage of simplicity of their experimental
realization. It is known that Wigner three-dimensional
spatially periodic structures still have no experimental
proof. This circumstance causes one of the main reasons
for the relevance of the research in the area of spatial-
ly periodic structures in the system of charged particles
above the dielectric surface. In particular, it is assumed
that the study of such systems can be useful in terms of
predicting the effects associated with the Wigner crys-
tallization in three-dimensional systems, as well as the
conditions of their experimental observation. Natural-
ly, the research of the mentioned systems makes the re-
sults interesting themselves, regardless to the problems of
three-dimensional Wigner crystallization. At the present
moment the works [8–10] and the references available
in them seem to contain the most complete material to

judge the development of the research of charge systems
above the liquid helium surface.

It should be clarified that the existing works are de-
voted to the study of the effects associated with the ex-
istence of both two-dimensional Wigner crystals [5] and
macroscopic dimple lattices [11]. The theoretical papers
describing the corresponding experiments are based on
the idea of the energy spectrum of the solitary electron
above the dielectric surface. The essence of such a simple
approach is that solitary electron above the flat dielec-
tric surface together with its electrostatic image can be
considered as an analogue of a hydrogen-like atom with
the corresponding energy spectrum [12]. It is clear that
in the case of a large number of charges, the description
of the system under such consideration faces not only
mathematical obstacles, but also the “philosophical” or
methodological ones. Such obstacles can be avoided due
to the description of these systems using a consistent
microscopic theory instead of the phenomenological one.
This theory initially bases on the consideration of the
researched object as a quantum mechanical system of
many particles [13,14] in external attracting electric field,
because the attractive field produced by polarization of
the dielectric by the charges is insufficient to hold them
above the dielectric surface.

The approach to such theory building is proposed
in [13]. It is based on the usage of the variation principle,
modified for the considered systems, and the Thomas-
Fermi model. The variation principle takes into account
the possible existence of the external attracting electro-
static field. It allows obtaining of the self-consistency
equations that give the relation between the parame-
ters describing such system (the potential of electrostatic
field, the distribution function of charges and the surface
profile of liquid dielectric). As an application of the de-

3601-1



YU. V. SLYUSARENKO, D. M. LYTVYNENKO

veloped theory the authors study the phase transitions to
spatially periodic states in a system of charged particles
above the liquid dielectric surface. They obtain the so-
lutions of self-consistency equations and the parameters
of such phase transitions, including the periods of recip-
rocal lattices of spatially periodic structures of a special
type. To test the developed theory and its partial results
the experimental data [11] have been used and the qual-
itative agreement of theoretical and experimental data
is obtained. It should be noted that the theory [13, 14]
is based on the assumption of the conservation of the
number of charges above the dielectric surface. In oth-
er words, the system is not assumed quasi-neutral. The
term “quasi-neutrality” in such cases means the absence
of an electric field far from the dielectric surface, and it is
assumed that the system contains a number of charges,
which compensates the external attracting electrostatic
field [8–10].

Comparing with the “charged” system studied in [13,
14], the quasi-neutral system of charged particles above
the liquid dielectric surface has a number of peculiar-
ities in behavior [5, 10]. Some of them become appar-
ent only in the description of the system in the micro-
scopic approach. For this reason, the description of the
space-periodic structures the case of quasi-neutral sys-
tems above the liquid dielectric surface in the presence
of external pressing electrostatic field must be done sepa-
rately. In its turn, such a description requires some modi-
fication of certain theory assumptions proposed in [13,14]
for the “charged” systems. The subject of the present
work is the solution to such problems.

II. SELF-CONSISTENCY EQUATIONS FOR THE
SYSTEM OF CHARGES ABOVE THE LIQUID

DIELECTRIC SURFACE

It was noted above that instead of the charged system
in the quasi-neutral one the number of charges is deter-
mined by the external field. In other words, changing of
the external clamping field causes the changing of the
number of charges above dielectric surface. This differ-
ence between the systems does not affect the formulation
of the variation principle for them, see [13]. For this rea-
son there is no difference in self-consistency equations
for charged and neutral systems obtained within the ap-
proach [13]. Therefore in this paper there is no need to
build the variation principle of article [13]. We only write
the self-consistency equations obtained there.

However, let us briefly recall, in terms of what phys-
ical characteristics the system is described and define
its geometry. We consider a system of identical parti-
cles with charge Q, mass m, spin SQ, momentum p and

energy εp = p
2

2m . The charges are located in vacuum
above the surface of liquid dielectric film having thick-
ness d and dielectric constant ε and surface tension co-
efficient α. We assume that the liquid dielectric film is
located on a flat, solid dielectric substrate with a dielec-
tric constant εd � ε. The surface profile of the liquid
dielectric film is described by a function ξ(ρ) ≡ ξ(x, y),

where ρ ≡ {x, y} is a radius vector in the plane z = 0
of Cartesian coordinate system {z, x, y}. We assume the
interface regions “1”–“3” in the direction of coordinates
unlimited ρ ≡ {x, y}. To avoid any questions concerned
with “repulsion” of the same charged particles along ρ,
we assume that the system is located in a vessel with
walls at ρ → ∞. These walls prohibit charges to leave
the system along the unperturbed flat liquid dielectric
surface.

Fig. 1. Schematic structure of the studied system

Let the particles be acted by external attracting elec-
tric field E directed along the z axis. We also assume
the existence of a potential barrier prohibiting the pen-
etration of charges inside the liquid dielectric film. All
physical quantities related to the region z > ξ(ρ) are
marked by index “1”, the physical quantities related to
the liquid dielectric film (ξ(ρ) > z > −d) - by index “2”,
and the physical quantities related to the dielectric solid
substrate (z < −d) - by index “3” (see Fig. 1).

Let us introduce the parameters describing the sys-
tem. In the area “1” the system is completely described
by distribution function of particles fp (r), electric field

potential ϕ
(i)
1 (r) created by the system of charges, ex-

ternal attractive electrostatic field potential ϕ
(e)
1 (r) and

the surface profile ξ(ρ) of liquid dielectric. In the area
“2” the system is described by the surface profile ξ(ρ) of
liquid dielectric and the total electric field potential. The
“total” potential means the sum of the external electric
field potential in liquid dielectric and the field potential
induced by charges from the area “1”. The area “3” is
characterized by total electric field potential in the solid
substrate.

To obtain the self-consistent equations for the equilib-
rium values of basic parameters describing the system

fp (r), ξ(ρ) and ϕ
(i)
1 (r) it is necessary to solve the prob-

lem of determining of the maximum of the system en-
tropy S

S = − g

(2π~)
3

∫

dr dp
(

f̄ ln f̄ +
(

1 − f̄
)

ln
(

1 − f̄
))

,

(1)

f̄ =
(2π~)3

g
fp (r) , g = 2SQ + 1
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under the following conditions. Firstly, in the given (con-
stant) external attracting field the total number of par-
ticles in the system N =

∫

dr dp fp (r), the total energy
of the system

Et =

∫

V1

dr dp fpεp +
Q

2

∫

V1

drϕ
(i)
1 n

+Q

∫

V1

drϕ
(e)
1 n+

∫

V1

dr

(

∇ϕ(e)
1

)2

8π

+
ε

8π

∫

V2

dr (∇ϕ2)
2

+
εd
8π

∫

V3

dr (∇ϕ3)
2

+
α

2

∫

dS
{

(∇ρξ (ρ))
2

+ κ2ξ2 (ρ)
}

,

dS = d2ρ

√

1 + (∇ρξ (ρ))
2
,

∇ρ ≡ ∂/∂ρ, ϕj = ϕ
(i)
j + ϕ

(e)
j

(2)

and its total momentum P =
∫

dr dpfp (r) p must re-
main constant. If the system as a whole is at rest, its
total momentum must be zero. Secondly, in the absence

of charges above liquid dielectric film the its surface pro-
file cannot be transformable. And thirdly, in all three
regions of the system the Poisson equations must take
place. Let us also note that in Eq. (2) Vj , j = 1, 2, 3 are
the volumes of “1”,“2” and “3” regions, correspondingly.
Besides that the definition of particle density is used

n (r) =

∫

dp fp (r) . (3)

The problem on determining the conditional maximum
of entropy can be reduced to the problem on uncondi-
tional minimum of thermodynamical potential Ω̃ deter-
mining (see [13] for details):

Ω̃ = −S + Y0E + YiPi + Y4N

+

∫

dρ λξ (ρ) ξ (ρ)|N=0

+

∫

drλ (r) {∆ϕ (r) + 4πQn (r)} ,

(4)

where Y0, Yi, Y4, λ (r) , λξ (ρ) are the corresponding La-
grange multipliers to the above conditions.

The solution of such a variation problem in [13] results
in the following equation

gT

(2π~)
3

∫

dp ln

(

1 − (2π~)
3

g
fp (r)

)∣

∣

∣

∣

∣

z=ξ(ρ)

=
ε

8π

(

(∇ϕ2 (r))
2 −

(

∇ϕ(e)
2 (r)

)2
)

z=ξ(ρ)

(5)

+α







κ2ξ (ρ)

√

1 + (∇ρξ (ρ))2 −∇ρ





∇ρξ (ρ)
(

1 + κ2

2 ξ
2 (ρ) + 3

2 (∇ρξ (ρ))
2
)

√

1 + (∇ρξ (ρ))
2











,

where the distribution function of charges fp (r) is given
by

fp (r) =
θ (z − ξ (ρ)) g

(2π~)
3
(

1 + e
εp−µ+Qϕ1

T

) . (6)

θ (z) is the Heaviside step function, and the constant κ
in (5) is defined by the expression

κ2 =
ρ

α
(g + f) , (7)

where g is gravity acceleration, α is the surface tension
of liquid dielectric, ρ is its density, and f ∼ d−4 is van
der Waals constant, which in the case of a massive liq-
uid dielectric (d → ∞) is negligible compared to g. In
the case of a thin dielectric film the gravity force acting
on atoms of liquid dielectric becomes negligibly small as
compared to van der Waals forces (see [8, 10] and refer-
ences therein). E.g., such situation takes place for liquid
helium films thinner then d ∼ 10−4 cm.

Eqs. (5), (6) together with the equations for the
electric field potentials, both external and induced by
charges in all three regions of the system,

∆ϕ
(i)
1 (r) + 4πQ

∫

dpfp (r) = 0,

∆ϕ
(i)
2 (r) = 0, ∆ϕ

(i)
3 (r) = 0,

∆ϕ
(e)
j (r) = 0, j = 1, 2, 3,

(8)

form a set of self-consistent equations.However, this sys-
tem must be supplemented by the boundary conditions
for the electric fields and their potentials at the interfaces
z = ξ (ρ) and z = −d. For the sake of convenience we
shall write the boundary conditions for the fields during
the description of the phase transition with the forma-
tion of the system of spatially periodic structures.
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III. SCENARIO OF THE PHASE TRANSITION
RESULTING IN SPATIALLY PERIODIC
STRUCTURES AND THE BOUNDARY

CONDITIONS FOR THE ELECTRIC FIELDS

The scenario of the phase transition resulting in the
transformation of the surface of liquid dielectric film is
assumed as follows (see, e.g., [8,10,13]). As already men-
tioned, the external electric field attracting charges to
the flat surface of liquid dielectric film causes its subsi-
dence within the area of this field acting. Moreover, the
bottom of this deflection remains flat. Therefore, the de-
formation of liquid dielectric surface, leaving the bottom
deflection flat, can be characterized by a single parame-
ter ξ̄ (depth of subsidence). If the flat surface of unde-
formed dielectric is described by plane, then the value of
ξ̄ should be negative, ξ̄ < 0. With further increase of the
external electric field the depth increases and the surface
of bottom deformation remains flat up to a certain crit-
ical value of the total electric field Ec on the dielectric
surface,

Ec =

∣

∣

∣

∣

∂ϕ1(z,ρ)

∂z

∣

∣

∣

∣

z=ξ̄

. (9)

Naturally, in this case the inequality
∣

∣ξ̄
∣

∣ < d takes place,
if the liquid dielectric is a film with thickness d located
on a solid substrate.

With further growth of the clamping electric field the
surface profile of the formed deflection bottom the can
be deformed and acquire a periodic structure. Hence, the
phase transition to a spatially periodic structures in this
system occurs on a background of a flat structure of liq-
uid dielectric.

It should be noted that the control parameter for this
phase transition can be not only the external electric
field, but also the temperature. As mentioned above, un-
der the conditions of electric neutrality the charge den-
sity above liquid dielectric surface is determined by the
external field. Moreover, it will be seen further that in
the transition point these two parameters (external elec-
tric field and temperature) are related by an equation
describing a certain curve.

According to the above scenario of the phase transi-
tion the surface profile of liquid dielectric in a phase with
a lower symmetry, may be represented as follows [13,14]:

ξ(ρ) = ξ̄ + ξ̃(ρ), (10)

where ξ̃(ρ) is the spatially inhomogeneous surface pro-
file forming as the result of the phase transition on the
background of the flat bottom surface z = ξ̄ above a ho-
mogeneous deformation. Thus, the surface profile ξ̃(ρ) is
the order parameter of the considered phase transition.
In the symmetric phase this quantity has zero value, in an
asymmetric one it describes the spatially periodic struc-
ture of the surface. So, near the critical point from the
asymmetric phase, the inequality

∣

∣ξ̄
∣

∣�
∣

∣

∣ξ̃(ρ)
∣

∣

∣ (11)

takes place. Let us recall that in the theory of phase tran-
sitions term “asymmetric phase” means the phase formed
as a result of phase transition, and this phase has a low-
er symmetry than the initial one. In this case the initial
phase is called symmetric. Let us also note that in the
case of Eq. (11) taking place in the neighborhood the
phase transition point, and the zero value of the order
parameter at the point, the second order phase transition
occurs [15].

To describe the phase transitions associated with the
transformation of liquid dielectric surface and formation
of spatially periodic structures in the researched sys-
tem we must obtain the following quantities: ξ̄, ξ̃(ρ) and
the distributions of charges and fields in the system as
the result of phase transition. For this purpose we use
Eqs. (5)–(8) supplemented by the boundary conditions
for the characteristics of the electric field at the interfaces
of the three regions. In the case of an external constant
and uniform electric field acting on the system, the po-
tentials ϕ1, ϕ2 and ϕ3 in all three areas can be given
as

The boundary conditions for the potentials ϕj on the
boundaries z = ξ (ρ) and z = −d can be written as:

ϕ1(z,ρ) |z=ξ = ϕ2(z,ρ) |z=ξ ,
ϕ2(z,ρ) |z=−d = ϕ3(z,ρ) |z=−d ,

((n(ρ) · ∇) {εϕ2(z,ρ) − ϕ1(z,ρ)})z=ξ = 0,
{

ε
∂ϕ2(z,ρ)

∂z
− εd

∂ϕ3(z,ρ)

∂z

}

z=−d

= 0,

ϕ
(e)
1 (z,ρ) |z=ξ = ϕ

(e)
2 (z,ρ) |z=ξ ,

ϕ
(e)
2 (z,ρ) |z=−d = ϕ

(e)
3 (z,ρ) |z=−d ,

(

(n(ρ) · ∇)ϕ
(e)
1 (z,ρ)

)

z=ξ

= ε
(

(n(ρ) · ∇)ϕ
(e)
2 (z,ρ)

)

z=ξ
,

{

ε
∂ϕ

(e)
2 (z,ρ)

∂z
− εd

∂ϕ
(e)
3 (z,ρ)

∂z

}

z=−d

= 0,
(12)

where n(ρ) is the normal to the surface with profile ξ(ρ)
at the point ρ.

n(ρ) = σ

{

− ∂ξ

∂x
,−∂ξ

∂y
, 1

}

σ =
(

1 + (∇ξ)2
)−1/2

.

(13)

These boundary conditions correspond to the case when
the surface charges on the boundaries are absent.
Eq. (12) must be also supplemented by the limitation
conditions of the fields at infinity
∣

∣

∣

∣

∣

∂ϕ
(e)
1

∂z

∣

∣

∣

∣

∣

z→+∞

< +∞,

∣

∣

∣

∣

∣

∂ϕ
(e)
3

∂z

∣

∣

∣

∣

∣

z→−∞

< +∞,

∣

∣

∣

∣

∂ϕ1

∂z

∣

∣

∣

∣

z→+∞

< +∞,

∣

∣

∣

∣

∂ϕ3

∂z

∣

∣

∣

∣

z→−∞

< +∞.

(14)
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Further on we shall consider the surface profile which
is not very different from the flat one, and show how
Eqs. (5)–(8) change in this case. It is shown in [13] that
if the surface profile slowly changes along the coordinate,
we have

|∂ξ(ρ)/∂x| � 1, |∂ξ(ρ)/∂y| � 1. (15)

When Eqs. (11)–(15) take place, we can expect the dis-
tribution of charges and fields in the system to be a little
different from the distributions taking place in the case
of a flat dielectric surface z = ξ̄. Then, the potentials of

the external ϕ
(e)
j , j = 1, 2, 3 and the total ϕj fields can

be given as

ϕj(z,ρ) = ϕ̄j(z) + ϕ̃j(z,ρ),

ϕ
(e)
j (z,ρ) = ϕ̄

(e)
j (z) + ϕ̃

(e)
j (z,ρ),

(16)

where ϕ̄j(z) and ϕ̄
(e)
j (z) are the potentials of total and

external electric fields respectively, in all of the described
above regions of the system (but not on the boundaries)
in the case of flat liquid dielectric surface z = ξ̄. Po-

tentials ϕ̃j(z,ρ) and ϕ̃
(e)
j (z,ρ) describe small potential

distortions in all these regions due to the surface inho-
mogeneity with profile ξ̃(ρ). As the distortions of the
potential by the undulated surface are assumed to be
week, the following inequalities take place

|ϕ̄j(z)| � |ϕ̃j(z,ρ)| ,
∣

∣

∣ϕ̄
(e)
j (z)

∣

∣

∣�
∣

∣

∣ϕ̃
(e)
j (z,ρ)

∣

∣

∣ .
(17)

We shall further assume that the initially flat surface
profile and then deformed as a result of the phase tran-
sition ξ̃(ρ)

ξ̃(ρ) =
∑

q6=0

ξqe
iqρ,

ξq =
1

(2π)
2

∫

dρ ξ(ρ)e−iqρ
(18)

is spatially periodic. In the case of ξ̃(ρ) periodicity (see
Eq. (18)), the Eq. (10) leads to:

ξ̄ ≡ 〈ξ(ρ)〉 , ξ̃(ρ) = ξ(ρ) − 〈ξ(ρ)〉 , (19)

where 〈...〉 is averaging over the period.

The periodic structure of ξ̃(q) allows searching the po-
tentials ϕ̃j(z,ρ) (see Eq. (16)) in the form:

ϕ̃j(z,ρ) =
∑

q6=0

ϕ̃jq(z)eiqρ,

ϕ̃jq(z) =
1

(2π)
2

∫

dρ ϕ̃j(z,ρ)e−iqρ,

ϕ̃
(e)
j (z,ρ) =

∑

q6=0

ϕ̃
(e)
jq (z)eiqρ,

ϕ̃
(e)
jq (z) =

1

(2π)
2

∫

dρ ϕ̃
(e)
j (z,ρ)e−iqρ.

(20)

Taking into account Eqs. (16), (20), we easily see that

ϕ̄j(z) ≡ 〈ϕj(z,ρ)〉 , 〈ϕ̃j(z,ρ)〉 = 0,

ϕ̄
(e)
j (z) ≡

〈

ϕ
(e)
j (z,ρ)

〉

,
〈

ϕ̃
(e)
j (z,ρ)

〉

= 0.

To describe the phase transition on the scenario de-
scribed in the beginning of this section, it is necessary
to determine the order parameter ξ̃(ρ). Considering the
phase transition as a second order one, we are able to ob-
tain the order parameter ξ̃(ρ) as a function of the control
parameters T,E, ns near the critical values Tc, Ec, nsc us-
ing the perturbation theory in the small parameters ξ̃(ρ),

ϕ̃j(z,ρ) and ϕ̃
(e)
j (z,ρ).

Taking into account Eqs. (15) –(18) after substituting
Eqs. (15), (16), into Eqs. (5)–(8) and keeping the terms

linear in ξ̃(ρ), ϕ̃j(z,ρ), ϕ̃
(e)
j (z,ρ) and T − Tc, E − Ec,

n − nsc, we obtain the equations describing the spatial
structure of the liquid dielectric surface and the distribu-
tion of charges and fields in the asymmetric phase near
the critical surface (see the note above). Let us write the
equations describing the system above the surface of the
liquid dielectric film z = ξ̄, i.e., in the region “1”. These
equations are the main approximation of the described
perturbation theory. Subsequently, the charges above the
liquid dielectric surface are considered to be electrons,
and therefore in the corresponding formulae we put the
charge of an electron Q = −e in the place of Q. Due
to the periodicity of the small quantities ξ̃(ρ), ϕ̃j(z,ρ)

and ϕ̃
(e)
j (z,ρ), see Eqs. (18), (20), the main approxi-

mation is obtained by averaging over the period of the
self-consistent equations Eqs. (5)–(8). The components
representing the averaged values of terms quadratic in

ξ̃(ρ), ϕ̃j(z,ρ) and ϕ̃
(e)
j (z,ρ) are small in comparison with

the main approximation, therefore they can be omitted.
Then the Poisson equation in the first region in the main
approximation has the form

∂2

∂z2
ϕ̄1(z) = 4πen(z)θ(z − ξ̄),

n(z) =

∫

d3p fp(z),

fp(z) =
g

(2π~)
3

(

1 + e
εp−(eϕ̄1(z)+µ)

T

)−1

.

(21)

The main order approximation of Eq. (5) in the men-
tioned parameters gives the equation to determine ξ̄:

gT

(2π~)
3

∫

dp ln

(

1 − (2π~)
3

g
fp(z)

)∣

∣

∣

∣

∣

z=ξ̄

=
ε

8π





(

∂ϕ̄2 (z)

∂z

)2

−
(

∂ϕ̄
(e)
2 (z)

∂z

)2




z=ξ̄

+ακ2ξ̄. (22)

Due to the absence of charges in regions “2” and “3”, the
equations for the potentials ϕ̄2(z) and ϕ̄3(z) have the
form:

∂2

∂z2
ϕ̄2(z) = 0,

∂2

∂z2
ϕ̄3(z) = 0. (23)
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Let us remind that the external field potentials ϕ̄
(e)
j (z)

in all three regions are described by the same equations
(Laplace equations):

∂2

∂z2
ϕ̄

(e)
j (z) = 0. (24)

To make the system of Eqs. (21)–(24) self-contained, the
same averaging procedure of period is done with the
boundary conditions Eq. (12). As a result we obtain the
relation between the total potentials ϕ̄j(z) and the po-

tentials of external electric field ϕ̄
(e)
j (z) on the borders

of three regions by the boundary conditions:

ϕ̄1|z=ξ̄ = ϕ̄2|z=ξ̄ , ϕ̄2|z=−d = ϕ̄3|z=−d,

ε ϕ̄′
2|z=ξ̄ = ϕ̄′

1|z=ξ̄, εd ϕ̄′
3|z=−d = ε ϕ̄′

2|z=−d,

ϕ̄
(e)
1

∣

∣

∣

z=ξ̄
= ϕ̄

(e)
2

∣

∣

∣

z=ξ̄
, ϕ̄

(e)
2

∣

∣

∣

z=−d
= ϕ̄

(e)
3

∣

∣

∣

z=−d
,

ε ϕ̄
(e)
2

′
∣

∣

∣

z=ξ̄
= ϕ̄

(e)
1

′
∣

∣

∣

z=ξ̄
,

ϕ̄
(e)
3

′
∣

∣

∣

z=−d
=

ε

εd
ϕ̄

(e)
2

′
∣

∣

∣

z=−d
.

(25)

It is easy to see that the solution of the problem on the
phase transition description starts from solving the equa-
tions of the main approximation (21)–(24) with bound-
ary conditions Eq. (25). This procedure provides obtain-
ing the distribution of charges and fields in the system in
case of flat surface of liquid dielectric, which is given by
the equation z = ξ̄. The value of ξ̄ obtained from Eq. (22)
determines the subsidence level of the flat surface due to
the influence of charges (electrons) on it.

To obtain the critical parameters of the considered
phase transition the higher orders of perturbation theory
are involved. Below we shall formulate the system of self-
consistent Eqs. (5)–(8) in the first order of this theory.
For the further simplicity of calculations, we assume the
resulting periodic structure to be one-dimensional with
the period along the x axis equal to a, so q = qx = 2π

a .
In this case further on instead of the vector q, direct-
ed along x axis, we write its corresponding projection q.

Let us try the quantities ξ̃q , ϕ̃jq(z) and ϕ̃
(e)
jq (z) in the

following form

ξ̃q(z) =

∞
∑

l=1

ξ̃(l)q , ϕ̃jq(z) =

∞
∑

l=1

ϕ̃
(l)
jq (z),

ϕ̃
(e)
jq (z) =

∞
∑

l=1

ϕ̃
(e)(l)
jq (z),

(26)

where

ξ̃(1)q = ξ̃(1)q0 (∆ (q − q0) + ∆ (q + q0)) ,

ξ̃(2)q = ξ̃
(2)
2q0

(∆ (q − 2q0) + ∆ (q + 2q0)) ,

ϕ̃
(1)
jq (z) = ϕ̃

(1)
jq0

(z) (∆ (q − q0) + ∆ (q + q0)) ,

ϕ̃
(2)
jq = ϕ̃

(2)
j2q0

(∆ (q − 2q0) + ∆ (q + 2q0)) ,

ϕ̃
(e)(1)
jq (z) = ϕ̃

(e)(1)
jq0

(z)

× (∆ (q − q0) + ∆ (q + q0)) ,

ϕ̃
(e)(2)
jq = ϕ̃

(e)(2)
j2q0

(∆ (q − 2q0) + ∆ (q + 2q0)) .

(27)

In Eq. (27) is the Kronecker symbol

∆ (q) =

{

0, q 6= 0
1, q = 0

.

In Eq. (26) we assume the appearing periodic structure
to be one-dimensional with a period along x axis equal
to a, so

q = qx = 2π/a.

We also assume that ϕ̃jq(z) = ϕ̃j−q(z) and ξ̃q = ξ̃−q,
thereby considering the real values of these quantities, so

ξ̃(x) = 2

+∞
∑

l=1

ξ̃(l) cos lq0x,

ϕ̃j (x, z) = 2

+∞
∑

l=1

ϕ̃
(l)
j (z) cos lq0x,

ϕ̃
(e)
j (x, z) = 2

+∞
∑

l=1

ϕ̃
(e)(l)
j (z) cos lq0x.

Then, the linear approximation for Eqs. (5), (8) in small

values of the first harmonics of ξ̃q and ϕ̃jq(z) has the
following form

∂2ϕ̃
(1)
1

∂z2
− q20ϕ̃

(1)
1 = 4πe2

∂n

∂µ
ϕ̃

(1)
1 ,

∂2ϕ̃
(1)
2

∂z2
− q20ϕ̃

(1)
2 = 0,

∂2ϕ̃
(1)
3

∂z2
− q20ϕ̃

(1)
3 = 0,

ε

4π

(

ϕ̄
(e)
2

′ ∂ϕ̃
(e)(1)
2

∂z
− ϕ̄′

2

∂ϕ̃
(1)
2

∂z

)

z=ξ̄

−
(

en
(

ϕ̃
(1)
1 + ϕ̄′

1ξ̃
(1)
))

z=ξ̄

= αξ̃(1)
(

κ2 + q2
(

1 +
κ2ξ̄2

2

))

.

(28)

And the same approximation for the boundary condi-
tions Eq. (12) can be expressed as:

(

(ϕ̄′
1 − ϕ̄′

2) ξ̃
(1) + ϕ̃

(1)
1 − ϕ̃

(1)
2

)

z=ξ̄
= 0,

(

ϕ̄′′
1 ξ̃

(1) +
∂ϕ̃

(1)
1

∂z
− ε

∂ϕ̃
(1)
2

∂z

)

z=ξ̄

= 0,

(

ϕ̃
(1)
2 − ϕ̃

(1)
3

)

z=−d
= 0,

(

ε
∂ϕ̃

(1)
2

∂z
− εd

∂ϕ̃
(1)
3

∂z

)

z=−d

= 0.

(29)

Similarly, the first approximation of the considered per-
turbation theory for Eq. (5) for the external potential,
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supplemented by the appropriate boundary conditions
has the form

∂2ϕ̃
(1)
j

∂z2
− q20ϕ̃

(1)
j = 0, j = 1, 2, 3,

((

ϕ̄
(e)
1

′
− ϕ̄

(e)
2

′)

ξ̃(1) + ϕ̃
(e)(1)
1 − ϕ̃

(e)(1)
2

)

z=ξ̄
= 0,

(

ϕ̃
(e)(1)
2 − ϕ̃

(e)(1)
3

)

z=−d
= 0,

(

∂ϕ̃
(e)(1)
1

∂z
− ε

∂ϕ̃
(e)(1)
2

∂z

)

z=ξ̄

= 0,

(

ε
∂ϕ̃

(e)(1)
2

∂z
− εd

∂ϕ̃
(e)(1)
3

∂z

)

z=−d

= 0.

(30)

Eqs. (28)–(30) allow solving the above problem of de-
scribing the phase transition associated with the forma-
tion of spatially periodic structures above the liquid di-
electric film surface in the studied system. We also note
that the values of T and E, included in the coefficients

multiplied by small deviations ξ̃(1), ϕ̃
(e)(1)
j , ϕ̃

(1)
j are relat-

ed by the already mentioned critical surface. The linear
approximation of the discussed equations does not con-
tain the terms proportional to T − Tc and E − Ec be-
cause they have a higher order of smallness. This fact
causes obtaining the higher orders of perturbation the-
ory to calculate the dependence of the order parameter
ξ̃(1) on the control parameters T,E near the critical sur-
face. The following sections are devoted to solving this
problem, and to solving the system of Eqs. (21)–(25) and
Eqs. (28)–(30).

It should be particularly emphasized that in the
present paper the system of charges is not considered to
be localized in any plane as, for instance, in [1–5, 8–10].
These papers are concerned with the two-dimensional tri-
angular crystal structures formed by the electrons above
liquid helium surface. The exceptional cases are those
where the so-called “dimple” crystals are described. As
is seen from the above problem this work describes a
three-dimensional system of charges by the distribution
function depending on the coordinates of the half-space
above the liquid dielectric surface. So as we shall see
further, the present work considers the spatially periodic
structure along the directions parallel to the plane (x, y),
caused by the spatial periodicity of the surface profile of
the liquid dielectric film.

IV. DISTRIBUTION OF CHARGES AND FIELDS
IN THE ELECTRICALLY NEUTRAL SYSTEM

ABOVE A FLAT LIQUID DIELECTRIC
SURFACE

Eqs. (21)–(24), can be solved using the procedure pro-
posed in [14] (see also [13]), where a similar problem is
considered for the case of the charge distribution above
the flat boundary of a massive solid dielectric. To solve
the first equation in Eq. (21) it is convenient to rewrite

it as follows:

∂2ϕ̄1(z)

∂z2
= 4πeν

∞
∫

0

dεε1/2

1 + e(ε−ψ)/T
, (31)

where we introduce the following designations

ψ(z) ≡ µ+ eϕ̄1(z), ν =

√
2

π2a
3/2
0 e3

, (32)

and take into account that the electron spin is 1/2 and

a0 ≡ ~
2

me2 . The quantity ψ is usually named as electro-
chemical potential and a0 as Bohr radius.

The order of Eq. (31) can be lowered, see [13]. As a
result we obtain the equation

∂ϕ̄1

∂z
= −







16π

3
ν

∞
∫

0

dεε3/2

1 + e(ε−ψ)/T
+ C1







1/2

, (33)

where C1 is an arbitrary integration constant. We choose
the sign of the square root in this equation from the fol-
lowing considerations: the force acting on the negative
charges at z > ξ̄ must press these charges to the dielec-
tric surface. Eq. (33) is greatly simplified, if we take into
account the quasi-neutrality of the system. In fact, the
condition of quasi-neutrality of the system means that
there are no particles at infinity, so (see Eq. (21)) we
have

lim
z→∞

1

1 + e(ε−ψ)/T
= 0,

and taking into account Eq. (33) leads us to

lim
z→∞

∂ϕ1 (z)

∂z
= −

√

C1.

In the electrically neutral case the electric field E (z) =

−∂ϕ1(z)
∂z must be zero at infinity, so C1 = 0 and after

using the definitions from (32) Eq. (33) has the form:

∂ψ

∂z
= −





16πe2ν

3

∞
∫

0

dεε3/2

1 + e(ε−ψ)/T





1/2

, (34)

In [14] we show that in the most general case, the elec-
tron gas can be degenerate near the dielectric surface
and it is non-degenerate at a considerable distance from
it. The condition of electron gas degeneracy depends on
temperature, particle density and the external clamp-
ing field. If these parameters satisfy the non-degeneracy
condition of the electron gas near the dielectric surface,
then this gas is non-degenerate in the entire space above
the dielectric. In the present paper we consider exactly
this situation. In this case, the distribution function of
electrons must be close to the Boltzmann distribution
function (see [15]):

1

1 + e(εp−ψ)/T
≈ e(εp−ψ)/T , (35)
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whereby the expression for the gas density (see Eq. (21))
takes the form (see [13, 14] [7, 8]):

n(z) ≡ ν

∞
∫

0

dεε1/2

1 + e(ε−ψ(z))/T
≈

√
π

2
νT

3
2 e

ψ
T . (36)

The left side of Eq. (36) determines the density of the
number of charges above the flat dielectric surface and
it is obtained from Eq. (21) and from the requirement

∫

dx
∑

p

fp(x) =

∫

dρ

∞
∫

0

dz

∫

dpfp(z)

(2π~)
3

= S

∞
∫

0

dz n (z) = N,

(37)

where N is the total number of particles in the system,
S is the area of flat dielectric surface. In fact, Eq. (37)
is approximate, because a certain part of charges is as-
sociated with a spatially periodic structure of liquid di-
electric surface. However, according to Eqs. (15)–(18) we
think that the number of such particles is small compar-
ing to the total number of charges above the surface of
liquid dielectric film.

Using Eqs. (35), (36), we easily make sure that in the
case of the non-degenerate electron gas above the dielec-
tric surface, Eq. (34) has the analytical solution:

e
ψ
T =

4T 2B−1

(

z − ξ̄ + C2

)2 , B ≡ 4π
3
2T

5
2 e2ν. (38)

To obtain the integration constant C2 in Eq. (38), we
use Eq. (37). Substituting Eq. (36) in it and taking into
account Eq. (38), we obtain the following expression:

ns =

∞
∫

ξ

dzn(z) =
T

2πe2C2
, (39)

where ns ≡ N
S is the number of volume charges per

area unit of the flat dielectric surface. The solution of
Eqs. (38), (39) makes it possible to obtain the depen-

dence of the electric field E1(z) = −∂ϕ̄1(z)
∂z on the coor-

dinate z above the liquid dielectric surface z = ξ̄.

E1 (z) =
4πens

1 + z−ξ̄
2z0

, z0 =
T

4πe2ns
, (40)

and the electron density n (z):

n (z) =
ns
2z0

1
(

1 +
(

z − ξ̄
)/

2z0
)2 . (41)

This result is in agreement with the expression for the
charge density obtained in [16].

Eq. (41) allows giving the physical meaning of z0. To
do this we build the dependence of quantity ∆ (z) =

1
ns

z
∫

ξ̄

n (x)dx on the distance from the surface z. This

quantity gives the part of charges below z from the total
number of particles above the dielectric surface.

Fig. 2.

Eq. (41) shows that ∆
(

ξ̄ + 2z0
)

= 0.5. This value
means that a half of all particles of the system is lo-
cated below distance 2z0 from the surface. Noticing that
∆
(

ξ̄ + 20z0
)

≈ 0.9 and ∆
(

ξ̄ + 200z0
)

≈ 0.99, we con-

clude that at the distance ξ̄ + 20z0 from the dielectric
surface and moreover ξ̄ + 200z0 the charges are nearly
absent with the accuracy of 10 and 1 percent respec-
tively. In the region of the electric field and temperature
satisfying the non degeneracy condition Eq. (35) of the
gas, the value of 2z0 is nearly 10−7 cm, i.e., 10 Å.

Eq. (40) shows that in the case of the electrically neu-
tral system of charges in an external field E the number
of particles ns per area unit of the dielectric surface is
determined by the value of this external clamping field.
In fact, Eq. (40) shows that in the case ns = 0, the elec-
tric field in region “1” is also equal to zero, E1 (z) = 0.
E1 (z) is a superposition of the external electric field E
and the “internal” field Ei (z) generated by the charges
abovethe dielectric surface:

E1 (z) = E +Ei (z) . (42)

But in the case of absence of charges, the electric field
created by them is zero Ei (z) = 0, so

E1 (z) = E, ns = 0. (43)

Eq. (42) shows that the equality E1 (z) = 0 at
ns = 0 takes place only if E = 0. In other words,
Eqs. (40), (42), (43) show that the number of particles
per area unit of the dielectric surface is zero only when
the external clamping field is absent. Thus, the clamp-
ing field in the electrically neutral case is the only factor
holding the particles above the dielectric surface (see al-
so [8–10]). So, we see that in this system the total field
Ei (z) created by all factors (field of the charges, the field
of dielectric polarized by charges and the external field)
minus the external field E

Ei (z) =
4πens

1 +
(

z − ξ̄
)/

2z0
−E,
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must be zero on the dielectric surface Ei
(

ξ̄
)

= 4πens −
E = 0, otherwise, if the external field E is turned off, the
charges will be still located above the dielectric surface.
So, in this electro-neutral case

E = 4πens. (44)

Let us note that Eq. (44) has exactly the same form as
the field inside a flat capacitor produced by oppositely
charged flat infinite plates having a surface charge den-
sity σ = ens. In this sense, Eq. (44) is in agreement with
the corresponding expressions in [8–10] (see also [13,14]).

According to Eqs. (21), (23)–(25), (40), (44) the po-
tentials of the total electric field and the external electric
field in liquid dielectric film and solid substrate are given
by the expressions:

ϕ̄1(z) = ϕ0 − 2Ez0 ln
(

1 +
(

z − ξ̄
)/

2z0
)

,

ϕ̄2(z) = −E
ε

(

z − ξ̄
)

+ ϕ0,

ϕ̄3(z) = −E

εd
(z + d) +

E

ε

(

d+ ξ̄
)

+ ϕ0,

ϕ̄
(e)
1 (z) = −E

(

z − ξ̄
)

+ ϕ
(e)
0 ,

ϕ̄
(e)
2 (z) = −E

ε

(

z − ξ̄
)

+ ϕ
(e)
0 ,

ϕ̄
(e)
3 (z) = −E

εd
(z + d) +

E

ε

(

d+ ξ̄
)

+ ϕ
(e)
0 ,

(45)

where the following notations are made ϕ̄1ξ = ϕ̄2ξ ≡ ϕ0,

ϕ̄
(e)
1ξ = ϕ̄

(e)
2ξ ≡ ϕ

(e)
0 .

Basing on Eqs. (40), (44), (45) we define the subsi-
dence of the surface in terms of the problem parameters,
starting from Eq. (22) and using Eq. (35) we have:

ξ̄ = − E2

8πακ2
. (46)

As it should be in the absence of charges according to
Eq. (46), the value of ξ̄ is zero. Eq. (46) allows imposing
a natural restriction on the value of the clamping electric
field, and therefore the maximum possible surface densi-
ty of electrons. Indeed, in the case of equilibrium state of
the system described by the self-consistent Eqs. (5)–(8),
the subsidence depth of the liquid dielectric film surface
must be substantially smaller in absolute value than the
thickness of the film:

∣

∣ξ̄
∣

∣� d. (47)

This condition allows defining the maximum value
clamping field, which is significantly higher than the val-
ues of the fields under our consideration

E � Em, Em = 2κ
√

2παd. (48)

For example, for a liquid helium film having thickness
d = 0.1 cm, we have Em ≈ 5.4 · 103 V/ cm, or in
terms of the surface density of electrons (see Eq. (44))
nms ≈ 2.85 · 109 cm−2. This value is in good agreement
with the value of ncrs ≈ 2 · 109 cm−2, above which elec-
trons start to fall into helium, forming the so-called bub-
bles [17]. In other words, the inequality Eq. (44) takes
place, if ns ≤ 109 cm−2.

In terms of the quantities introduced above the non-
degeneracy criterion for the electron gas above the sur-
face of liquid dielectric film has the following form (see
Eqs. (35), (38)):

23/2n2
sa

4
0

(

πe2

Ta0

)5/2

� 1. (49)

This inequality breaks in the case of low temperatures
and strong external clamping fields (in this connection
see [14]).

So, in the case of electrical neutrality, Eqs. (40)–(49)
are the solution to the problem of obtaining the distribu-
tion of non-degenerate electron gas and fields in a system
of charges above the flat surface of liquid dielectric in ex-
ternal clamping field. The next section is devoted to con-
sidering the possibility of formation of spatially-periodic
states resulting from the phase transition in this system.

V. CRITICAL PARAMETERS OF THE PHASE
TRANSITION IN THE SYSTEM TO A STATE

WITH SPATIALLY PERIODIC SURFACE
PROFILE OF THE LIQUID DIELECTRIC

The starting point for the study of the critical parame-
ters of such phase transition are Eqs. (28) and the bound-
ary conditions Eq. (29). Taking into account Eqs. (36)
and (41) the first equation in Eq. (21) can be written
as:

∂2ϕ̃
(1)
1

∂z2
=

(

q20 +
1

2z2
0

(

1 +
z − ξ̄

2z0

)−2
)

ϕ̃
(1)
1 , (50)

where due to Eqs. (32), (36) we use the expression
∂n
∂µ = ∂n

∂ψ = n
T . Making the following substitution

ϕ̃
(1)
1 (z) = y

1
2 η (y) , y = 2q0z0 + q0

(

z − ξ̄
)

, (51)

Eq. (50) turns into the following form:

y2η′′ + yη′ − η

(

y2 +

(

3

2

)2
)

= 0. (52)

This is a modified Bessel equation and its solution is giv-
en by the expression (see [18] [10])

η (y) = C1I 3
2

(y) + C2K 3
2

(y) , (53)

where Iν (y) andKν (y) are the modified Bessel functions
of the first and second kind, respectively

Iν (y) =

∞
∑

k=0

(

y
2

)ν+2k

k!Γ (ν + k + 1)
,

Kν (y) =
π

2

I−ν (y) − Iν (y)

sinπν
.

(54)
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If ν = 3/2, they can be expressed in terms of elementary
functions:

K 3
2

(y) =

√

π

2y
e−y

(

1 +
1

y

)

,

I 3
2

(y) =

√

2

πy

(

chy − shy

y

)

.

(55)

It is easily seen that the function I 3
2

(y) does not satisfy

the limitation condition Eq. (11) for the electric field in
region “1” at z → +∞. For this reason we put C1 = 0

in Eq. (54) and the potential ϕ̃
(1)
1 (z) has the following

expression:

ϕ̃
(1)
1 (z) = C

(1)
2 e−y(z)

(

1 +
1

y (z)

)

. (56)

In the general case the solutions of the second and the
third equations in Eq. (27) are:

ϕ̃
(1)
2 (z) = C

(2)
1 eq0z + C

(2)
2 e−q0z,

ϕ̃
(1)
3 (z) = C

(3)
1 eq0z + C

(3)
2 e−q0z.

(57)

Taking into account the finiteness of the electric fields

at z → −∞ the constant C
(3)
2 in Eq. (57) must be set

equal to zero, C
(3)
2 ≡ 0. The constants C

(1)
2 , C

(2)
1 , C

(2)
2 ,

C
(3)
1 are obtained from the boundary conditions Eq. (29).

After doing a number of cumbersome but simple calcu-
lations, these constants are expressed through the value
of ξ̃(1). According to Eqs. (18), (26) and (27) this value
represents the Fourier transform of the profile of a spa-
tially periodic surface of liquid dielectric film on a solid
substrate:

ϕ̃
(1)
1 (z) = Eξ̃(1)eq0(ξ̄−z)

×
(

1 +
1

y0 + q0 (z − ξ)

)

G (q0)

ϕ̃
(1)
2 (z) = ξ̃(1)

(

eq(z−ξ̄) − Ceq(ξ̄−z)
)

EF (q) ,

ϕ̃
(1)
3 (z) = ξ̃(1)eq(z−ξ̄)EF (q) (1 − δ) ,

(58)

where for the purpose of simplicity the following nota-
tions are introduced:

F (q0) =
(

1 + y0 +
(

ε−1 − 1
) (

1 + y0 + y2
0

))

× 1

(1 − C) (1 + y0 + y2
0) + y0ε (1 + C) (1 + y0)

,

G (q0) = y0 (1 − C + (ε− 1) (C + 1) y0)

× 1

(1 − C) (1 + y0 + y2
0) + y0ε (1 + C) (1 + y0)

,

C = δe−2q(d+ξ̄), δ ≡ εd − ε

εd + ε
,

y0 ≡ y
(

z = ξ̄
)

= 2q0z0.

(59)

The solution of Eq. (28) for the potentials ϕ̃
(e)(1)
j , j =

1, 2, 3 is given by

ϕ̃
(e)
1 (z) = C

(e1)
2 e−q0z ,

ϕ̃
(e)(1)
2 (z) = C

(e2)
1 eq0z + C

(e2)
2 e−q0z ,

ϕ̃
(e)(1)
3 (z) = C

(e3)
1 eq0z.

(60)

The form of these solutions is chosen to satisfy the con-
dition of the external fields finiteness at z → ±∞. The
constants in Eq. (60) are obtained from the linear ap-
proximation of the corresponding boundary conditions

Eq. (29). So, the potentials ϕ̃
(e)(1)
j can be written as fol-

lows:

ϕ̃
(e)(1)
1 (z) = (ε+ 1)CEξ̃(1)F (e) (q) eq(ξ̄−z),

ϕ̃
(e)(1)
2 (z) = ξ̃(1)EF (e) (q0)

×
(

Ceq0(ξ̄−z) − eq0(z−ξ̄)
)

,

ϕ̃
(e)(1)
3 (z) = (1 − δ) ξ̃(1)EF (e) (q0) e

q0(z−ξ̄),

(61)

where

F (e) (q) =

(

1 − ε−1
)

(ε (1 + C) + 1 − C)
.

Taking into account Eq. (19), we substitute Eqs. (58),
(61) into the last equation in Eq. (28) and obtain the
following expression:

Φ (q0) ξ̃
(1) = 0, (62)

where the function Φ (q0) has the form:

Φ (q0) ≡
E2

8πz0

((

1 + y−0
)

G (q0) − 1

−y0 (1 + C)
(

F (q0) + F (e) (q0)
))

+α
(

κ2 + q20β
)

, β =

(

1 +
κ2ξ̄2

2

)

.

(63)

Eq. (62) has two solutions: ξ̃(1) = 0 and Φ (q0) = 0. The
first one is trivial and means the absence of the spatial-
ly periodic structure on the liquid dielectric surface. In
other words, the liquid dielectric surface stays flat. The
existence of a phase transition to the state with a spatial-
ly periodic surface profile of the liquid dielectric assumes
that ξ̃(1) 6= 0, (see Eqs. (15), (18), (19)). Thus, we must
choose the second solution:

Φ (q0) = 0. (64)

This equation determines only the norm of the vector q0

(see Eq. (59) ) as a function of the physical parameters
of the problem - the temperature Tc, the external clamp-
ing field Ec or the density of electron number nsc (see
Eq. (44)), the density of the dielectric ρ and its surface
tension coefficient α, the dielectric constants of dielec-
tric ε solid substrate εd. By fixing q0 (for example, for
the known values of the lattice period), we obtain a curve
relating the regions of critical parameters Tc and Ec.
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Let us analyze the obtained Eq. (64). Preliminary nu-
meric estimates show that q0 is actually independent on
Tc. Indeed, Eq. (64) contains Tc by means of y0 (see
Eqs. (59), (40)). Further on it is shown that this val-
ue is small in the considered region of temperatures and
clamping fields. This fact means that according to the
above scenario of phase transition, if the clamping field
has a fixed value, the described phase transition occurs at
the temperatures lower than those that satisfy the con-
dition of gas non-degeneracy (see Eq. (49)). Hence, the
results obtained in the present paper are inapplicable for
the description of the temperature phase transition un-
der a fixed value of clamping field.

It should be noted that in the case of small periods
of the described periodic structures in comparison with
the thickness of liquid dielectric film and especially com-
pared with the linear dimensions of the platform where
this effect can be observed:

q0d� 1, (65)

we can put C = 0 (see Eq. (59)). In the region of Ec
and Tc satisfying Eq. (49) (that is the region of charge
gas non-degeneracy), and for low enough values of Tc for
dielectric (He II in this case) to stay liquid, where the
inequality takes place

qz0 � 1, (66)

Eq. (64) tends to

κ2 + q20β =
q0E

2
c

4πα

ε+ 3

ε+ 1
. (67)

It is seen that Eq. (67) does not depend on temperature,
because of the condition Eq. (66). It should be noted
that the approximations (65), (66) are made only to il-
lustrate the obtained results, and the absence of tempera-
ture dependence is not their consequence. The numerical
evaluation shows practically the absence of the temper-
ature dependence of Eq. (64). This fact corresponds to
the made assumption.

Eq. (67) has two roots:

q0 =
E2
c

8παβ

ε+ 3

ε+ 1

×



1 ±

√

1 − β

(

8πακ

E2
c

(

ε+ 1

ε+ 3

))2


 .

(68)

For the described states it is natural to choose the root
with the sign “+”, because it is logical to assume that
with the increasing of the clamping field (but taking in-
to account Eqs. (48), (49)), and hence the number of
particles, the distance between them is reduced. Fig. 3
shows the “+” solution of Eq. (68) by a solid line and the
numeric solution of Eq. (64) by dots.

Fig. 3.

These solutions show that the considered periodic
structures in the system of non degenerate gas of charges
above liquid dielectric surface take place starting from
the value of the clamping field corresponding to ns ≈
1.153 ·109 cm−2 (see Eq. (44)). According to Eq. (27) the
lattice constant is equal to a = 2π/q0 ≈ 0.23 cm at this
point. With further growth of ns the corresponding lat-
tice constant decreases tending to the value of 0.074 cm.
Further growth of ns practically holds the period un-
changed. By reaching the critical value of the clamping
field [Eq. (48)] the considered periodic structure collaps-
es.

Let us also note the following circumstance. The first
harmonic of the Fourier transform of gas density devia-
tion from the equilibrium value provided by the periodic
structure forming on the dielectric surface has the form

ñ(1) ≈ ∂n

∂ϕ̄1
ϕ̃

(1)
1 +

∂n

∂ξ̄
ξ̃(1). (69)

According to Eqs. (36), (58), (65), (66) we have

ñ(1) ≈ −2q0n
(

ξ̄
)

ξ̃(1). (70)

As the deviations of density and surface profile have the
opposite sign, we can conclude that increasing of density
occurs above the deepening of dielectric surface profile
or so-called “dimple”. Correspondingly, the rarefaction
of charges density occurs above the surface hump (see
Fig. 4).

Fig. 4. Schematic structure of the asymmetric phase
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Let us obtain the expression for the order parameter
ξ̃(1) near the critical value of control parameter Ec. It is
obvious from this section that the linear approximation
of the considered perturbation theory is not sufficient for
this purpose. Noticing that

(

ξ̃
)

q

= ξ̃q ,

(

ξ̃2
)

q

=
∑

q′,q′′

ξ̃q′ ξ̃q′′∆ (q′ + q′′ − q) ,
(71)

(

ξ̃3
)

q

=
∑

q′,q′′,q′′′

ξ̃q′ ξ̃q′′ ξ̃q′′′∆ (q′ + q′′ + q′′′ − q) , (72)

and that in the main nonvanishing approximation of the

following expression takes place

(

ξ̃2
)

q0
≈ 2ξ̃(1)ξ̃(2),

(

ξ̃3
)

q0
≈ 3
(

ξ̃(1)
)3

,

(

ξ̃ϕ̃j

)

q0
≈ ϕ̃

(1)
j ξ̃(2) + ξ̃(1)ϕ̃

(2)
j ,

(73)

we write Eq. (5) in the third order of the perturbation

theory for small parameters ξ̃(ρ), ϕ̃j(z,ρ), ϕ̃
(e)
j (z,ρ),

and E − Ec. Taking into account the above note about
the absence of the temperature phase transition in non-
degenerate gas of particles in further calculations we put
T = Tc. According to Eqs. (18), (20), (26), (27), and the
fourth equation in Eq. (28) we obtain the equation for

the Fourier transforms ξ̃q , ϕ̃jq(z) and ϕ̃
(e)
jq (z) at q = q0

(

ne

((

ϕ̄′′
1 ξ̃

(1) +
∂ϕ̃

(1)
1

∂z

)

ξ̃(2) +
∂ϕ̃

(2)
1

∂z
ξ̃(1) +

ϕ̄′′′
1

2

(

ξ̃(1)
)3

+
3

2

∂2ϕ̃
(1)
1

∂z2

(

ξ̃(1)
)2
)

3e2n

2T

(

ϕ̃
(1)
1 + ϕ̄′

1ξ̃
(1)
)

(

ξ̃(1)

(

ϕ̄′′
1 ξ̃

(1) + 2
∂ϕ̃

(1)
1

∂z

)

+
e

T

(

ϕ̃
(1)
1 + ϕ̄′

1ξ̃
(1)
)2
)

+
ne2

T

(

ϕ̃
(1)
1 + ϕ̄′

1ξ̃
(1)
)(

ϕ̃
(2)
1 + ϕ̄′

1ξ̃
(2)
)

+ e
(

ϕ̃
(1)
1 + ϕ̄′

1ξ̃
(1)
) ∂n

∂E
(E −Ec)

)

z=ξ̄

+
ε

4π

(

ϕ̄′
2q

2
0

(

ϕ̃
(1)
2 ξ̃(2) + 4ϕ̃

(2)
2 ξ̃(1)

)

+ q20

(

4ϕ̃
(1)
2 ϕ̃

(2)
2 +

∂ϕ̃
(1)
2

∂z
ξ̃(1)

(

3ϕ̄′
2

2
ξ̃(1) + 8ϕ̃

(1)
2

)

)

+2
∂ϕ̃

(1)
2

∂z

∂ϕ̃
(2)
2

∂z
− q20

(

4ϕ̃
(e)(1)
2 ϕ̃

(e)(2)
2 +

∂ϕ̃
(e)(1)
2

∂z
ξ̃(1)

(

3ϕ̄
(e)
2

′

2
ξ̃(1) + 8ϕ̃

(e)(1)
2

))

−ϕ̄(e)
2

′
q20

(

4ϕ̃
(e)(2)
2 ξ̃(1) + ϕ̃

(e)(1)
2 ξ̃(2)

)

− 2
∂ϕ̃

(e)(1)
2

∂z

∂ϕ̃
(e)(2)
2

∂z

)

z=ξ̄

−κ2αq20 ξ̃
(1)

(

ξ̄ξ̃(2) −
(

ξ̃(1)
)2
(

4 + 3q20κ
−2

(

1 − κ2ξ̄2

4

)))

= 0.

(74)

It is easily seen that obtaining ξ̃(1) requires writing the equations giving the relation between the second harmonics

ϕ̃
(2)
j , ϕ̃

(e)(2)
j , ξ̃(2) and the first harmonic ξ̃(1). That is why we apply the analogous procedure to Eqs. (5), (8) at

q = 2q0:

∂2ϕ̃
(2)
1

∂z2
− 4q20ϕ̃

(2)
1 =

4πe2n

T

(

ϕ̃
(2)
1 +

e

2T

(

ϕ̃
(1)
1

)2
)

,
∂2ϕ̃

(2)
2

∂z2
− 4q20ϕ̃

(2)
2 = 0,

∂2ϕ̃
(2)
3

∂z2
− 4q20ϕ̃

(2)
3 = 0,

(

en

(

ϕ̃
(2)
1 + ϕ̄′

1ξ̃
(2) +

(

ϕ̄′′
1

2
ξ̃(1) +

∂ϕ̃
(1)
1

∂z

)

ξ̃(1) +
e

2T

(

ϕ̃
(1)
1 + ϕ̄′

1ξ̃
(1)
)2
))

z=ξ̄

+
ε

4π

(

ϕ̄′
2

(

∂ϕ̃
(2)
2

∂z
+ q20ϕ̃

(1)
2 ξ̃(1)

)

− ϕ̄
(e)
2

′

(

∂ϕ̃
(e)(2)
2

∂z
+ q20ϕ̃

(e)(1)
2 ξ̃(1)

)

+

(

∂ϕ̃
(1)
2

∂z

)2

−
(

∂ϕ̃
(e)(1)
2

∂z

)2

+ q20

(

(

ϕ̃
(e)(1)
2

)2

−
(

ϕ̃
(1)
2

)2
)





z=ξ̄

+α

(

ξ̃(2)
(

κ2 + 4q2
(

1 +
κ2ξ̄2

2

))

+ ξ̄q2κ2 5

2

(

ξ̃(1)
)2
)

= 0.

(75)
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Taking into account Eq. (58) the general solution of
the first equation in Eq. (75) is obtained by the method
of arbitrary constants variation. Then after simple cal-
culations we obtain

ϕ̃
(2)
1 (z) = C1K 3

2
(2y (z))

+C2I 3
2

(y) (2y (z)) +
E

z0

(

ξ̃(1)
)2

G1 (y (z)) ,
(76)

where the following notation is introduced (see also
Eq. (59)):

G1 (x) = e2(y0−x)
(1 + x)

x2

G(q0)
2

8
. (77)

The second and third equations in Eq. (75) have the
following solutions:

ϕ̃
(2)
2 = B1e

2q0(ξ̄−z) +B2e
2q0(z−ξ̄),

ϕ̃
(2)
3 = C3e

2q0(z−ξ̄) + C4e
2q0(ξ̄−z).

(78)

Taking into account Eqs. (51), (76) and the constraints
(14) we put C2 = 0 and C4 = 0 in the obtained solutions
(76), (78).

To obtain the constants C2, B1, B2, C3 we place
Eqs. (76), (78) into the Fourier transform of Eq. (12)
at q = 2q0. As a result we obtain

ϕ̃
(2)
1 (z) = Ee−2q0(z−ξ̄)

(

1 +
1

2y (z)

)(

G (2q0) ξ̃
(2) + z−1

0

(

ξ̃(1)
)2

G(2)

)

+
E

z0

(

ξ̃(1)
)2

G1 (y (z)) ,

ϕ̃
(2)
2 (z) = E

(

e2q0(z−ξ̄) − δ−1C2e2q0(ξ̄−z)
)

(

F (2q0) ξ̃
(2) + z−1

0

(

ξ̃(1)
)2

F (2)

)

,

ϕ̃
(2)
3 (z) = Ee2q0(z−ξ̄) (1 − δ)

(

F (2q0) ξ̃
(2) + z−1

0

(

ξ̃(1)
)2

F (2)

)

,

(79)

where the following notations are introduced

F (2) =
H2

(

1 + 2y0 + 4y2
0

)

−H12y0 (1 + 2y0)
(

1 − C2
/

δ
)

(1 + 2y0 + 4y2
0) + 2y0ε

(

1 + C2
/

δ
)

(1 + 2y0)
,

G(2) = − 4y2
0

(

H1

(

1 − C2
/

δ
)

+H2ε
(

1 + C2
/

δ
))

(

1 − C2
/

δ
)

(1 + 2y0 + 4y2
0) + 2y0ε

(

1 + C2
/

δ
)

(1 + 2y0)
,

H1 =
1

4y0

(

1 − 2y0G1
′ (y0) − 2y2

0

((

1 + y−1
0

) (

1 + y−2
0

)

G (q0) − ε (1 − C)F (q0)
))

,

H2 =
1

4

(

1 + 4G1 (y0) − 2y0
((

1 + y−1
0 + y−2

0

)

G (q0) + (1 + C)F (q0)
))

.

(80)

To obtain the values of ϕ̃
(e)(2)
j we write the set of equa-

tions (28) and boundary conditions (30) for the Fourier
transforms of the external field potential at q = 2q0 and

taking into account that set (75) contains only ϕ̃
(e)(2)
2

from all of the external potentials ϕ̃
(e)(2)
j , we present on-

ly the solution for this value

ϕ̃
(e)(2)
2 = E

(

C2

δ
e2q(ξ̄−z) − e2q(z−ξ̄)

)

×
(

F (e) (2q) ξ̃(2) + F
(e)
2

(

ξ̃(1)
)2

z−1
0

)

,

F
(e)
2 = F (e) (q)F (e) (2q)

y0
2

1 + C + ε (1 − C)

1 − ε−1
.

(81)

Substituting Eqs. (58), (61), (79), (81) into the last
equation from Eq. (75) and making the approximations

Eqs. (65), (66), we have:

ξ̃(2) =
γ

z0

(

ξ̃(1)
)2

,

γ =
ξ̄

8z0
(

1 + 2q2
(

2κ−2 + ξ̄2
)) .

(82)

Eq. (82) shows that all the Fourier transforms of the sec-

ond harmonics ϕ̃
(2)
j , ϕ̃

(e)(2)
j and ξ̃(2) are proportional to

the squared Fourier transform of the first harmonic ξ̃(1),
which is the order parameter of the considered problem.
To obtain its dependence on the control parameters of
the phase transition - temperature T and the external
clamping field E we substitute Eqs. (58), (61), (79), (81)
and (82) into Eq. (74). After some lengthy calculations
the following expression is obtained

ξ̃(1)Ψ
(

ξ̃(1), T, E
)

= 0, (83)

where after taking into account approximations
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Eqs. (65), (66) the following notations are introduced

Ψ
(

ξ̃(1), T, E
)

= Ecey0
∂nξ̄
∂E

(E −Ec)

−E2
c

(

ξ̃(1)
)2
(

32πz3
0c

)−1
U (Tc, Ec, q0) ,

U (Tc, Ec, q0) = (1 − 2γ)

+y2
0c

(

γ +
z0c
∣

∣ξ̄
∣

∣

(

4 + 3q20

(

1

κ2
− ξ̄2

4

))

)

.

(84)

Eq. (83) has two solutions. The first solution ξ̃(1) = 0 is
trivial, because in this case there is no phase transition.
In the case of non-zero deformation of liquid dielectric
surface profile, formed as a result of the phase transi-
tion, we have the following solution of Eq. (83)

Ψ
(

ξ̃(1), T, E
)

= 0 (85)

giving the relation between the first harmonic of the
Fourier transform of the dielectric surface profile per-
turbations and the parameter of the phase transition E.
Taking into account Eq. (84), (40), (41) we can rewrite
Eq. (85) in a simpler form

ξ̃(1) = 4z0c

(

q0z0c
U (Tc, Ec, q0)

)1/2√
E

Ec
− 1. (86)

The last expression determines the periodic structure
of liquid dielectric near Ec and it is obtained assuming
Eqs. (65), (66) taking place, or

d−1 � q0 � z−1
0 . (87)

Eqs. (86) and (82) also contain the parameters κ and
ξ̄−1, having the dimension of inverse length. In order to
estimate them, we use Eqs. (7), (46) and the concrete
values of clamping field E and temperature T .

Let us consider the macroscopic case, when the peri-
ods of arising periodic structures a are comparable with
the thickness d of liquid dielectric (see e.g. [11])

d > a. (88)

In this case, the formulas obtained in the approximation
Eq. (65) are still applicable, because the condition of
Eq. (89) allows putting C = 0 with high accuracy. Con-
sidering the liquid dielectric to be helium having thick-
ness d = 1 cm and external clamping field capable to
hold up to ns = 1.4 · 109 cm−2 of electrons above the he-
lium surface unit, we have the following relation between
these parameters

d−1 < q0, κ, ξ̄
−1 � z−1

0 . (89)

The value of z0 is calculated for the temperature re-
gion, where the non-degeneracy condition Eq. (49) is sat-
isfied. Using the Eq. (89) we simplify Eq. (86)

ξ̃(1) = χ

√

E

Ec
− 1,

χ = 8z2
0c

(

q0
∣

∣ξ̄
∣

∣

(

1 + 2q20

(

2

κ2
+ ξ̄2

))

)1/2

.

(90)

In the framework of the developed perturbation theory
Eqs. (79), (82), (86), (90) allow obtaining the expressions
for the amplitudes of the first and the second harmon-
ics of all electrostatic potentials of the system. However,
we do not give the expressions for the second harmonics
because of their bulky form and low informativity in the
context of this paper tasks.

VI. CONCLUSION

Thus, in this paper we propose a theory of equilib-
rium states of a system of identical charges above the
ideal liquid dielectric surface in external constant clamp-
ing electric field. The system is assumed quasi-neutral,
that is the number of charges generating their own elec-
tric field above the dielectric surface is exactly as large as
it is necessary to compensate an external electric field far
from the surface. In other words, the number of trapped
charges above the liquid dielectric surface depends on-
ly on the external attractive field. It is shown that in
this case, that the compensatory electric field gener-
ated by charges is equivalent to the neutralizing field
produced inside a flat capacitor produced by oppositely
charged flat infinite plates having a surface charge den-
sity σ = ens (ns is the number of charges above the
area unit of the dielectric surface). In terms of the built
theory we obtain the system of self-consistent equations
for the parameters describing the system — the poten-
tial of the electrostatic field, the distribution function of
charges above the dielectric surface and the surface pro-
file of the dielectric. The proposed theory is applied for
the description of phase transitions in such the system to
the states with spatially-periodic structures in the case
when the gas of charges is far from degeneracy state. By
solving self-consistent equations near the transition point
we obtain the equation of the critical curve separating
the symmetric and asymmetric phases. In this case this
the equation giving the relation between the tempera-
ture of the system and the electrostatic clamping field.
For the particular cases we obtain the equations for the
reciprocal lattice vectors of spatially periodic structures
as a function of temperature and external clamping field.
In some special cases we define the reciprocal lattice vec-
tors of the spatially-periodic structures as functions of
only the external clamping field due to their weak de-
pendence on temperature.

It should be reminded again that in this paper we con-
sider the system of charges not localized in any plane,
as do the authors of, e.g., [5, 8–10], where the elec-
tron crystals are considered as a two-dimensional trian-
gular lattice. Naturally, except for the works consider-
ing the dimple crystals. As in this paper we consider
a three-dimensional system of charges characterized by
the distribution function depending on the coordinates
of the half-space above liquid dielectric surface, so the
two-dimensional crystal structures have automatically no
possibility to occur. In this sense the spatially periodic
structures described in the previous sections character-
izing the surface profile as well as the charge and field
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distribution are more similar to the characteristics of the
structures in systems with dimple crystals researched in
the experiment. In this connection there arises the ques-
tion: are the experimentally observed spatially periodic
structures two-dimensional in fact?

The answer to this question may be as follows. In this
paper we describe the phase transition in the studied sys-
tem to a state with a spatially periodic structures near
the phase curve in the small order parameter of the per-
turbation theory. The equation for the reciprocal lattice
vector is obtained from the linear approximation in the
small order parameter ξ̃ (q0), see Eqs. (10), (11), (19).
According to Eqs. (58), (61), this value determines the
other amplitudes of the described periodic structure. Ac-
cording to Eq. (90) the value of ξ̃ (q0) tends to zero pro-
portionally to the square root

√
E −Ec when the values

of clamping field are close to Ec. In other words, if the
lattice constant of the periodic structures is large, then
the inhomogeneities of the surface profile of liquid dielec-
tric can be “invisible”. Perhaps, that is why the spatially
periodic structures observed in the experiments are as-
sociated with the formation of two-dimensional crystals
formed by electrons above the liquid helium surface.

In conclusion, we consider the agreement between of
the results obtained in this paper and the available ex-
perimental data. At first glance, the experimental data
in [5] is obtained under the conditions adequate for our
reviews. This paper describes the experiment of a phase
transition from the electron system to an electronic two-
dimensional crystal on the surface of liquid helium under
the specific values of the control parameters - tempera-
ture and clamping electric field. The measurements are
made in the case when the field produced by electrons
is compensated by the external clamping field of the ca-
pacitor in accordance with the ratio of Eq. (44) type.

So, the field on the upper capacitor plate is zero (the
bottom plate is immersed below the helium surface at
d = 0.1 cm depth). Under such conditions the electron
gas is considered to obey the Boltzmann distribution.
This assumption is made by the authors basing on the
estimates of the Fermi energy of two-dimensional elec-
tron gas, according to the well-known expression:

εF = πm−1
~

2ns ≈ 0.03 K.

The Fermi energy is one order less than the temperature
of the system in the experiment, T = 0.42 K. This fact
seems to allow a correct comparison between the theoret-
ical and experimental results. However, these results are
substantially different. Moreover, under the conditions
of the experiments [5] inequality (49) breaks. In this pa-
per it is formulated as evidence of non-degenerate of the
gas of charges above the dielectric surface. But this fact
contradicts the above condition of paper [5].

However, such a disagreement of the estimates is, ap-
parently, caused by the way of considering the system of
charges above the liquid dielectric surface — as a two-
dimensional or as a three-dimensional one. In fact, in
the three-dimensional case, the criterion of electron gas
degeneracy can be the value of ratio between the tem-
perature of the system and the Fermi energy. Howev-
er, in the three-dimensional case the calculation of the
Fermi energy is a more complex problem than in the
two-dimensional case. It requires solving the problem on
obtaining the distribution of charges and fields in the
system of a completely degenerate electron gas. We are
working on this problem now, and in some cases it can be
solved even analytically. The non-degeneracy condition
Eq. (49) is obtained in the high temperature approach,
and therefore it can be obtained in terms of the used ap-
proximations and serves as a criterion of their validity.
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Запропоновано мiкроскопiчну теорiю квазiнейтральних рiвноважних станiв зарядiв над поверхнею рiд-

кого дiелектрика на основi уявлень про систему багатьох тотожних частинок. В основу пiдходу покладено

варiацiйний принцип, модифiкований для розглянутих систем, i модель Томаса–Фермi. У межах розвиненої

теорiї виписано рiвняння самоузгодження, що зв’язують параметри опису такої системи — потенцiал ста-

тичного електричного поля, функцiю розподiлу зарядiв i профiль поверхнi рiдкого дiелектрика. Рiвняння

використано для дослiдження фазових перетворень системи до просторово-перiодичних станiв. Визначено

параметри фазового перетворення системи до просторово-перiодичних станiв типу лункових кристалiв.
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