ВПЛИВ ГІДРОСТАТИЧНОГО ТИСКУ p_h І НАПРУГИ ЗСУВУ σ_5 НА ФАЗОВІ ПЕРЕХОДИ ТА ТЕРМОДИНАМІЧНІ ХАРАКТЕРИСТИКИ СЕЃНЕТОЕЛЕКТРИКА RbHSO₄

I. Р. Зачек¹, Р. Р. Левицький², А. С. Вдович²

¹ Національний університет "Львівська політехніка", вул. С. Бандери, 12, Львів, 79013, Україна ² Інститут фізики конденсованих систем НАН України, вул. Свенціцького, 1, Львів, 79011, Україна

(Отримано 06 травня 2015 р.; в остаточному вигляді
 -03 липня 2015 р.)

Використано модифіковану чотирипідґраткову модель RbHSO₄ врахуванням п'єзоелектричного зв'язку з деформаціями ε_i , ε_j . У наближенні молекулярного поля розраховано компоненти вектора поляризації та тензора статичної діелектричної проникності механічно затиснутого й вільного кристалів, їх п'єзоелектричні характеристики. Досліджено вплив гідростатичного тиску та зсувної напруги на фазовий перехід і фізичні характеристики кристала. Отримано добрий кількісний опис відповідних експериментальних даних для цих кристалів.

Ключові слова: сеґнетоелектрики, температура переходу, діелектрична проникність, п'єзомодулі, гідростатичний тиск, напруга зсуву.

PACS number(s): 77.84.-s, 64.60.Cn, 77.22.-d, 77.80.-e, 77.80.Bh, 77.65.Bn

вступ

Дослідження ефектів, що виникають під дією зовнішніх тисків, є однією з актуальних задач фізики сеґнетоактивних матеріалів. Вивчення поведінки сеґнетоелектриків під дією зовнішніх тисків дає змогу глибше зрозуміти механізми фазових переходів (ФП) в цих матеріалах.

Узгоджений опис впливу зовнішнього гідростатичного тиску на фазовий перехід і фізичні характеристики багатьох сеґнетоактивних кристалів сім'ї КH₂PO₄ проведено в роботах [1,2], квазіодновимірного кристала CsH₂PO₄ — у праці [3], а моноклінного RbH₂PO₄ — у [4].

На сьогодні запропоновано як феноменологічну теорію [5], так і статистичні [6–8] моделі фазового переходу в кристалах RbHSO₄ (RHS), аналогічні моделі Міцуї, яка побудована для сеґнетової солі, що в наближенні молекулярного поля добре описують діелектричні характеристики [9–11].

У високотемпературній фазі структура RHS є моноклінною й описується просторовою групою симетрії $P2_1/c - C_{2h}^5$. Нижче від точки переходу зберігається моноклінна симетрія, але просторовою групою є $Pc - C_s^2$. В обох фазах елементарна комірка складається з восьми молекулярних одиниць: Z = 8.

У ций статті на основі запропонованої моделі деформованого кристала RHS вивчено вплив гідростатичного тиску та зсувної напруги на температуру фазового переходу, термодинамічні та статичні діелектричні характеристики кристала.

І. 4-ПІДҐРАТКОВА МОДЕЛЬ: ГАМІЛЬТОНІАН

Для опису фазових переходів у RHS, її термодинамічних і динамічних характеристик використаймо "тривимірну" модель [12], узявши до уваги наявність чотирьох структурних елементів (сульфатних комплексів $(SO_4)_{11}$, $(SO_4)_{12}$, $(SO_4)_{13}$, $(SO_4)_{14}$ у примітивній комірці, які рухаються в подвійних асиметричних ямах. Припишімо їм дипольні моменти $\mathbf{d}_{qf}(f = 1, \ldots, 4)$. У парафазі сума цих моментів дорівнює нулеві. Зміни $\Delta \mathbf{d}_{qf}$ у таких дипольних моментах відповідальні за появу спонтанної поляризації в сеґнетоелектричному стані. Вектори \mathbf{d}_{qf} орієнтовані під певними кутами до кристалографічних осей і мають поздовжню й поперечну компоненти стосовно до -осі (рис.1).

Рис. 1. Орієнтації векторів \mathbf{d}_{qf} у примітивній комірці R_s у високосиметричній фазі (парафаза). Абсолютні значення квазіспінів рівні у всіх підґратках.

Псевдоспінові змінні $\frac{\sigma_{q1}}{2}, \ldots, \frac{\sigma_{q4}}{2}$ описують зміни, пов'язані з перевпорядкуванням дипольних моментів структурних елементів: $\mathbf{d}_{qf} = \mu_f \frac{\sigma_{qf}}{2}$. Середні значення $\langle \frac{\sigma}{2} \rangle = \frac{1}{2}(n_a - n_6)$ пов'язані з різницями заселеностей положень у двомінімумному представленні векторів \mathbf{d}_{qf} , орієнтації яких у параелектричній фазі зображені на рис. 1.

Запишімо у квазіспіновому представленні гамільтоніан моделі, який є узагальненням запропонованого у праці [12] гамільтоніана на предмет урахування п'єзоелектричного зв'язку й затравної частини, яка відповідає ґратці, а також узагальненням гамільтоніана праці [8] на "тривимірну" модель:

$$\hat{H} = NU_{\text{seed}}
- \frac{1}{2} \sum_{qq'} \sum_{f=1}^{4} J_{ff}(qq') \frac{\sigma_{qf}}{2} \frac{\sigma_{q'f}}{2}
- \frac{1}{2} \sum_{qq'} \sum_{f \neq f'} K_{ff'}(qq') \frac{\sigma_{qf}}{2} \frac{\sigma_{q'f'}}{2}
- \Delta \sum_{q} \left(-\frac{\sigma_{q1}}{2} - \frac{\sigma_{q2}}{2} + \frac{\sigma_{q3}}{2} + \frac{\sigma_{q4}}{2} \right)$$

$$- \mu_{1} E_{1} \sum_{q} \left(\frac{\sigma_{q1}}{2} - \frac{\sigma_{q2}}{2} + \frac{\sigma_{q3}}{2} - \frac{\sigma_{q4}}{2} \right)$$
(2.1)

$$-\mu_{2}E_{2}\sum_{q}^{1}\left(-\frac{\sigma_{q1}}{2}+\frac{\sigma_{q2}}{2}+\frac{\sigma_{q3}}{2}-\frac{\sigma_{q4}}{2}\right)$$
$$-\mu_{3}E_{3}\sum_{q}\left(\frac{\sigma_{q1}}{2}+\frac{\sigma_{q2}}{2}+\frac{\sigma_{q3}}{2}+\frac{\sigma_{q4}}{2}\right),$$

де N — кількість примітивних комірок, v — об'єм примітивної комірки. У (2.1) $J_{ff'}(qq')$ і $K_{ff'}(qq')$ — потенціали взаємодії в однакових і різних ланцюжках відповідно; Δ — параметр асиметрії потенціалу, в якому рухається псевдоспін; μ_i — ефективні дипольні моменти в розрахунку на один псевдоспін; σ_{qf} — z-компонента оператора псевдоспіну, який перебуває в q-ій комірці на f-ому зв'язку (f = 1, 2, 3, 4).

 $U_{1{\rm seed}}$ — затравна енергія, яка включає в себе пружну, п'єзоелектричну й діелектричну частини, що виражаються через електричні поля $E_i~(i=1,2,3)$ та деформації ε_i та $\varepsilon_j~(j=i+3).~c_{jj}^{E0}(T),~e_{ij}^0,~\chi_{ii}^{\varepsilon 0}$ — т.зв. затравні пружні сталі, коефіцієнти п'єзоелектричної напруги та діелектричні сприйнятливості:

$$U_{\text{seed}} = v \left(\frac{1}{2} \sum_{i,i'=1}^{3} c_{ii'}^{E0}(T) \varepsilon_i \varepsilon_{i'} + \frac{1}{2} \sum_{j=4}^{6} c_{jj}^{E0}(T) \varepsilon_j^2 - \sum_{i=1}^{3} e_{3i}^0 \varepsilon_i E_3 - e_{35}^0 \varepsilon_5 E_3 - \frac{1}{2} \chi_{11}^{\varepsilon_0} E_1^2 - \frac{1}{2} \chi_{22}^{\varepsilon_0} E_2^2 - \frac{1}{2} \chi_{33}^{\varepsilon_0} E_3^2 \right).$$
(2.2)

Затравні пружні сталі $c_{jj}^{E0}(T)$ беремо лінійно спадними від температури з коефіцієнтами $k_{ii'}, k_{jj}$:

$$c_{ii'}^{E0}(T) = c_{ii'}^{E0} - k_{ii'}(T - T_C);$$

$$c_{jj}^{E0}(T) = c_{jj}^{E0} - k_{jj}(T - T_C).$$
(2.3)

Про коефіцієнт k_{jj} можна сказати, що він феноменологічно враховує високотемпературний ангармонізм ґратки.

Здійснімо у (2.1) тотожне перетворення

$$\sigma_{qf} = \eta_f + (\sigma_{qf} - \eta_f), \quad (f = 1, 2, 3, 4), \tag{2.4}$$

знехтуймо квадратичними флуктуаціями та розкладімо фур'є-образи констант взаємодій за $\mathbf{q} = 0$ $J = J_{ff} = \sum_{q'} J_{ff}(qq'), K_{ff'} = \sum_{q'} K_{ff'}(qq')$ та Δ у ряд за деформаціями $\varepsilon_i, \varepsilon_j$, обмежуючись лінійними членами розкладу:

$$J = J^{0} + \frac{\partial J}{\partial \varepsilon_{i}} \varepsilon_{i} = J^{0} + \sum_{i=1}^{3} \psi_{1i} \varepsilon_{i} + \sum_{j=4}^{6} \psi_{1j} \varepsilon_{j}, \quad (2.5)$$

$$K_{12} = K_{12}^{0} + \sum_{i=1}^{3} \psi_{2i} \varepsilon_{i} + \sum_{j=4}^{6} \psi_{2j} \varepsilon_{j},$$

$$K_{13} = K_{13}^{0} + \sum_{i=1}^{3} \psi_{3i} \varepsilon_{i} + \sum_{j=4}^{6} \psi_{3j} \varepsilon_{j}, \quad (2.6)$$

$$K_{14} = K_{14}^{0} + \sum_{i=1}^{3} \psi_{4i} \varepsilon_{i} + \sum_{j=4}^{6} \psi_{4j} \varepsilon_{j},$$

$$\Delta = \Delta^0 + \sum_{i=1}^{3} \psi_{5i} \varepsilon_i + \sum_{j=4}^{6} \psi_{5j} \varepsilon_j.$$
(2.7)

У результаті в наближенні молекулярного поля вихідний гамільтоніан (2.1) має вигляд:

$$\hat{H} = NH^{(0)} + \hat{H}_s, \qquad (2.8)$$

де

 $\langle 0 \rangle$

$$H^{(0)} = vU_{\text{seed}} + \frac{1}{8}J^{0}(\eta_{1}^{2} + \eta_{2}^{2} + \eta_{3}^{2} + \eta_{4}^{2}) + \frac{1}{4}K^{0}_{12}(\eta_{1}\eta_{2} + \eta_{3}\eta_{4}) + \frac{1}{4}K^{0}_{13}(\eta_{1}\eta_{3} + \eta_{2}\eta_{4}) + \frac{1}{4}K^{0}_{14}(\eta_{1}\eta_{4} + \eta_{2}\eta_{3})$$
(2.9)

$$+\frac{1}{8}\left(\sum_{i=1}^{3}\psi_{1i}\varepsilon_{i}+\sum_{j=4}^{6}\psi_{1j}\varepsilon_{j}\right)(\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}+\eta_{4}^{2}) \qquad (2.10)$$

$$8 \left(\sum_{i=1}^{3} \sum_{j=4}^{2} \psi_{i} \varepsilon_{j} \right) (\eta_{1} \eta_{2} + \eta_{3} \eta_{4})$$

$$+ \frac{1}{4} \left(\sum_{i=1}^{3} \psi_{2i} \varepsilon_{i} + \sum_{j=4}^{6} \psi_{2j} \varepsilon_{j} \right) (\eta_{1} \eta_{2} + \eta_{3} \eta_{4})$$

$$+ \frac{1}{4} \left(\sum_{i=1}^{3} \psi_{3i} \varepsilon_{i} + \sum_{j=4}^{6} \psi_{3j} \varepsilon_{j} \right) (\eta_{1} \eta_{3} + \eta_{2} \eta_{4})$$

$$+ \frac{1}{4} \left(\sum_{i=1}^{3} \psi_{4i} \varepsilon_{i} + \sum_{j=4}^{6} \psi_{4j} \varepsilon_{j} \right) (\eta_{1} \eta_{4} + \eta_{2} \eta_{3}),$$

$$(2.11)$$

$$\hat{H}_{s} = -\sum_{q} \left(\mathcal{H}_{1} \frac{\sigma_{q1}}{2} + \mathcal{H}_{2} \frac{\sigma_{q2}}{2} + \mathcal{H}_{3} \frac{\sigma_{q3}}{2} + \mathcal{H}_{4} \frac{\sigma_{q4}}{2} \right). \quad (2.12)$$

Перейдімо тепер до нових змінних

$$\xi_{1} = \frac{1}{4} \left(-\operatorname{th} \frac{\beta}{2} \mathcal{H}_{1} - \operatorname{th} \frac{\beta}{2} \mathcal{H}_{2} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{3} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{4} \right),$$

$$\xi_{2} = \frac{1}{4} \left(-\operatorname{th} \frac{\beta}{2} \mathcal{H}_{1} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{2} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{3} - \operatorname{th} \frac{\beta}{2} \mathcal{H}_{4} \right),$$

$$\xi_{3} = \frac{1}{4} \left(\operatorname{th} \frac{\beta}{2} \mathcal{H}_{1} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{2} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{3} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{4} \right),$$

$$\zeta = \frac{1}{4} \left(\operatorname{th} \frac{\beta}{2} \mathcal{H}_{1} - \operatorname{th} \frac{\beta}{2} \mathcal{H}_{2} + \operatorname{th} \frac{\beta}{2} \mathcal{H}_{3} - \operatorname{th} \frac{\beta}{2} \mathcal{H}_{4} \right), \quad (2.13)$$

де самоузгоджені поля \mathcal{H}_f даються виразами:

$$\mathcal{H}_{1} = (-\gamma_{1} - \gamma_{2} + \gamma_{3} + \delta),
 \mathcal{H}_{2} = (-\gamma_{1} + \gamma_{2} + \gamma_{3} - \delta),
 \mathcal{H}_{3} = (\gamma_{1} + \gamma_{2} + \gamma_{3} + \delta),
 \mathcal{H}_{4} = (\gamma_{1} - \gamma_{2} + \gamma_{3} - \delta),$$
(2.14)

 \mathbf{a}

$$\gamma_{1} = \left(\frac{J_{1}}{2}\xi_{1} + \mu_{1}E_{1}\right), \quad \gamma_{2} = \left(\frac{J_{2}}{2}\xi_{2} + \mu_{2}E_{2}\right),$$
$$\gamma_{3} = \left(\frac{J_{3}}{2}\xi_{3} + \mu_{3}E_{3}\right), \quad \delta = \left(\frac{J_{4}}{2}\zeta + \Delta\right). \quad (2.15)$$

Ураховуючи розклади (2.3), отримуємо:

$$J_{1,2} = J_{1,2}^{0} + \sum_{i=1}^{3} \bar{\psi}_{1,2i} \varepsilon_i + \sum_{j=4}^{6} \bar{\psi}_{1,2j} \varepsilon_j, \qquad (2.16)$$
$$J_{3,4} = J_{3,4}^{0} + \sum_{i=1}^{3} \bar{\psi}_{3,4i} \varepsilon_i + \sum_{j=4}^{6} \bar{\psi}_{3,4j} \varepsilon_j,$$
$$\Delta = \Delta^{0} + \sum_{i=1}^{3} \psi_{5i} \varepsilon_i + \sum_{j=4}^{6} \psi_{5j} \varepsilon_j,$$

де

$$J_{1,2}^{0} = \mp J^{0} - K_{12}^{0} \pm K_{13}^{0} + K_{14}^{0},$$

$$J_{3,4}^{0} = J^{0} \pm K_{12}^{0} + K_{13}^{0} \pm K_{14}^{0},$$

$$\bar{\psi}_{1,2i,j} = \mp \psi_{1i,j} - \psi_{2i,j} \pm \psi_{3i,j} + \psi_{4i,j},$$

$$\bar{\psi}_{3,4i,j} = \psi_{1i,j} \pm \psi_{2i,j} + \psi_{3i,j} \pm \psi_{4i,j},$$

$$\bar{\psi}_{45} = \psi_{15} - \psi_{25} + \psi_{35} - \psi_{45}.$$
(2.17)

Параметри ξ_1 , ξ_2 і ξ_3 описують дипольне впорядкування псевдоспінів уздовж a-, b і c-осей відповідно, а параметр σ відповідальний за впорядкування псевдоспінів у параелектричній фазі.

У параелектричних фазах за відсутності зовнішніх електричних полів та механічних напруг середні значення псевдоспінів $\eta_1 = -\eta_2 = \eta_3 = -\eta_4 = \eta$ і, відповідно, $\xi_{1p} = \xi_{2p} = \xi_{3p} = 0$, а

$$\zeta_p = \operatorname{th} \frac{\beta}{2} \left(\frac{J_4}{2} \zeta_p + \Delta \right). \tag{2.18}$$

У сеґнетоелектричній фазі при нульових полях $E_i=0$ та напругах $\sigma_j=0$
 $\eta_1=\eta_3=\eta_{13},$ $\eta_2=\eta_4=\eta_{24}.$ У результаті
 $\xi_{1s}=0,$ $\xi_{2s}=0$ і

$$\xi_{3s} = \frac{1}{2} \left[\ln \frac{\beta}{2} \left(\frac{J_3}{2} \xi_{1s} + \frac{J_4}{2} \zeta_s + \Delta \right) + \tanh \frac{\beta}{2} \left(\frac{J_3}{2} \xi_{1s} - \frac{J_4}{2} \zeta_s - \Delta \right) \right],$$

$$\zeta_s = \frac{1}{2} \left[\tanh \frac{\beta}{2} \left(\frac{J_3}{2} \xi_{1s} + \frac{J_4}{2} \zeta_s + \Delta \right) - \tanh \frac{\beta}{2} \left(\frac{J_3}{2} \xi_{1s} - \frac{J_4}{2} \zeta_s - \Delta \right) \right].$$
(2.19)

ſ

II. ТЕРМОДИНАМІЧНІ ХАРАКТЕРИСТИКИ RHS

Для отримання діелектричних, п'єзоелектричних і пружних характеристик RHS використаймо електричний термодинамічний потенціал у розрахунку на одну комірку, одержаний у наближенні молекулярного поля:

$$g = \frac{G}{N} = vU_{\text{seed}} + vp\sum_{i=1}^{3}\varepsilon_{i} - v\sigma_{5}\varepsilon_{5}$$
$$-4\frac{1}{\beta}\ln 2 - \frac{1}{\beta}\sum_{f=1}^{4}\ln\cosh\frac{\beta}{2}\mathcal{H}_{f}$$
$$+\frac{1}{2}\left(J_{1}^{0} + \sum_{i=1}^{3}\bar{\psi_{1i}}\varepsilon_{i} + \sum_{j=4}^{6}\bar{\psi_{1j}}\varepsilon_{j}\right)\xi_{1}^{\gamma^{2}}$$
(3.1)

$$+\frac{1}{2}\left(J_{2}^{0}+\sum_{i=1}^{3}\bar{\psi}_{2i}\varepsilon_{i}+\sum_{j=4}^{6}\bar{\psi}_{2j}\varepsilon_{j}\right)\xi_{2}^{\gamma^{2}}$$
(3.2)

$$+\frac{1}{2} \Big(J_3^0 + \sum_{i=1}^3 \bar{\psi}_{3i} \varepsilon_i + \sum_{j=4}^6 \bar{\psi}_{3j} \varepsilon_j \Big) \xi_3^{\gamma 2}$$

$$+\frac{1}{2} \Big(J_4^0 + \sum_{i=1}^3 \bar{\psi}_{4i} \varepsilon_i + \sum_{j=4}^6 \bar{\psi}_{4j} \varepsilon_j \Big) \zeta^{\gamma 2}.$$
(3.3)

З умов термодинамічної рівноваги

$$\frac{1}{v} \left(\frac{\partial g}{\partial \varepsilon_i}\right)_{E_i} = 0, \quad \frac{1}{v} \left(\frac{\partial g}{\partial \varepsilon_j}\right)_{E_i,\sigma_i} = 0, \quad \frac{1}{v} \left(\frac{\partial g}{\partial E_i}\right) = -P_i$$

3703-3

отримуємо, що

$$\begin{split} -p &= c_{1i}^{E0}(T)\varepsilon_{1} + c_{i2}^{E0}(T)\varepsilon_{2} + c_{i3}^{E0}(T)\varepsilon_{3} - e_{3i}^{0}E_{3} \\ &- \frac{\psi_{1i}}{2v}\xi_{1}^{2} - \frac{\psi_{2i}}{2v}\xi_{2}^{2} - \frac{\psi_{3i}}{2v}\xi_{3}^{2} - \frac{\psi_{4i}}{2v}\zeta^{2} - \frac{2\psi_{5i}}{v}\zeta, \\ 0 &= c_{44}^{E0}(T)\varepsilon_{4} \\ &- \frac{\psi_{14}}{2v}\xi_{1}^{2} - \frac{\psi_{24}}{2v}\xi_{2}^{2} - \frac{\psi_{34}}{2v}\xi_{3}^{2} - \frac{\psi_{44}}{2v}\zeta^{2} - \frac{2\psi_{54}}{v}\zeta, \\ \sigma_{5} &= c_{55}^{E0}(T)\varepsilon_{5} - e_{35}^{0}E_{3} \\ &- \frac{\psi_{15}}{2v}\xi_{1}^{2} - \frac{\psi_{25}}{2v}\xi_{2}^{2} - \frac{\psi_{35}}{2v}\xi_{3}^{2} - \frac{\psi_{45}}{2v}\zeta^{2} - \frac{2\psi_{55}}{v}\zeta, \\ 0 &= c_{66}^{E0}(T)\varepsilon_{6} \\ &- \frac{\psi_{16}}{2v}\xi_{1}^{2} - \frac{\psi_{26}}{2v}\xi_{2}^{2} - \frac{\psi_{36}}{2v}\xi_{3}^{2} - \frac{\psi_{46}}{2v}\zeta^{2} - \frac{2\psi_{56}}{v}\zeta, \end{split}$$

$$P_1 = e_{11}^0 \varepsilon_1 + e_{12}^0 \varepsilon_2 + e_{13}^0 \varepsilon_3 + e_{15}^0 \varepsilon_5 + \chi_{11}^{\varepsilon_0} E_1 + \frac{2\mu_1}{v} \xi_1,$$

$$P_2 = e_{24}^0 \varepsilon_4 + e_{26}^0 \varepsilon_6 + \chi_{22}^{\varepsilon_0} E_2 + \frac{2\mu_2}{v} \xi_2, \qquad (3.5)$$

$$P_3 = e_{31}^0 \varepsilon_1 + e_{32}^0 \varepsilon_2 + e_{33}^0 \varepsilon_3 + e_{35}^0 \varepsilon_5 + \chi_{33}^{\varepsilon_0} E_3 + \frac{2\mu_3}{v} \xi_3.$$

У сеґнетоелектричній фазі статичні ізотермічні діелектричні сприйнятливості RHS уздовж осей для механічно затиснутого кристала мають такий вигляд:

$$\chi_{iis}^{T\varepsilon}(0) = \lim_{E_i \to 0} \left(\frac{\partial P_i}{\partial E_i}\right)_{\varepsilon_j} = \chi_{ii}^{\varepsilon_0} + \frac{\mu_i^2}{v}\beta F_{1is}(0). \quad (3.6)$$

Тут використано такі позначення:

$$F_{11s}(0) = \frac{\rho_{31} - (\rho_{31}^2 - \rho_{32}^2)\frac{\beta J_2}{4}}{1 - \rho_{31} \left(\frac{\beta J_1}{4} + \frac{\beta J_2}{4}\right) + (\rho_{31}^2 - \rho_{32}^2)\frac{\beta J_1}{4}\frac{\beta J_2}{4}}$$
$$F_{12s}(0) = \frac{\rho_{31} - (\rho_{31}^2 - \rho_{32}^2)\frac{\beta J_1}{4}}{1 - \rho_{31} \left(\frac{\beta J_1}{4} + \frac{\beta J_2}{4}\right) + (\rho_{31}^2 - \rho_{32}^2)\frac{\beta J_1}{4}\frac{\beta J_2}{4}}$$
$$\rho_{31} - (\rho_{21}^2 - \rho_{22}^2)\frac{\beta J_4}{4}}$$

$$F_{13s}(0) = \frac{\rho_{31} - (\rho_{31} - \rho_{32})\frac{1}{4}}{1 - \rho_{31}\left(\frac{\beta J_3}{4} + \frac{\beta J_4}{4}\right) + (\rho_{31}^2 - \rho_{32}^2)\frac{\beta J_3}{4}\frac{\beta J_4}{4}}$$

a

$$\rho_{31} = 1 - \xi_{3s}^2 - \zeta_s^2, \quad \rho_{32} = 2\xi_{3s}\zeta_s.$$

У параелектричній фазі

$$\chi_{iip}^{T\varepsilon}(0) = \chi_{ii}^{\varepsilon 0} + \frac{\mu_i^2}{v} \beta F_{1ip}(0), \quad (i = 1, 2, 3)$$
(3.7)

де

$$F_{1ip}(0) = \frac{1 - \zeta_p^2}{1 - (1 - \zeta_p^2)\frac{\beta J_i}{4}}.$$

На основі співвідношень (3.3) отримуємо вирази для ізотермічних коефіцієнтів п'єзоелектричної напруги e_{ij} RHS:

$$e_{3i}^{T} = e_{3i}^{0} + \frac{\mu_{3}}{v} \frac{\beta}{2} \left[\bar{\psi}_{3i} \xi_{3} F_{13}(0) - \left(\bar{\psi}_{4i} \zeta + 2\psi_{5i} \right) \bar{F}_{13}(0) \right],$$

$$e_{35}^{T} = e_{35}^{0} + \frac{\mu_{3}}{v} \frac{\beta}{2} \left[\bar{\psi}_{35} \xi_{3} F_{13}(0) - \left(\bar{\psi}_{45} \zeta + 2\psi_{55} \right) \bar{F}_{13}(0) \right],$$

де

$$\bar{F}_{13}(0) = \frac{\rho_{32}}{1 - \rho_{31} \left(\frac{\beta J_3}{4} + \frac{\beta J_4}{4}\right) + (\rho_{31}^2 - \rho_{32}^2)\frac{\beta J_3}{4}\frac{\beta J_4}{4}}$$

III. ПОРІВНЯННЯ РЕЗУЛЬТАТІВ ЧИСЛОВИХ РОЗРАХУНКІВ З ЕКСПЕРИМЕНТАЛЬНИМИ ДАНИМИ

Для числового розрахунку залежностей від температури й полів E_i діелектричних, п'єзоелектричних, пружних і теплових характеристик RHS, які розраховані вище теоретично, необхідні значення таких параметрів: потенціалів взаємодії $J^0, K_{12}^0, K_{13}^0, K_{14}^0$ і відповідно, J_1, J_2, J_3, J_4 ; величини Δ , що характеризує асиметрію в заселеностях двох положень; деформаційних потенціалів ψ_{ij} ; ефективних дипольних моментів μ_i ; затравних значень діелектричних сприйнятливостей $\chi_{ii}^{\varepsilon 0}$, коефіцієнтів п'єзоелектричної напруги e_{ij}^0 , пружних сталих $c_{ii'}^{E0}$ і c_{jj}^{E0} .

Для вибору оптимальних параметрів теорії необхідно використовувати залежність температури переходу T_c від величини гідростатичного тиску. На жаль, при x = 0 різні автори наводять різні значення для T_c від 258 К до 265.1 К. Надалі ми будемо "прив'язуватись" до $T_c(0) = 265$ К [8], оскільки такою ж є температура ФП-кристала у праці [14], у якій отримано залежності значень $T_c(p)$.

Для визначення перерахованих нижче мікропараметрів використаймо температурні залежності фізичних характеристик RHS, які отримані експериментально, а саме: $P_s(T)$ [9], $\varepsilon_{11}^{\sigma}(0)$, $\varepsilon_{22}^{\sigma}(0)$ [13], а також залежності значень $T_c(p)$ [14] від величини гідростатичного тиску.

Об'єм примітивної комірки RHS дорівнює $v=0.842\cdot 10^{-21}~{\rm cm}^3.$

Отриманий таким способом набір оптимальних параметрів наведено в табл. 1.

раметрів наведено в табл. 1. Затравні $e_{31}^0 = e_{32}^0 = e_{33}^0 = e_{35}^0 = -1 \cdot 10^4 \frac{\text{СГСЕ}_q}{\text{см}^2},$ $c_{11}^{0E} = 32.0 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2},$ $c_{12}^{E0} = 8.7 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2},$ $c_{22}^{E0} = 38 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2},$ $c_{23}^{E0} = 37.4 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2},$ $c_{55}^{E0} = 5.3 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2},$ $c_{55}^{E0} = 5.3 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2},$ $k_{11} = -0.032 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2\text{K}},$ $k_{12} = -0.040 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2\text{K}},$ $k_{23} = -0.010 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2\text{K}},$ $k_{23} = -0.010 \cdot 10^{10} \frac{\text{дин}}{\text{см}^2\text{K}},$ $k_{24} = k_{44} = k_{55} = 0.0.$

$J^0/k_{\rm B}$	$K_{12}^0/k_{\rm B}$	$K_{13}^0/k_{\rm B}$	$K_{14}^0/k_{\rm B}$	$\Delta/k_{\rm B}$	$\mu_1, 10^{-18}$	$\mu_2, 10^{-18}$	$\mu_3, 10^{-18}$	$\chi_{11}^{\varepsilon 0}$	$\chi_{22}^{\varepsilon 0}$	$\chi^{\varepsilon 0}_{33}$
Κ	Κ	Κ	Κ	Κ	$esu\cdot cm$	$esu\cdot cm$	$esu \cdot cm$			
394	190	372	433.7	244	3.18	3.65	0.81	0.02	0.02	0.159

$\frac{\bar{\psi}_{11}}{k_{\rm B}}$	$rac{ar{\psi}_{12}}{k_{\mathrm{B}}}$	$\frac{\bar{\psi}_{13}}{k_{\rm B}}$	$\frac{\bar{\psi}_{14}}{k_{\rm B}}$	$\frac{\bar{\psi}_{15}}{k_{\rm B}}$	$\frac{\bar{\psi}_{16}}{k_{\rm B}}$	$\frac{\bar{\psi}_{21}}{k_{\rm B}}$	$\frac{\bar{\psi}_{22}}{k_{\rm B}}$	$\frac{\bar{\psi}_{23}}{k_{\rm B}}$	$\frac{\bar{\psi}_{24}}{k_{\rm B}}$	$\frac{\bar{\psi}_{25}}{k_{\rm B}}$	$rac{ar{\psi}_{26}}{k_{\mathrm{B}}}$	
900	900	900	900	900	900	900	900	900	900	900	900	

$rac{ar{\psi}_{31}}{k_{ m B}}$	$rac{ar{\psi}_{32}}{k_{ m B}}$	$rac{ar{\psi}_{33}}{k_{ m B}}$	$rac{ar{\psi}_{35}}{k_{ m B}}$	$rac{ar{\psi}_{41}}{k_{ m B}}$	$rac{ar{\psi}_{42}}{k_{\mathrm{B}}}$	$rac{ar{\psi}_{43}}{k_{\mathrm{B}}}$	$rac{ar{\psi}_{45}}{k_{\mathrm{B}}}$	$rac{ar{\psi}_{51}}{k_{\mathrm{B}}}$	$rac{ar{\psi}_{52}}{k_{\mathrm{B}}}$	$rac{ar{\psi}_{53}}{k_{ m B}}$	$rac{ar{\psi}_{55}}{k_{ m B}}$
-4950	-4500	-4500	-4500	1080	900	900	900	200	200	200	200

Таблиця 1. Набір оптимальних параметрів теорії для кристала RHS.

Тепер зупинімося на одержаних результатах.

Проаналізуймо вплив гідростатичного $p_h = -\sigma_1 = -\sigma_2 = -\sigma_3$ тиску та зсувної напруги σ_5 на термодинамічні характеристики RHS. Прикладання тиску й напруги σ_5 до кристала підвищує температуру переходу T_c . На рис.2 наведено залежність температури фазового переходу від гідростатичного тиску та напруги σ_5 для кристала RHS.

Рис. 2. Залежність температури переходу T_c кристала RHS із сеґнетофази в парафазу від гідростатичного тиску $p_h - 1$, \circ [14] і від напруги $\sigma_5 - 2$.

Розраховані на основі запропонованих параметрів теорії $T_c(p)$ добре кількісно описують експериментальні дані праці [14]. Температура фазового переходу в кристалі RHS підвищується з тиском p_h зі швидкістю $\frac{dT_c}{dp}$ =120 К/ГПа [14], а з напругою σ_5 — зі швидкістю $\frac{dT_c}{dp}$ = 277 К/ГПа. За тиску p_h = 0,685 ГПа температура переходу $T_c(p)$ набуває максимального значення і кристал переходить у ІІІ фазу [14] (І фаза — сеґнетоелектрична, а ІІ — параелектрична). При наступному збільшенні тиску температура $T_c(p)$ знижується.

Температурні залежності деформацій ε_i і ε_j за відсутності тиску і за різних значень гідростатичного тиску наведено на рис. 3, 4. Деформації ε_i лінійно незначно змінюються з температурою при всіх тисках. Деформація ε_5 , на відміну від ε_4 та ε_6 , у сеґнетофазі за всіх значень тиску p_h значно зростає з підвищенням температури, а в парафазі величини ε_j з підвищенням температури лінійно незначно зменшуються.

Рис. 3. Температурні залежності деформацій ε_i за різних значень тиску p_h (ГПа): 0 — 1; 0.336 — 2; 0.401 — 3; 0.479 — 4; 0.587 — 5; 0.685 — 6.

Рис. 4. Температурні залежності деформацій ε_j за різних значень тиску p_h (ГПа): 0 — 1; 0.336 — 2; 0.401 — 3; 0.479 — 4; 0.587 — 5; 0.685 — 6.

На рис. 5 зображені залежності деформацій ε_i , ε_j кристала RHS від гідростатичного тиску та від напруги σ_5 за T = 255 K і T = 275 К. Тиски p_h приводять до лінійного зростання абсолютних значень деформацій ε_i , а деформації ε_j зі зростанням p_h змінюються дуже слабо. А зі збільшенням напруги зсуву σ_5 значення деформацій ε_1 , ε_2 , ε_3 , ε_4 та ε_6 практично не змінюються. Проте виявлено значне зростання із збільшенням напруги абсолютних значень деформації ε_5 .

Рис. 5. Залежність від гідростатичного тиску p_h — а) та від напруги σ_5 — b) деформацій ε_1 — 1; ε_2 — 2; ε_3 — 3; ε_4 — 4; ε_5 — 5; ε_6 — 6 при T=255K (суцільні криві) і T=275K (штрихові криві).

Рис. 6. Температурні залежності спонтанної поляризації та залежності поляризації від $\Delta T = T - T_c$ кристала RHS за різних значень гідростатичного тиску p_h , ГПа: 0 -1, Δ [9]; 0.336 -2а; 0.479 -2b; 0.685 -2с та за різних значень напруги σ_5 , ГПа: 0.336 -3а; 0.479 -3b; 0.685 -3с.

Рис. 7. Температурна залежність коефіцієнтів п'єзоелектричної напруги $e_{31} - 1$, $e_{32} - 2$, $e_{333} - 3$, $e_{35} - 4$ кристалу RHS за різних значень гідростатичного тиску p_h , ГПа: a) 0; b) 336; c) 479; d) 685.

Рис. 8. Температурна залежність коефіцієнтів п'єзоелектричної напруги $e_{31} - 1$, $e_{32} - 2$, $e_{333} - 3$, $e_{35} - 4$ кристалу RHS за різних значень напруги σ_5 , ГПа: a) 0; b) 336; c) 479; d) 685.

На рис. 6 зображені температурні залежності спонтанної поляризації кристала RHS за різних значень гідростатичного тиску p_h та напруги σ_5 і залежності спонтанної поляризації від $\Delta T = T - T_c$ за різних значень тиску p_h та σ_5 . Збільшення p_h та σ_5 приводить до збільшення величини P_s у всьому температурному діапазоні, причому у випадку прикладання напруги σ_5 цей ефект значно суттєвіший. Зростання p_h та σ_5 веде до зміни характеру фазового переходу. Якщо за відсутності тиску кристала RHS властивий перехід другого роду, то за наявності p_h та σ_5 перехід стає переходом першого роду, а з їх зростанням першорідність ФП посилюється.

Температурні залежності коефіцієнтів п'єзоелектричної напруги e_{3i} і e_{35} кристала RHS за p=0 і різних значень тиску p_h наведені на рис. 7, а на рис. 8 за різних значень напруги σ_5 . Ці тиски й напруги не впливають практично на величини e_{3i} і e_{35} , а зміщують їх мінімуми по температурній шкалі. Прикладання напруг σ_5 незначно зменшує значення коефіцієнтів порівняно з впливом тисків p_h .

Рис. 9. Температурні залежності діелектричних проникностей ε_{33} і обернених діелектричних проникностей ε_{33}^{-1} кристала RHS за різних значень гідростатичного тиску p_h , ГПа: 0 — 1, ▼ [15]; 0.336 — 2a, × [14]; 0.401 — 2b, \circ [14]; 0.479 — 2c, ∇ [14]; 0.587 — 2d, \Box [14]; 0.685 — 2f, \triangle [14] та за різних значень напруги σ_5 , ГПа: 0.336 — 3a; 0.479 — 3c; 0.685 — 3f.

Температурні залежності діелектричних проникностей ε_{33} кристала RHS за різних значень гідростатичного тиску p_h та напруги σ_5 наведені на рис. 9, а на рис. 10 — температурні залежності обернених діелектричних проникностей ε_{33}^{-1} . Результати теоретичного розрахунку добре кількісно узгоджуються з експериментальними даними праці [14] для випадку прикладання тиску p_h .

Рис. 10. Температурні залежності обернених діелектричних проникностей ε_{33}^{-1} кристала RHS за різних значень гідростатичного тиску p_h , ГПа: 0 — 1, ▼ [15]; 0.336 — 2a, × [14]; 0.401 — 2b, \circ [14]; 0.479 — 2c, ∇ [14]; 0.587 — 2d, □ [14]; 0.685 — 2f, \triangle [14] та за різних значень напруги σ_5 , ГПа: 0.336 — 3a; 0.479 — 3c; 0.685 — 3f.

Рис. 11. Залежність обернених діелектричних проникностей ε_{33}^{-1} кристала RHS від $\Delta T = T - T_c$ за відсутності тиску -1 та при прикладанні гідростатичного тиску $p_h - 2$ і напруги $\sigma_5 - 3$, ГПа: -0.336 – a; 0.685 – f.

Для оцінки впливу гідростатичного тиску p_h та напруги σ_5 на величини проникностей ε_{33} кристала RHS наведені на рис. 11 залежності обернених діелектричних проникностей ε_{33}^{-1} від $\Delta T = T - T_c$ за відсутності тиску та при прикладанні тиску p_h і напруги σ_5 . Зі збільшенням тисків і напруг у сеґнетоелектричній фазі діелектричні проникності ε_{33} збільшуються, а в парафазі — зменшуються, причому вплив напруг σ_5 сильніший, ніж тисків p_h .

Рис. 12. Температурні залежності діелектричних проникностей ε_{22} кристала RHS за різних значень тиску p_h – а) і напруги σ_5 – b) , ГПа: 0 – 1,0 [13] ; 0.336 – 2; 0.479 – 3; 0.685 – 4.

Рис. 13. Температурні залежності діелектричних проникностей ε_{11} кристала RHS за різних значень тиску p_h – а) і напруги σ_5 – b), ГПа: 0 – 1, \circ [13]; 0.336 – 2; 0.479 – 3; 0.685 – 4.

Температурні залежності поперечних статичних діелектричних проникностей кристала RHS за різних значень гідростатичного тиску й напруги наведені на рис. 12 і 13 відповідно. Зі збільшенням тиску й напруги значення ε_{22} і ε_{11} зменшуються, а максимум зміщується в бік вищих температур. Вплив напруги зсуву σ_5 на величини цих проникностей проявляється значно сильніше, ніж тиску p_h .

IV. ВИСНОВКИ

У ций статті в межах модифікованої чотирипідґраткової моделі RbHSO₄ з урахуванням у сеґнетоелектричній фазі п'єзоелектричного зв'язку з деформаціями ε_i , ε_j в наближенні молекулярного поля розраховано поляризацію, компоненти статичної діелектричної проникності механічно затиснутого й вільного кристалів, п'єзоелектричні характеристики. Досліджено вплив гідростатичного тиску p_h та зсувної напруги σ_5 на фазовий перехід та фізичні характеристики кристала.

Установлено, що за прикладання тиску p_h та зсувної напруги σ_5 змінюються деформації ε_i , ε_j , що приводить до підвищення температури переходу й усіх інших характеристик кристала RHS, причому вплив напруги зсуву значно суттєвіший. Виявлено, що зі збільшенням p_h та σ_5 змінюється характер фазового переходу. Якщо за відсутності тиску кристала RHS властивий перехід другого роду, то за наявності p_h та σ_5 перехід стає переходом першого роду, а з їх зростанням першорідність посилюється. Показано, що за належного вибору мікропараметрів отримуємо добрий кількісний опис відповідних експериментальних даних кристала RHS.

- [1] І. В. Стасюк, Р. Р. Левицький, А. П. Моїна, О. Г. Сливка, О. В. Величко, Польові та деформаційні ефекти у складних сеґнетоактивних сполуках (Гражда, Ужгород, 2009).
- [2] Р. Р. Левицький, І. Р. Зачек, А. С. Вдович, І. В. Стасюк, Журн. фіз. досл. 17, 4703 (2013).
- [3] Р. Р. Левицький, І. Р. Зачек, А. С. Вдович, Журн. фіз. досл. 16, 4702 (2012).
- [4] I. Zachek, R. Levitskii, A. Vdovych, Ferroelectrics 444, 67 (2013).
- [5] E. Nakamura, H. Kajikawa J. Phys. Soc. Jpn 44, 519 (1978).
- [6] Д. Х. Блат, В. И. Зиненко, Физ. тверд. тела 18, 3599 (1976).
- [7] Р. Р. Левицький, И. Р. Зачек, В. И. Вараницкий, Физ.

тверд. тела 22, 2750 (1980).

- [8] W. Paprotny, J. Grigas, R. R. Levitsky, I. V. Kutny, V. S. Krasikov, Ferroelectrics 61, 19 (1984).
- [9] H. Kajikawa, T. Ozaki, E. Nakamura, J. Phys. Soc. Jpn 43, 937 (1977).
- [10] E. Nakamura, H. Kajikawa, T. Ozaki, J. Phys. Soc. Jpn 42, 1427 (1977).
- [11] Н. Флеров, И. М. Искорнев, Физ. тверд. тела 18, 3666 (1976).
- [12] I. Stasyuk, O. Velychko, Ferroelectrics, **316**, 51 (2005).
- [13] М. П. Зайцева, Л. А. Шабанова, Л. И. Жеребцова, Физ. тверд. тела 21, 2308 (1979).
- [14] K. Gesi, K. Ozawa, J. Phys. Soc. Jpn 38, 457 (1975).
- [15] R. Pepinsky, K. Vedam, Phys. Rev. 117, 1502 (1960).

THE INFLUENCE OF HYDROSTATIC PRESSURE p_h AND SHEAR STRESS σ_5 ON THE PHASE TRANSITIONS AND THERMODYNAMICS OF THE RbHSO₄ FERROELECTRICS

I. R. Zachek¹, R. R. Levitsky², A. S. Vdovych² ¹Lviv Polytechnic National University 12, Bandery St., Lviv, UA-79013, Ukraine ²Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine 1, Svientsitskii St., Lviv, UA-79011, Ukraine

We use a four-sublattice model of the RbHSO₄ crystal modified by taking into account the piezoelectric coupling to the strains ε_i , ε_j . Within the mean field approximation we calculate the electric thermodynamic potential of the system. From the conditions of the thermodynamic equilibrium we obtain equations for the strains and the pseudospin mean values, from where we derive the expressions for the components of the polarization vector and static dielectric permittivity tensor of mechanically clamped and free crystals as well as their piezoelectric characteristics.

We study the influence of the hydrostatic pressure and shear stress on the phase transition and physical characteristics of the crystal. The adopted values of the model parameters provide a good quantitative description of the experimental data for $T_c(p)$. We conclude that the transition temperature in RHS is increased by the pressure p_h with the slope $\frac{dT_c}{dp} = 120$ K/GPa and by the stress σ_5 with the slope $\frac{dT_c}{dp} = 277$ K/GPa.

It is established that the pressure p_h and the shear stress σ_5 change the strains ε_i , ε_j ; the influence of the shear stress is more pronounced. Both p_h and σ_5 alter the character of the phase transition. While in the absence of external stresses the RHS crystals undergo the second order phase transition in the presence of p_h and σ_5 the transition is of the first order; with the increasing stresses the degree of the "first-orderness" is increased.

Other theoretical results for the dependences of physical characteristics on the hydrostatic pressure p_h are in agreement with experimental data as well. With increasing pressure and shear stress the dielectric permittivities ε_{33} increase in the ferroelectric phase and decrease in the paraelectric phase. The transverse static dielectric permittivities of RHS are decreased by the pressure and shear stress, whereas the permittivity maximum shifts to higher temperatures.