ДВО- І ТРИСМУГОВІ ОПТИЧНІ ФІЛЬТРИ НА ОСНОВІ СИМЕТРИЧНИХ СТРУКТУР

О. П. Кушнір

Львівський національний аграрний університет, кафедра фізики та інженерної механіки, вул. Володимира Великого, 1, Дубляни, Львівська обл., 80381, Україна

(Отримано 10 березня 2016 р.; в остаточному вигляді — 06 травня 2016 р.)

Запропоновано спрощений метод проектування дво- і трисмугових оптичних фільтрів із використанням двох різних матеріалів. Його основна перевага — це використання математично простих співвідношень для визначення фазової товщини двох симетричних шарів, які забезпечують появу двох або трьох смуг пропускання у смузі високого відбивання фільтра. Запропонований метод дає змогу для двосмугового фільтра довільно вибирати спектральне положення обох смуг пропускання і їх ширину з урахуванням дисперсії показника заломлення, що важливо для практичного використання.

Ключові слова: багатошарова структура, двосмуговий фільтр, трисмуговий фільтр, умови просвітлення.

PACS number(s): 42.79.Wc, 78.20.-e

I. ВСТУП

Більшість відомих методів проектування вузькосмугових інтерференційних фільтрів [1–7] дають змогу отримати фільтри з однією смугою пропускання. На практиці виникає потреба створити фільтри з двома або трьома вузькими смугами пропускання. Такі фільтри перспективні в медицині для діагностики різних захворювань шляхом виявлення характерних смуг у спектрах вторинного свічення біопроб [8,9]. Також їх використовують у фотолітографії [8]. Проблема створення фільтрів із двома або трьома вузькими смугами пропускання є складнішою через те, що потрібно забезпечити не лише появу відповідної кількості смуг пропускання в широкій смузі високого відбивання, але й задане спектральне положення всіх смуг.

У деяких методах проектування інтерференційних фільтрів із двома або трьома вузькими смугами використовують лише стандартні шари [8–10]: чвертьхвильові або півхвильові, фазові товщини яких дорівнюють відповідно $\pi/2$ або π . В іншій роботі [11] для отримання двох смуг пропускання, крім чвертьхвильових шарів, використовують ще два нестандартні шари, фазові товщини яких не є кратними $\pi/2$ і забезпечують просвітлення фільтра при двох різних довжинах хвиль λ_1 і λ_2 , що відповідають серединам відповідних смуг. У всіх цих працях довільно можна вибирати одну з цих довжин хвиль λ_1 , а відносне значення іншої λ_2/λ_1 можна вибирати лише серед обмеженого набору значень, які залежать від кількості шарів, їх показників заломлення та від номерів півхвильових [8] або нестандартних шарів [11].

У роботі [12] для отримання вузькосмугового фільтра використано симетричну структуру типу n_0 |HL (2m + 1) HL H| n_0 , де n_0 — показник заломлення зовнішнього середовища або товстого прозорого шару з обох боків структури. Така форма запису означає, що плоскопаралельна структура складається лише із шарів Н з великим показником заломлення $n_{\rm H}$ і шарів L з малим показником заломлення n_L. Якщо перед символами H i L не вказано числових значень, то фазові товщини відповідних шарів дорівнюють $\pi/2$. Наявність перед центральним шаром Н виразу (2m+1) означає, що його фазова товщина дорівнює $(2m+1)\pi/2$. Такі значення фазових товщин відповідають певній довжині хвилі λ_0 , яку можна довільно вибирати. У роботі [12] зовнішнім середовищем з обох боків структури було повітря $(n_0 = 1)$ і розглядався випадок, коли т приймає великі цілі значення. Особливістю такого фільтра є те, що в ньому виникає велика кількість рівновіддалених смуг пропускання, якщо розглядати залежність енерґетичного коефіцієнта пропускання від оберненої довжини хвилі. Хоч і в роботі [12] не було завдання отримати дво- або трисмуговий фільтр з потрібним спектральним положенням усіх смуг, однак для такої задачі можна використати аналогічні структури: $n_0 \left| (\text{HL})^x \frac{2\delta_c}{\pi} \text{H} (\text{LH})^{\hat{x}} \right| n_0$ або $n_0 \left| (\text{HL})^x \text{H} \frac{2\delta_c}{\pi} \text{LH} (\text{LH})^{x} \right| n_0$. Тут x — це кількість повторень елемента структури. Ці структури відрізняються від попередньої лише тим, що фазову товщину центрального шару δ_c можна вибирати не обов'язково кратною до $\pi/2$. За безперервної зміни δ_c також безперервно змінюватиметься відносне значення довжин хвиль λ_1/λ_2 , які відповідають серединам сусідніх смуг. Це дає змогу вибрати потрібне спектральне положення обох смуг пропускання для двосмугового фільтра (рис. 1). Використання таких структур як трисмугових фільтрів дозволяє отримати лише симетричне розташування крайніх смуг стосовно до середньої (в обернених довжинах хвиль). Обмеженістю дво- або трисмугових фільтрів на основі цих структур є те, що вони не мають широкі смуги високого відбивання для близько розташованих смуг пропускання (рис. 2, суцільна крива). Це зумовлено появою зайвих сусідніх смуг пропускання. На рис. 2 (штрихова крива) для порівняння також показаний спектр пропускання двосмугового фільтра, розрахованого за допомогою іншого методу [11] із широкою смугою високого відбивання.

Рис. 1. Енерґетичний коефіцієнт пропускання двосмугового фільтра 1.52 $|(\text{HL})^3 \text{ H 7L H (L H)}^3|$ 1.52 із $n_{\text{H}} = 4.2$, $n_{\text{L}} = 1.44$.

Рис. 2. Енерґетичний коефіцієнт пропускання двосмугових фільтрів із $n_{\rm H} = 4.2$, $n_{\rm L} = 1.44$: 1.52 $\left| ({\rm H\,L})^3 \, {\rm H}\, 35 {\rm L\,H}\, ({\rm L\,H})^3 \right| 1.52$ (суцільна крива); 1.52 $\left| {\rm H}({\rm L\,H})^2 \, 1.926 {\rm L}{\rm H\,L}{\rm H}\, 1.926 {\rm L}({\rm H\,L})^2 {\rm H} \right| 1.52$ (штрихова крива).

У цій статті описано метод проектування двосмугового фільтра з двома довільними спектральними положеннями обох смуг пропускання λ_1 і λ_2 в межах широкої смуги високого відбивання, що є важливо з погляду практичного застосування.

II. МЕТОД ПРОЕКТУВАННЯ ДВО-І ТРИСМУГОВИХ ІНТЕРФЕРЕНЦІЙНИХ ФІЛЬТРІВ НА ОСНОВІ СИМЕТРИЧНИХ СТРУКТУР

Запропонований у цій роботі метод проектування дво- і трисмугових фільтрів базується на раніше розробленому методі [11]. Його суть полягала у зміні фазових товщин двох довільних шарів s, m структури, типу інтерференційне дзеркало: $n_0|(\text{HL})^x \text{ H}|n_{k+1}$. Нові значення фазових товщин визначали на основі умов просвітлення довільної прозорої багатошарової структури [12]. Це дало змогу отримати фільтр із широкою смугою високого відбивання, усередині якої з'являлась одна або декілька вузьких смуг пропускання.

У роботі [11] для одержання двосмугового фільтра використано симетричну структуру з непарною кількістю шарів k:

$$n_0 |(\mathrm{HL})^x \frac{2\delta_s}{\pi} \mathrm{H} (\mathrm{LH})^y \mathrm{L} (\mathrm{HL})^y \frac{2\delta_s}{\pi} \mathrm{H} (\mathrm{LH})^x | n_0 \qquad (1)$$

$$(s = 2x + 1, \quad k = 4x + 4y + 3),$$

 $n_0 | \mathrm{H}(\mathrm{LH})^x \frac{2\delta_s}{\pi} \mathrm{L}(\mathrm{HL})^y \mathrm{H}(\mathrm{LH})^y \frac{2\delta_s}{\pi} \mathrm{L}(\mathrm{HL})^x \mathrm{H} | n_0, \quad (2)$

$$(s = 2x + 2, k = 4x + 4y + 5)$$

Тут x, y — кількість повторень елемента структури або його відсутність, якщо x, y = 0; δ_s — фазова товщина кожного із симетричних шарів з номерами s і m (m = k + 1 - s), яка дорівнює одному з двох можливих розв'язків δ_s^{\pm} умов просвітлення прозорої багатошарової структури [13]:

$$\tan \delta_s^{\pm} = \frac{2\sigma_{0,s}\sigma_{s,m}\sin(\phi_{0,s} - \phi_{s,m} - \gamma_{0,s}) + 2\sigma_{0,s}\sigma_{m,s}\sigma_{m,k+1}^2\sin(\phi_{m,s} + \phi_{0,s} - \gamma_{0,s} - \gamma_{s,m}) \pm \sqrt{Q}}{(\sigma_{s,m} + \sigma_{0,s} - \sigma_{m,s}\sigma_{m,k+1}\sigma_{0,s} + \sigma_{m,k+1})(\sigma_{s,m} + \sigma_{0,s} + \sigma_{m,s}\sigma_{m,k+1}\sigma_{0,s} - \sigma_{m,k+1}) - W},\tag{3}$$

де

$$\begin{aligned} Q &= -(\sigma_{s,m} + \sigma_{0,s} - \sigma_{m,s}\sigma_{m,k+1}\sigma_{0,s} - \sigma_{m,k+1})(\sigma_{s,m} - \sigma_{0,s} + \sigma_{m,s}\sigma_{m,k+1}\sigma_{0,s} - \sigma_{m,k+1}) \\ &\times (\sigma_{s,m} - \sigma_{0,s} - \sigma_{m,s}\sigma_{m,k+1}\sigma_{0,s} + \sigma_{m,k+1})(\sigma_{s,m} + \sigma_{0,s} + \sigma_{m,s}\sigma_{m,k+1}\sigma_{0,s} + \sigma_{m,k+1}) \\ &+ 16\sigma_{s,m}\sigma_{m,s}\sigma_{m,k+1}^2\sigma_{0,s}^2\cos^2\left(\frac{\phi_{s,m} + \phi_{m,s} - \gamma_{s,m}}{2}\right), \end{aligned}$$

$$W = 4\sigma_{s,m}\sigma_{0,s}\cos^{2}\left(\frac{\phi_{s,m} - \phi_{0,s} + \gamma_{0,s}}{2}\right) + 4\sigma_{m,s}\sigma_{m,k+1}^{2}\sigma_{0,s}\cos^{2}\left(\frac{\gamma_{0,s} + \gamma_{s,m} - \phi_{m,s} - \phi_{0,s}}{2}\right)$$

Значення всіх величин, які входять у рівняння (3), можна отримати за допомогою відомих виразів [14]: $\tilde{r}_{j,u} = \sigma_{j,u} e^{i\phi_{j,u}}$, $\tilde{t}_{j,u} = \tau_{j,u} e^{i\theta_{j,u}}$ — комплексні амплітудні коефіцієнти відбивання та пропускання структури $j, j + 1, \ldots u - 1, u$, яка є частиною досліджуваної структури 0, 1, ... k, k + 1 за умови, що шари j, u — напівбезмежні середовища; $\tilde{h}_{j,u} = \chi_{j,u} e^{i\gamma_{j,u}} =$ $\tilde{t}_{j,u} \tilde{t}_{u,j} - \tilde{r}_{j,u} \tilde{r}_{u,j}$. Тут $\chi_{j,u}, \sigma_{j,u}, \tau_{j,u}$ — це модулі відповідних комплексних величин $\hat{h}_{j,u}$, $\tilde{r}_{j,u}$, $\tilde{t}_{j,u}$, а $\gamma_{j,u}$, $\phi_{j,u}$, $\theta_{j,u}$ – їх фази.

Для того, щоб забезпечити довільний вибір характерного для двосмугового фільтра відносного спектрального положення обох смуг λ_1/λ_2 , потрібно, замість центрального чвертьхвильового шару структур (1), (2) з номером c = (k + 1)/2, використати нестандартний шар із фазовою товщиною δ_c :

$$n_0 |(\mathrm{HL})^x \ \frac{2\delta_s}{\pi} \mathrm{H} \ (\mathrm{LH})^y \ \frac{2\delta_c}{\pi} \mathrm{L} (\mathrm{HL})^y \ \frac{2\delta_s}{\pi} \mathrm{H} \ (\mathrm{LH})^x |n_0, \tag{4}$$

$$(s = 2x + 1, \quad k = 4x + 4y + 3),$$

$$n_0 |(\mathrm{HL})^x \frac{2\delta_s}{\pi} \mathrm{H} (\mathrm{LH})^y \mathrm{L} \frac{2\delta_c}{\pi} \mathrm{HL} (\mathrm{HL})^y \frac{2\delta_s}{\pi} \mathrm{H} (\mathrm{LH})^x | n_0, \qquad (5)$$

$$(s = 2x + 1, \quad k = 4x + 4y + 5),$$

$$n_0 |\mathrm{H}(\mathrm{LH})^x \, \frac{2\delta_s}{\pi} \mathrm{L}(\mathrm{HL})^y \, \frac{2\delta_c}{\pi} \mathrm{H}(\mathrm{LH})^y \, \frac{2\delta_s}{\pi} \mathrm{L}(\mathrm{HL})^x \mathrm{H}|n_0, \tag{6}$$

$$(s = 2x + 2, \quad k = 4x + 4y + 5),$$

$$n_0 |\mathrm{H}(\mathrm{LH})^x \, \frac{2\delta_s}{\pi} \mathrm{L}(\mathrm{HL})^y \, \mathrm{H} \, \frac{2\delta_c}{\pi} \mathrm{LH}(\mathrm{LH})^y \, \frac{2\delta_s}{\pi} \mathrm{L}(\mathrm{HL})^x \mathrm{H}|n_0,$$

$$(s = 2x + 2, \quad k = 4x + 4y + 7).$$
(7)

Вибираючи параметр *s* і змінюючи фазову товщину центрального шару δ_c , можна вибрати потрібне значення λ_1/λ_2 .

У роботі [11] показано, що відносному спектральному положенню смуг λ_1/λ_2 двосмугового фільтра, виготовленого на основі структур (4)–(7) відповідають точки перетину кривих $\delta_s^+ \left(\frac{\lambda_1}{\lambda}\right)$ і $\delta_s(\lambda_1)\frac{\lambda_1}{\lambda}$ або $\delta_s^- \left(\frac{\lambda_1}{\lambda}\right)$ і $\delta_s(\lambda_1)\frac{\lambda_1}{\lambda}$ (рис. 3). Функції $\delta_s^\pm \left(\frac{\lambda_1}{\lambda}\right)$ отримані на основі виразу (3), в якому замість фазових товщин $\delta_j(\lambda_1) = \frac{\pi}{2}$ ($j \neq s, m, c$), потрібно підставити

 $\delta_j(\lambda) = \frac{\pi}{2} \frac{\lambda_1}{\lambda}$, а замість $\delta_c(\lambda_1) = \delta_c$ потрібно підставити $\delta_c(\lambda) = \delta_c \frac{\lambda_1}{\lambda}$; $\delta_s(\lambda_1) -$ один із розв'язків (3) при $\delta_j(\lambda_1) = \frac{\pi}{2} (j \neq s, m, c)$ і $\delta_c(\lambda_1) = \delta_c$. Це дає змогу визначити відносне спектральне положення обох смуг λ_1/λ_2 чисельним розв'язанням одного з двох рівнянь:

$$\delta_s^{\pm} \left(\frac{\lambda_1}{\lambda_2}\right) = \delta_s(\lambda_1) \frac{\lambda_1}{\lambda_2}.$$
 (8)

Чисельне розв'язання рівняння (8) показало, що зі

збільшенням фазової товщини δ_c зростає кількість розв'язків цього рівняння в області високого відбивання фільтра, що зумовлює збільшення кількості смуг пропускання.

Рис. 3. Енергетичний коефіцієнт пропускання двосмугового фільтра

1.52|(HL)³ 1.9738H(LH)²L 1.9738H(LH)³|1.52 із $n_{\rm H} = 4.2$, $n_{\rm L} = 1.45$ (пунктирна крива); $\frac{1}{4}\delta_s^-(\frac{\lambda_1}{\lambda})$ (крива а); $\frac{1}{4}\delta_s^+(\frac{\lambda_1}{\lambda})$ (крива b); $\frac{1}{4}\delta_s(\lambda_1)\frac{\lambda_1}{\lambda}$ (крива c).

Рис. 4. Енерґетичний коефіцієнт пропускання двосмугових фільтрів із $n_{\rm H} = 2.32$, $n_{\rm L} = 1.46$: $\delta_c = \pi/2$, $1.52 |\rm H(LH)^4 \ 1.8446 L(HL)^2 H \ 1.8446 L \ (HL)^4 H | 1.52 \ (суцільна крива); <math>\delta_c = \pi/4$, $1.52 |\rm H(LH)^4 \ 1.9346 L HL \ 0.5 HLH \ 1.9346 L \ (HL)^4 H | 1.52 \ (пунктирна крива).$

Рис. 5. Енергетичний коефіцієнт пропускання трисмугових фільтрів із $n_{\rm H} = 4.2$, $n_{\rm L} = 1.36$: $\delta_c = \pi$, $1.52 |({\rm HL})^2$ 2HL 2HL 2H $({\rm LH})^2 | 1.52$ (суцільна крива); $\delta_c = 5\pi/4$, $1.52 |({\rm HL})^2$ 1.9724HL 2.5HL 1.9724H $({\rm LH})^2 | 1.52$ (пунктирна крива).

Через це для значень фазової товщини δ_c близьких до $\pi/2$ структури (4)–(7) є двосмуговими фільтрами (рис. 4), а для значень близьких до π — трисмуговими (рис. 5). При подальшому збільшенні значень δ_c ($\delta_c > 3\pi/2$) кількість смуг пропускання також зростає. Рівняння (8) дозволяє не лише отримати відносне положення всіх смуг за вибраної фазової товщини δ_c , але й навпаки, за його допомогою можна для двосмугового фільтра визначити значення δ_c , яке відповідає потрібному відносному положенню смуг λ_1/λ_2 .

Весь процес проектування двосмугового фільтра з потрібним положенням смуг складається з трьох основних кроків. Першим кроком у проектуванні є визначення фазової товщини центрального шару δ_c для заданого відношення λ_1/λ_2 за допомогою рівняння (8). Наступним кроком є розрахунок фазових товщин δ_s симетричних шарів *s* і *m*, за яких структури (4)– (7) стають двосмуговими фільтрами. Для цього можна використовувати раніше встановлену умову просвітлення (3) або спрощену умову, яка так само дає точний розв'язок, але застосувати її можна лише для цих структур:

$$\tan \delta_s^{\pm} = \frac{B \pm \sqrt{B^2 - AE}}{A},\tag{9}$$

$$\begin{split} &A = D_2 \Delta_2^+ - D_1 \Delta_1^+ \Delta_3^+ - D_1 \Delta_1^- \Delta_3^- \cos(2\delta_c), \\ &B = D_1 \Delta_1^- D_3 \Delta_2^- \sin(2\delta_c), \\ &E = D_2 \Delta_2^+ - D_1 \Delta_1^+ \Delta_4^+ - D_1 \Delta_1^- \Delta_4^- \cos(2\delta_c), \\ &D_1 = n_0 n_{\rm H}^{s-1} n_{\rm L}^{s-1}, \\ &D_2 = 2n_0 n_{\rm H}^{k-s} n_{\rm L}^{k-s}, \\ &D_3 = n_{\rm H}^{(k+1-2s)/2} n_{\rm L}^{(k+1-2s)/2}, \\ &\Delta_1^\pm = n_{\rm L}^{k+1-2s} \pm n_{\rm H}^{k+1-2s}, \\ &\Delta_2^\pm = n_{\rm H}^{2s} \pm n_0^2 n_{\rm L}^{2s-2}, \\ &\Delta_3^\pm = n_{\rm H}^{k+1} \pm n_0^2 n_{\rm L}^{k-1}, \\ &\Delta_4^\pm = n_0^2 n_{\rm H}^{k+1-2s} n_{\rm L}^{2s-2} \pm n_{\rm L}^{k+1-2s} n_{\rm H}^{2s}. \end{split}$$

Останнім кроком у проектуванні є визначення геометричних товщин усіх шарів d_i на основі співвідношення

$$d_i = \frac{\delta_i(\lambda_1)\,\lambda_1}{2\pi n_i\,(\lambda_1)},\tag{10}$$

де $n_i(\lambda_1)$ — показник заломлення шару *i* на довжині хвилі λ_1 , а $\delta_i(\lambda_1)$ — фазова товщина шару *i* на цій довжині хвилі, яка визначається за допомогою таких виразів: $\delta_i(\lambda_1) = \frac{\pi}{2}$ $(i \neq s, m, c), \ \delta_c(\lambda_1) = \delta_c, \ \delta_{s,m}(\lambda_1) = \delta_s.$

Вираз (9) дозволяє спростити розрахунок фазової товщини δ_s , тому що розрахунок за формулою (3) вимагає відповідного програмного забезпечення з використанням матричного підходу. Крім того, умова просвітлення (9) для окремих випадків математично стає ще простішою.

Рис. 6. (Кольоровий онлайн.) Енергетичний коефіцієнт пропускання трисмугових фільтрів: (12) — крива (е), (13) — крива (а), (14) — крива (d), (15) — крива (b), (16) крива (с).

Рис. 7. Дисперсійні залежності показників заломлення: $n_{\rm L} ({
m SiO}_2) - {
m суцільна крива; } n_{\rm H} ({
m Ta}_2{
m O}_5) - {
m пунктирна крива; } n_{\rm H} ({
m Nb}_2{
m O}_5) - {
m штрих-пунктирна крива, } n_0 ({
m скло}) - {
m штрихова крива.}$

Так, для випадку, коли $\delta_c = \pi/2$ і структури (4)–(7) стають двосмуговими фільтрами (1), (2) (рис. 4 суцільна крива), які були розглянуті в роботі [11], умова (9) спрощується до вигляду:

$$\tan \delta_s^{\pm} = \mp \sqrt{\frac{n_0^2 n_{\rm H}^{k+1-2s} n_{\rm L}^{2s-2} - n_{\rm H}^{2s} n_{\rm L}^{k+1-2s}}{n_0^2 n_{\rm L}^{k-1} - n_{\rm H}^{k+1}}}.$$
 (11)

Розв'язки рівнянь (3), (9), (11) існують лише для тих параметрів структур, за яких підкореневі вирази не є від'ємними.

Для випадку, коли $\delta_c = \pi$, параметри A, B і E у виразі (9) дорівнюють нулеві. Якщо ж фазову товщину середнього шару спрямувати до π ($\delta_c \rightarrow \pi$), то числові розрахунки показують, що фазові товщини шарів s, m також прямують до π ($\delta_s \to \pi$). При цьому структури (4)-(7) стають трисмуговими фільтрами, які раніше були розглянуті в роботі [8]. Для таких фільтрів за вибору більшого значення *s* крайні смуги стають більш віддаленими від середньої. Для фільтрів цього типу також характерне симетричне розташування крайніх смуг з довжинами хвиль λ_2 і λ_3 щодо середньої із довжиною хвилі λ_1 у спектральній залежності енерґетичного коефіцієнта пропускання від оберненої довжини хвилі (рис. 5, суцільна крива). На практиці така симетрія не завжди прийнятна. Зі зміною значення δ_c співвідношення $\frac{\lambda_2 - \lambda_1}{\lambda_1 - \lambda_3}$ також змінюється (рис. 5, пунктирна крива), що дозволяє в багатьох випадках досягнути задовільного рівня пропускання для потрібних довжин хвиль λ_1 , λ_2 , λ_3 .

Як приклад проектування трисмугового фільтра розглянемо спектри пропускання чотирьох трисмугових фільтрів (рис. 6, криві a, b, d, e):

О. П. КУШНІР

$$n_0 |(\text{HL})^4 2.000 \text{HL}(\text{HL})^3 2.013 \text{H}(\text{LH})^3 \text{L} 2.000 \text{H} (\text{LH})^4 | n_0,$$
 (12)

$$n_0 |\mathrm{H(LH)}^5 \ 1.9541 \mathrm{L(HL)}^2 \ 2.6325 \mathrm{H(LH)}^2 \ 1.9541 \mathrm{L(HL)}^5 \mathrm{H} | n_0,$$
 (13)

$$n_0 |\mathrm{H(LH)}^4 \; 1.9880 \mathrm{LH(LH)}^2 \; 2.2754 \mathrm{L(HL)}^2 \mathrm{H} \; 1.9880 \mathrm{L(HL)}^4 \mathrm{H} | n_0,$$
 (14)

$$n_0 |(\text{HL})^4 1.9974 \text{H}(\text{LH})^3 2.1110 \text{L}(\text{HL})^3 1.9974 \text{H} (\text{LH})^4 | n_0$$
 (15)

з дисперсійними залежностями показників заломлення шарів $n_{\rm L}$ (SiO₂), $n_{\rm H}$ (Ta₂O₅) і n_0 (скло) (рис. 7) [15–17] та одного трисмугового фільтра (рис. 6 крива с):

$$n_0 |\mathrm{H}(\mathrm{LH})^3 \; 1.9978 \mathrm{LH}(\mathrm{LH})^2 \; 2.1104 \mathrm{L}(\mathrm{HL})^2 \mathrm{H} \; 1.9978 \mathrm{L}(\mathrm{HL})^3 \mathrm{H} | n_0$$
 (16)

з дисперсійними залежностями показників заломлення шарів $n_{\rm L}$ (SiO₂), $n_{\rm H}$ (Nb₂O₅) [18] та n_0 (скло). Ці фільтри були спроектовані для довільно вибраного положення середньої смуги $\lambda_1 = 435$ нм і довільного відносного положення другої смуги $\lambda_1/\lambda_2 = 1.03$, при якому друга смуга потрапляє в широку смугу високого відбивання. Для всіх цих фільтрів потрібне значення λ_1/λ_2 було забезпечене визначенням фазової товщини центрального шару δ_c на основі чисельного розв'язку рівняння (8). Вибір положення середньої смуги λ_1 був досягнутий за рахунок визначення геометричних товщин шарів d_i за допомогою виразу (10). Відносне положення третьої смуги λ_1/λ_3 для всіх розглянутих фільтрів приймає різні значення (рис. 6 смуги a, b, c, d, e) і залежить від показників заломлення всіх шарів, які можна вибирати з певного набору значень за рахунок вибору матеріалів. Також λ_1/λ_3 залежить від кількості шарів k і від номера нестандартного шару s. Ширини смуг a, b, c, d, е на допустимому мінімальному рівні пропускання T_{\min} (рис. 6), а також спектральні положення всіх цих смуг дають змогу оцінити всі можливі значення λ_1/λ_3 , які можна досягнути за допомогою цих фільтрів. Зрозуміло, що за рахунок вибору матеріалів шарів, а також добору кількості шарів k і номера нестандартного шару s у багатьох випадках можна досягнути потрібного значення λ_1/λ_3 . Розглянутий приклад демонструє перевагу запропонованого методу проектування трисмугового фільтра над іншими згаданими методами, які дозволяють лише симетричне (в обернених довжинах хвиль) положення крайніх смуг пропускання відносно середньої.

III. ПРОЕКТУВАННЯ ДВОСМУГОВОГО ФІЛЬТРА З ДОВІЛЬНИМ РОЗМІЩЕННЯМ ОБОХ СМУГ ПРОПУСКАННЯ ВСЕРЕДИНІ СМУГИ ВИСОКОГО ВІДБИВАННЯ

Для визначення інтервалу, з якого можна вибирати відносне спектральне положення обох смуг пропускання λ_2/λ_1 (нехай $\lambda_2 < \lambda_1$), потрібно встановити мінімальне та максимальне значення λ_2/λ_1 , за яких отримана структура матиме властивості двосмугового фільтра. Зі зближенням смуг пропускання між собою, починаючи з якогось значення λ_2/λ_1 , обидві смуги починають накладатися одна на одну, що приводить до зростання залишкового пропускання T_z між ними (рис. 8, штрихова крива). Тому величина $(\lambda_2/\lambda_1)_{\rm max}$ залежить від допустимого максимального значення залишкового пропускання $T_{z,{\rm max}}$ двосмугового фільтра.

Рис. 8. Енергетичний коефіцієнт пропускання двох двосмугових фільтрів для $\lambda_1 = 435$ нм із урахуванням дисперсії показників заломлення n_L (SiO₂), n_H (Ta₂O₅) та n_0 (скло) [15–17]:

 $n_0 | (\text{HL})^3 1.9848 \text{H} (\text{LH})^2 \text{ L0.5556} \text{HL} (\text{HL})^2 1.9848 \text{H} (\text{LH})^3 | n_0$ (штрихова крива), $n_0 | \text{H}(\text{LH})^5 1.9257 \text{L}(\text{HL})^2 \text{H1.1734} \text{LH} (\text{HL})^2 1.9257 \text{L}(\text{HL})^5 \text{H} | n_0$ (пунктирна крива).

За потреби значення залишкового пропускання T_z можна зменшити за рахунок збільшення кількості шарів структури k (рис. 8, пунктирна крива), тому що при цьому смуги пропускання звужуються. Це дасть змогу збільшити значення $(\lambda_2/\lambda_1)_{\text{max}}$. Подібно можна обчислити величину $(\lambda_2/\lambda_1)_{\text{min}}$, яка визначає максимальне віддалення смуг одна від одної. У цьому випадку виникає залишкове пропускання T_z між смугою пропускання з довжиною хвилі λ_2 і межею широкої смуги високого відбивання (рис. 9). Вибір матеріалів шарів із більшим відношенням показників заломлен-

ня $n_{\rm H}/n_{\rm L}$ приведе до зростання ширини смуги високого відбивання і як наслідок — до зменшення величини $(\lambda_2/\lambda_1)_{\rm min}$.

Для прикладу спроектовано фільтр на основі двох матеріалів — SiO₂ і Ta₂O₅ — з відомими дисперсійними залежностями показників заломлення [15,16] (рис. 7). Для цього була вибрана структура (6), яка складається з двох товстих шарів скла з відомою дисперсійною залежністю [17] (рис.7), між якими розміщено 25 тонких плоскопаралельних шарів. Використання двох шарів скла потрібно, щоб забезпечити механічну міцність структури і зберегти її симетрію, що необхідно в запропонованому методі. Подібні структури з використанням двох товстих шарів скла використовують для проектування односмугових фільтрів [1,2].

Рис. 9. Енергетичний коефіцієнт пропускання двосмугового фільтра

 $n_0|(\text{HL})^5 1.9697\text{HL} 0.1351\text{HL} 1.9697\text{H}(\text{LH})^5|n_0$ для $\lambda_1 = 435$ нм із врахуванням дисперсії показників заломлення n_{L} (SiO₂), n_{H} (Ta₂O₅) та n_0 (скло) [15–17].

Довжини хвиль обох смуг пропускання в цьому методі можна вибирати довільно, тому (для порівняння) розрахунок був здійснений для тих самих значень $\lambda_1 = 435$ нм і $\lambda_2 = 404$ нм, що і в роботі [8]. Розв'язком рівняння (8) для заданих довжин хвиль є значення фазової товщини центрального шару $\delta_c = 0,8382$ рад при виборі параметра s = 10 і кількості шарів фільтра k = 25. За допомогою виразу (9) отримано значення фазових товщин симетричних шарів з номерами s і $m: \delta_{10} = \delta_{16} = 3,0097$ рад. Перевагою розрахованого фільтра (рис.10 суцільна крива)

$n_0 | \mathrm{H}(\mathrm{LH})^4$ 1.9160LHL 0.5336HLH 1.9160L (HL)⁴H $| n_0$,

є досягнення пропускання на рівні 100% в прозорому наближенні для вибраних довжин хвиль λ_1 і λ_2 .

Рис. 10. (Кольоровий онлайн.) Енергетичний коефіцієнт пропускання двох двосмугових фільтрів з дисперсійними залежностями показників заломлення $n_{\rm L}$ (SiO₂), $n_{\rm H}$ (Ta₂O₅) та n_0 (скло) [15–17]:

 n_0 |H(LH)⁴ 1.9160LHL 0.5336HLH 1.9160L (HL)⁴H $|n_0$ для k = 25 — суцільна крива,

 $n_0 |(\text{HL})^7$ 1.9205HLH 0.5066LHL 1.9205H $(\text{LH})^7 | n_0$

для k = 35 — штрихова крива, та одного з дисперсійними залежностями показників заломлення шарів $n_{\rm L}$ (SiO₂), $n_{\rm H}$ (Nb₂O₅) [18] та n_0 (скло):

 $n_0 |(\mathrm{HL})^3$ 1.9583
НLH 0.3831LHL 1.9583 Н $(\mathrm{LH})^3 | n_0$ для
 k=19 — пунктирна крива.

Рис. 11. (Кольоровий онлайн.) Фазова товщина центрального шару δ_c для різних положень смуг пропускання двосмугового фільтра (λ_1 і λ_2), розрахованого на основі структур (5) або (6) із врахуванням дисперсії показників заломлення $n_{\rm L}$ (SiO₂), $n_{\rm H}$ (Ta₂O₅) та n_0 (скло) [15–17]. Розрахунок здійснено для k = 25, $\lambda_1 = 400$ нм — синя крива, $\lambda_1 = 500$ нм — зелена крива, $\lambda_1 = 700$ нм — червона крива.

На рис. 11 показані залежності фазової товщини δ_c , яка є розв'язком рівняння (8) від λ_2/λ_1 для різних значень параметра *s* фільтра, у якому використано 25 шарів. Цей рисунок дозволяє графічно визначити

наближене значення фазової товщини центрального шару δ_c для потрібних довжин хвиль λ_1 і λ_2 . За вибору максимально допустимого значення залишкового пропускання $T_{z,\text{max}} = 0.1$ і $\lambda_1 = 500$ нм визначено крайні допустимі значення λ_2/λ_1 : $(\lambda_2/\lambda_1)_{\text{min}} = 0.88$, $(\lambda_2/\lambda_1)_{\text{max}} = 0.95$ для k = 25 і $(\lambda_2/\lambda_1)_{\text{min}} = 0.88$, $(\lambda_2/\lambda_1)_{\text{max}} = 0.98$ для k = 35.

Характерною властивістю розглянутих двосмугових фільтрів є зміна положення другої смуги з довжиною хвилі λ_2 щодо першої з довжиною хвилі λ_1 $(\lambda_2 < \lambda_1$ або $\lambda_2 > \lambda_1)$ за зміни розв'язку рівняння (9) із δ_s^+ на δ_s^- . Іншою властивістю цих фільтрів є звуження смуг пропускання та зменшення залишкового пропускання із збільшенням кількості шарів. Тому, використовуючи структуру з більшою кількістю шарів, можна звузити смуги пропускання, залишаючи їхні положення λ_1 і λ_2 незмінними (рис. 10 штрихова крива), що є ще одною перевагою такого методу проектування. Крім того, положення обох смуг може бути збережене за довільного вибору матеріалів шарів фільтра (рис. 10). Можливість збереження тих самих положень смуг пропускання λ_1 і λ_2 для структур з різною кількістю шарів k і для різних використаних матеріалів зумовлена тим, що в будь-якому випадку можна розрахувати відповідні значення фазових товщин δ_c і δ_s , які залежать як від λ_2/λ_1 , так і від показників заломлення вибраних матеріалів і від кількості шарів k. Від значень показників заломлення шарів n_H і n_L також залежить ширина смуги високого відбивання $\Delta \lambda$. Що більше відношення $n_{\rm H}/n_{\rm L}$, то більшою буде $\Delta \lambda$. Тому, вибираючи матеріали ша-

- [1] A. Thelen, Design of optical interference coatings (McGraw-Hill, New York, 1989)
- [2] H. A. Macleod, *Thin-Film Optical Filters* (Institute of Physics Publishing Bristol and Philadelphia, London, 2003).
- [3] A. Thelen, J. Opt. Soc. Am. 56, 1533 (1966).
- [4] C. Jacobs, Appl. Opt. **20**, 1039 (1981).
- [5] P. Baumeister, Appl. Opt. 21, 2965 (1982).
- [6] H. D. Polster, J. Opt. Soc. Am. 42, 21 (1952).
- [7] І. Я. Яремчук та ін., Вісн. Нац. ун-ту "Львівська політехніка": Електроніка 619, 186 (2008).
- [8] С. В. Гапоненко, С. Г. Кожух, С. А. Степкова, Контенант №2 (2014); www.contenant.ru/1electron_mag/ pdf/16.pdf.
- [9] S. Kozhukh *et al.*, J. Nanophotonics **6(1)**, 061704 (2012).
- [10] S. D. Smith, J. Opt. Soc. Am. 48, 43 (1958).

рів, потрібно врахувати, щоб обидві смуги пропускання потрапили всередину смуги високого відбивання $(\Delta \lambda/2 > |\lambda_2 - \lambda_1|).$

IV. ВИСНОВКИ

Залежність фазової товщини центрального шару δ_c як від відносного положення смуг пропускання двосмугового фільтра λ_2/λ_1 , так і від показників заломлення шарів n_i і від їх кількості k дозволяє для потрібних значень $\lambda_2/\lambda_1, n_i$ та k розрахувати відповідне значення δ_c . Здебільшого таке значення δ_c не є кратним до $\pi/2$ (нестандартний шар) і тому в запропонованому методі використання нестандартного центрального шару дає змогу довільно вибирати положення обох смуг пропускання λ_1 і λ_2 двосмугового інтерференційного фільтра. При цьому також реалізується можливість довільного вибору матеріалів шарів фільтра, можливість вибору ширини смуг пропускання із збереженням потрібних довжин хвиль λ_1 і λ_2 . Симетричність структур, які використовують для проектування двосмугового фільтра, дала змогу суттєво спростити аналітичні умови просвітлення, які були встановлені раніше [13] для довільних прозорих багатошарових структур. Використання запропонованого підходу для проектування трисмугових фільтрів дає змогу отримати несиметричне розміщення всіх смуг пропускання, що дозволяє в багатьох випадках досягнути задовільного рівня пропускання для потрібних довжин хвиль $\lambda_1, \lambda_2, \lambda_3$.

- [11] О. П. Кушнір, Журн. фіз. досл. **14(4)**, 4401 (2010).
- [12] I. Ya. Yaremchuk, V. M. Fitio, Ya. V. Bobitski, Semicond. Phys. Quantum Electron. Optoelectron. 11(1), 23 (2008).
- [13] O. P. Kushnir, Ukr. J. Phys. Opt. 10, 82 (2009).
- [14] И. В. Гребенщиков, А. Г. Власов, Б. С. Непорент, Н. В. Суйковская, *Просветление оптики* (ОГИЗ, Ленинград, 1946).
- [15] http://refractiveindex.info/?shelf=main&book= Si02&page=Lemarchand
- [16] http://refractiveindex.info/?shelf=main&book= Ta205&page=Gao
- [17] http://refractiveindex.info/?shelf=glass&book= SCHOTT-PK&page=N-PK51
- [18] http://refractiveindex.info/?shelf=main&book= Nb205&page=Lemarchand

DUAL AND TRIPLE BANDPASS OPTICAL FILTERS BASED ON SYMMETRICAL STRUCTURES

O. P. Kushnir

Lviv National Agrarian University, Physics Department, 1 Volodymyra Velykoho St., Dubljany, Lviv region, UA-80381, Ukraine

The simplified method of dual and triple bandpass optical filters design has been proposed. Usage of simple mathematical relations for determining the phase thicknesses of two symmetrical layers that provide two or three bandpasses within a rejection band is the main advantage of this method. The proposed method allows to select an arbitrary spectral position of both bandpasees for a dual bandpass filter considering the dispersion of the refractive index. Such a possibility is realised by means of the found dependence of the relative spectral position of both bandpasses on the phase thickness of the central layer. The dependence of the phase thickness of the central layer δ_c both on the relative position of bandpasses λ_2/λ_1 and on the number of layers k and their refractive indices n_i allows to calculate the corresponding magnitude δ_c for the necessary magnitudes λ_2/λ_1 , n_i and k. In most cases such magnitude δ_c is not multiple of $\pi/2$ (non-standard layer) and consequently the usage of the non-standard central layer in the proposed method allows to select an arbitrary position of both bandpass interference filter. It also provides a possibility of an arbitrary selection of the filter's materials and bandwidth while maintaining the necessary wavelengths λ_1 and λ_2 . The use of the proposed approach allows to design triple bandpass filters with an asymmetrical position of all bands.