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The phenomenological parameters of eclipsing binary stars, which are the prototypes of the
EA, EB and EW systems are determined using the expert complex of computer programs, which
realizes the NAV (“New Algol Variable”) algorithm (Andronov 2010, 2012) and its possible modifi-
cations are discussed, as well as constrains for estimates of some physical parameters of the systems
in a case of photometric observations only, such as the degree of eclipse, ratio of the mean sur-
face brightnesses of the components. The half-duration of the eclipse is 0.0617(7), 0.1092(18) and
0.1015(7) for Algol, β Lyrae and W UMa, respectively. The brightness ratio is 6.8±1.0, 4.9±1.0
and 1.15±0.13. These results show that the eclipses have a distinct beginning and end not only in
EA (as generally assumed), but also in EB and EW-type systems as well. The algorithm may be
applied to classification and study of the newly discovered (or poorly studied) eclipsing variables
based on own observations or that obtained using photometric surveys.
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I. INTRODUCTION

Modern photometric surveys have led to the discovery
of hundreds of thousands of new variable stars, which are
subject to robust classification and determination of the
main phenomenological parameters, that are necessary
for a registration in the General Catalogue of Variable
Stars [40] or in the AAVSO “Variable Stars Index” [1] —
type, brightness at maxima and minima, period, initial
epoch, duration of eclipse in per cent (for eclipsing bina-
ries), or asymmetry M−m for pulsating variables. In the
“remarks” section for the eclipsing variables, it is needed
to list an amplitude of the secondary minimum as well
as duration of the total eclipse.

One may note previous extensive studies in Ukraine of
Algols [41], β Lyr [34, 42], W UMa-type stars [26] (for
more details, see classical monographs [27,45]). More re-
cent reviews and monographs are published in [25, 38].
These studies are carried out in a frame of the interna-
tional campaign “Inter-Longitude Astronomy” [8, 9] and
national projects “Ukrainian Virtual Observatory” and
“Astroinformatics” [47,48].

One of the most common methods for the analysis of
periodic signals is a trigonometric polynomial approx-
imation (sometimes referred to as a truncated Fourier
series). The statistically optimal degree of trigonometric
polynomial is often small for “almost sinusoidal” signals
(e. g., pulsating variables [16, 29]) but increases signif-
icantly if the signal has intervals of rapid change [2, 3].
This is the case, which can be observed in the phase light
curves of eclipsing binary systems with relatively narrow
eclipses, i. e. especially of the Algol type. The modelling
of the light curves of eclipsing binaries using the Fouri-
er coefficients was discussed in [39] (mainly for EW-type

stars) and [28] (mainly for Algol-type stars) and refer-
ences therein.

Although the Fourier coefficients may be determined
with an excellent accuracy for the theoretical light
curves, the accuracy of the coefficients for the really
observed light curves is much worse either due to the
observational errors, or due to inhomogeneity of cover-
age of the light curve by observations. The usual sim-
plified equations for the Fourier coefficients should be
replaced by complete equations for the least squares
(LSQ) [2, 3, 32].

Another approach is to use special shapes (also called
“patterns” or “profiles”) of the eclipses. The simplified
model of spherical components with a constant bright-
ness distribution is widely used (see [10,31,41] for a pre-
liminary determination of the parameters. Also there is
an approach to compute “physical” models based on the
approach proposed by Wilson and Devinney [49] realized
by various authors [21, 37, 50–52], also for more compli-
cated cases with accretion disks [23].

However, the real physical modelling assumes addi-
tional spectroscopic observations to determine orbital ve-
locities of the components, the mass ratio, and tempera-
ture(s). This is available for ≤ 1% of the known objects,
so for the rest the phenomenological modelling is the only
source of information.

Fixing values of some of these unknown parameters
(temperature at the pole of one component and the mass
ratio) it is possible to compute the rest of them. Howev-
er, the (statistically) same quality of the approximation
may be obtained for a region in the parameter space,
rather than at some “statistically optimal” point. Such
computations need much longer computational time, the
error estimates need even much more resources, thus the
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“phenomenological” approximations using simpler func-
tions remain much more effective in a sense that fuwer
computer resources are required to get the same accura-
cy.

II. PHENOMENOLOGICAL MODELS

Generally, the phenomenological parameters may be
determined using two classes of the approximations: the
“local” and “global” ones. The first class is based on the
“local” approximations of the extrema, historically start-
ing from “hand-written” approximation of the points on
a millimeter paper (see, e. g., [46] for a review). Later on,
the intervals near the extrema were approximated using
algebraic polynomials of the user-defined degree (often
an ordinary parabola [7, 36, 45, 46]) or using the statis-
tically optimal degree [19, 22]. Other advanced methods
were reviewed by [4, 15,33].

The trigonometric polynomial (also called the “re-
stricted Fourier series”) is expressed as

xc(φ) = C1 +
s∑

j=1

[C2j cos(2πjφ) + C2j+1 sin(2πjφ)]

= C1 +
s∑

j=1

Rj cos(2πj(φ− φ0j)), (1)

where φ = ψ − int(ψ), int(ψ) is an integer part of ψ,
ψ = (t − T0)/P is the phase, t is time, T0 is the ini-
tial epoch, and P is the period (cf. [2,3]). If needed, the
period may be improved using differential corrections.

The “symmetrical” trigonometric polynomial contains
only the terms with cosines, the coefficients C2j+1 of the
terms with sines are suggested to be zero (e.g. if their
deviations from zero are not statistically significant, one
may fix these values to zero), as realized in the program
MCV [14]. If they are statistically significant, the maxi-
ma are unequal, what is called the O’Connell effect [35].

For the light curves of eclipsing variables, it may be
effective to split the trigonometric polynomial into two
parts [43]:

xm(φ) =
xc(φ) + xc(φ+ 0.5)

2

= C1 +
s/2∑
k=1

[C4j cos(4πkφ) + C4j+1 sin(4πkφ)], (2)

xd(φ) =
xc(φ)− xc(φ+ 0.5)

2

=
s/2∑
k=1

[C4j−2 cos(2π(2k − 1)φ) + C4j−1 sin(2π(2k − 1)φ)].

Obviously, their sum corresponds to xc(φ) and the differ-
ence — to xc(φ+0.5), respectively. If the O’Connell effect
is absent, the “mean” function xm(φ) describes the out-
of-eclipse part of the light curve, and twice — the minima
“of equal depth and shape”. The difference between the

minima are described by the “deviation” function xd(φ),
which, in a case of EW-type stars is very close to zero at
all phases. For statistically best approximation, one has
to use differential corrections to determine not only the
period, but also the initial epoch.

For the Algol-type stars, the statistically significant
degree of the trigonometrical polynomial s, computed us-
ing Fischer’s criterion, may reach 21, leading to a huge
number of parameters m = 2s+ 2 = 44 (e. g., [15]). An-
other star was best characterized by an even larger value
s = 50 (see [17]), showing a strong Gibbs phenomemon.

Andronov [5, 6] proposed a non-polynomial spline ap-
proximation

xc(φ) = C1 + C2 cos(2πφ) + C3 sin(2πφ)
+ C4 cos(4πφ) + C5 sin(4πφ) (3)
+ C6H(φ,C8, C9) + C7H(φ+ 0.5, C1, C10).

Additionally, we define a particular sum xc5(φ), which
contains only 5 terms without taking into account the
contributions (to the stellar magnitude) of the primary
(6-th term) and secondary (7-th term) eclipses.

Here, for suitability of computations, the phase is re-
defined to be in the interval [−0.25,+0.75) instead of the
usual definition in the main interval [0, 1). Moreover, the
phase may be corrected as φ = φ̃ − C11 − C12(t − T0)
to take into account possible corrections for the initial
epoch and the period (see [10] for more details). Here φ̃
is the phase corresponding to the initial values of T0 and
P.

The basic pattern (shape) is

H(ζ, C8, β) =

{
V (z) = (1− |z|β)3/2, if|z| < 1,

0, if|z| ≥ 1
(4)

where a dimensionless parameter z = φ/C8.
So, the parameters have the following meanings:

C1 — mean of the xc5(φ) over a complete phase
interval;

C2 — semi-amplitude of the reflection effect;
C3, C5 — semi-amplitudes of the sine terms, which

describe the O’Connell effect;
C4 — semi-amplitude of the effect of ellipticity;
C6 — amplitude of the primary minimum;
C7 — amplitude of the secondary minimum;
C8 — eclipse half-duration (the phase of the end

of eclipse);
C9 — parameter describing the shape of the pri-

mary minimum;
C10 — parameter describing the shape of the sec-

ondary minimum;
C11 — phase correction;
C12 — frequency correction.

The first seven parameters may be determined using
the linear least squares method, but the remaining “non-
linear” parameters C8−C12 may be determined using the
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differential corrections after a “brute force” minimization
of the test (target) function

Φm =
n∑

k=1

wk · (xk − xc(φk))2.

The “unit weight” error σ0m =
√

Φm/(n−m), and the
r.m.s. accuracy of the approximation at the phases of ob-
servations is σ[xc] = σ0m

√
m/n. In the current version

of the program, it is possible to fix some parameters, not
permitting corrections to them. The properties of the
test function were discussed in [43].

In the previous versions, the Monte-Carlo method was
used for the minimization of the test function in the pa-
rameter space, but it needs much more computational
time as compared to the combination of the “brute force”
+ “differential corrections” [11].

The light curves of the prototype stars Algol, β Lyr
and W UMa are shown in Figures 1, 2, 3, respectively,
and the best fit parameters are listed in Table 1. We
have used the published photoelectric observations for
these stars, the references are shown in the figure cap-
tions. For two stars, the observations were obtained in

two filters (B and V for β Lyr and blue (“B”) and yellow
(“Y”) for W UMa), so we used our program to these data
files separately.

Fig. 1. Phase light curve of Algol (β Per). The points are
observations by [24], the lines are the NAV approximation
with ±1σ “error corridor”.

Par. Algol β Lyr (B) β Lyr (V) W UMa (B) W UMa (Y)

C1 0.6597 ± 0.0031 3.5498 ± 0.0048 3.5427 ± 0.0058 −1.1923 ± 0.0015 −1.0161 ± 0.0016

C2 0.0466 ± 0.0043 0.0024 ± 0.0058 −0.0051 ± 0.0069 0.0084 ± 0.0016 0.0097 ± 0.0016

C3 0.0045 ± 0.0044 0.0067 ± 0.0034 0.0100 ± 0.0038 −0.0252 ± 0.0012 −0.0205 ± 0.0011

C4 0.0195 ± 0.0052 0.1565 ± 0.0072 0.1420 ± 0.0087 0.1583 ± 0.0025 0.1412 ± 0.0026

C5 0.0032 ± 0.0038 −0.0204 ± 0.0047 −0.0195 ± 0.0051 0.0155 ± 0.0017 0.0116 ± 0.0016

C6 0.9786 ± 0.0111 0.6522 ± 0.0159 0.6259 ± 0.0900 0.4132 ± 0.0054 0.4068 ± 0.0053

C7 0.0996 ± 0.0152 0.1067 ± 0.0177 0.1016 ± 0.0226 0.3440 ± 0.0048 0.3444 ± 0.0049

C8 0.0617 ± 0.0007 0.1093 ± 0.0018 0.1092 ± 0.0022 0.0999 ± 0.0009 0.1029 ± 0.0010

C9 1.5∗ 2.0370 ± 0.0862 2.0216 ± 0.0981 1.7733 ± 0.0442 1.6835 ± 0.0404

C10 1.5∗ 1.5∗ 2.8990 ± 1.8908 1.5∗ 1.5∗

C11 0.0009 ± 0.0003 0.0030 ± 0.0007 0.0032 ± 0.0007 0.0005 ± 0.0003 0.0010 ± 0.0003

C12 0∗ 0∗ 0∗ (−202± 85) · 10−7 (−386± 85) · 10−7

d1 0.5940 ± 0.0042 0.4516 ± 0.0080 0.4381 ± 0.0098 0.3165 ± 0.0034 0.3125 ± 0.0034

d2 0.0876 ± 0.0128 0.0936 ± 0.0148 0.0893 ± 0.0190 0.2716 ± 0.0032 0.2718 ± 0.0033

Y 0.6816 ± 0.0139 0.5452 ± 0.0194 0.5274 ± 0.0241 0.5881 ± 0.0057 0.5843 ± 0.0057

γ 6.7773 ± 0.9859 4.8233 ± 0.7294 4.9060 ± 1.0119 1.1656 ± 0.0140 1.1495 ± 0.0134

σ0 0.0232 0.0294 0.0283 0.0173 0.0167

The asterisks mark fixed parameters, which were not optimized.

Table 1. Parameters of the approximation (1).

The only parameter, which is expected to be the same
for all filters, is C8. For the analysed data, the differ-
ence between the estimates obtained for different filters,
is not statistically significant for the examined stars. Al-
so one may note a significantly narrower eclipse in Algol
(C8 = 0.062) as compared to β Lyr (C8 = 0.105) and

W UMa (C8 = 0.101). As the eclipse duration is depen-
dent on the sum of relative radii of the components and
the inclination, the EB and EW-type stars may have
small durations, but the EA-type stars typically have
C8 ≤ 0.08.

For the “fine tuning”, one has to minimize the weight-
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ed sum of the test functions, which depend on this joint
parameter (the rest are computed to minimize the test
function after fixing the trial value of this parameter).
We previously used such an approach in [13].

Fig. 2. Phase light curve of β Lyr in BV filters. The points
are observations by [30], the lines are the NAV approximation
with ±1σ “error corridor”.

In addition to the best fit parameters, we use ad-
ditional their combinations, which are related to the
physical parameters of the stars. Among them there are
d1 = 1 − 10−C6 and d2 = 1 − 10−C7 — the ratio of the
deficit of flux at the eclipse (primary and secondary, re-
spectively) to the theoretically expected value assuming
that the obscuration is absent. This may be significantly
different from the typically used value of the amplitude
defined as ∆ = xc(φmin)−xc(φmax), because we take into
account reflection, ellipticity and the O’Connell effects,
thus C6 = xc(0) − xc5(0), C7 = xc(0.5) − xc5(0.5). The
differences in the estimates of the eclipse depths using
these methods may reach dozens per cent for the EW-
type stars, and, for the elliptic-type stars (no eclipses),
our method will indicate C6 ≈ 0 and C7 ≈ 0 within
the error estimates. The classical amplitude will remain
detectable ∆ ≈ 0.m2.

There are two parameters, which are related to d1,
d2, namely, their sum Y = d1 + d2 and ζ = d1/d2

( [13], [15]). The first one characterizes the presence of
the eclipse (Y = 0, if no eclipse, and Y = 1, if both
eclipses are total). The brightness ratio ζ indicates the
relative temperatures of the components. Using these pa-
rameters for both filters, and the statistical relationships
Mass-Luminosity-Radius, we [13] estimated the physi-
cal parameters of the newly discovered system 2MASS
J18024395 + 4003309 = VSX J180243.9 + 400331.

Six other newly discovered stars show the presence of
the contribution of eclipses not only for the EA-type, but
also for the EW [44].

Fig. 3. Phase light curve of W UMa in blue (B) and yellow
(Y) filters. The points are observations by [20], the lines are
the NAV approximation with ±1σ “error corridor”.

For the stars Algol and β Lyr, we have used the phases
computed by the authors of the corresponding papers,
thus no period correction was made, so the parameter
C12 was set to zero. For W UMa, the corrections are
small, but may be determined.

A separate remark should be made on the fixed val-
ues of C9 or C10. From the model of spherical stars with
uniform brightness distribution, one may expect the min-
imal limit of β in Eq.(4) of 1.5, which corresponds to the
coincidence of both inner contacts of equal stars at an
inclination i = 90◦. In other cases, this value is expected
to be larger. If the value of the parameter after any iter-
ation formally goes outside the user-defined limits, this
value is set to the corresponding nearest limit (minimal
or maximal), and the parameter becomes fixed at the
limit, unless next iteration moves it inside the “permit-
ted” interval.

However, for the examined stars, the minima are sharp
enough to make this parameter be equal to the minimal
limit either for Algol, or to W UMa. For β Lyr, the pa-
rameter C9 is the same within error estimates for both
filters, whereas C10, which corresponds to the secondary
minimum, has a very large error estimate. Analysing the
Fig 2, one may suggest that this is due to a shallow min-
imum and a relatively small number of points. Despite
this parameter is unsure, the corresponding depth of the
minima is characterized by a better accuracy estimate.
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III. IMPROVED APPROXIMATIONS

As the shape parameters β are often equal to the min-
imal limit 1.5 for the examined stars, as well as for the
previously studied stars, we have applied approximations
with additional parameters. The dozens of modified func-
tions were tested by [17,18].

Fig. 4. Phase light curve of Algol (β Per) near the prima-
ry minimum. The points are observations by [24], the lines
are the NAV approximations, which correspond to 3 differ-
ent sets of the parameters: C9 = 1.5, C13 = 0.8, (up at
the mid-eclipse), C9 = 1.5, C13 = 0, (middle), C9 = 1,
C13 = C14 = 0 (bottom).

Figure 4, shows the part of the approximation near the
primary minimum with the main set of parameters list-
ed in Table 1, as well as some modifications. One of

the modifications is for the value C9 = 1, which corre-
sponds to a triangular shape at the center of the eclipse.
This triangle makes an apparent enlarging of the eclipse
depth, however, which is not statistically different from
the previous approximation. Another modification was
found to be the best by [18]. It redefines z in Eq.(4)
as z = y + C13y(1 − y), where y = |φ/C8| for the
primary minimum and z = y + C14y(1 − y), where
y = |(φ−0.5)/C8| for the secondary minimum. The obvi-
ous restrictions are 0 ≤ y ≤ 1, −1 ≤ C13 ≤ 1. The depth
of the minimum is the same within error estimates, and
there is a good approximation of both the ascending and
descending branches.

IV. CONCLUSION

We have applied the algorithm NAV (“New Algol Vari-
able”) to three prototype stars and obtained phenomeno-
logical parameters, which may be used for comparison
with that for other stars. The method is effective not
only for the EA-type systems, for which it was mainly
elaborated, but also for the EB and even EW-type stars.
The revised definition of the depth of the minimum with
taking into account the effects of proximity (reflection,
ellipticity and O’Connell) leads to a more precise deter-
mination of the ratio of the mean brightnesses of the
eclipsed parts of the components, which is useful for the
physical modelling. The current algorithm may be used
for determining the phenomenological parameters of nu-
merous new variables discovered from the ground-based
and space surveys.

[1] AAVSO “Variable Stars Index”, http://aavso.org/vsx.
[2] I. L. Andronov, Odessa Astron. Publ. 7, 49 (1994).
[3] I. L. Andronov, Astron. Soc. Pacific Conf. Ser. 292, 391

(2003).
[4] I. L. Andronov, Astron. Soc. Pacific Conf. Ser. 335, 37

(2005).
[5] I. L. Andronov, in Int. Conf. KOLOS–2010. Abstr.

Booklet, Snina, Slovakia, p. 1 (2010); http://www.
astrokarpaty.net/kolos2010abstractbook.pdf.

[6] I. L. Andronov, Astrophysics 55, 536 (2012).
[7] I. L. Andronov, J. A. Cuypers, S. Piquard, Astron. Soc.

Pacific Conf. Ser. 203, 64 (2000).
[8] I. L. Andronov et al., Astron. Astrophys. Trans. 22, 793

(2005).
[9] I. L. Andronov et al., Odessa Astron. Publ. 23, 8 (2010).

[10] I. L. Andronov, M. G. Tkachenko, Odessa Astron. Publ.
26, 204 (2013).

[11] I. L. Andronov, M. G. Tkachenko, Częstochowski Kalen-
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[37] G. Prsa et al., IAU Symp. 282, 271 (2012).
[38] S. M. Ruchinski, Publ. Astron. Soc. Pacific 105, 1440

(1993).
[39] S. M. Ruchinski, Astron. J. 115, 1135 (1998).
[40] N. N. Samus, E. V. Kazarovets, O. V. Durlevich,

N. N. Kireeva, E. N. Pastukhova, Astron. Rep. 61, 80
(2017).

[41] A. M. Shul’berg, Close Binary Systems with Spherical
Components [in Russian] (Nauka, Moscow, 1971), p. 276.

[42] M.Yu. Skulsky, in Physics of Magnetic Stars. Proceed-

ings of the International Conference, held in the Special
Astrophysical Observatory of the Russian AS, August 28–
31, 2006, edited by I. I. Romanyuk, D. O. Kudryavtsev
(2006), p. 223.

[43] M.G. Tkachenko, Adv. Astron. Space Phys. 6, 73 (2016).
[44] M.G. Tkachenko, I. L. Andronov, L. L. Chinarova,

Odessa Astron. Publ. 28, 181 (2015).
[45] V. P. Tsessevich, Instationary Stars and Methods of

Their Investigation. Eclipsing Variables [in Russian]
(Nauka, Moscow, 1971).

[46] V. P. Tsessevich, Variable Stars and Observations of
Them [in Russian] (Nauka, Moscow, 1980).

[47] I. B. Vavilova et al., Kosm. Nauka Tekhnol. 17, 74 (2011).
[48] I. B. Vavilova et al., Kinem. Phys. Celest. Bodies 28, 85

(2012).
[49] R. E. Wilson, E. J. Devinney, Astrophys. J. 166, 605

(1971).
[50] R. E. Wilson, Publ. Astron. Soc. Pacific 106, 921 (1994).
[51] S. Zola, M. Kolonko, M. Szczech, Astron. Astrophys.

324, 1010 (1997).
[52] S. Zola, K. Gazeas et al., Mon. Not. R. Astron. Soc. 408,

464 (2010).

ФЕНОМЕНОЛОГIЧНI ПАРАМЕТРИ ПРОТОТИПIВ ЗАТЕМНЮВАНИХ ПОДВIЙНИХ
ЗIР ТИПУ АЛҐОЛЯ, β Lyr, W UMa

М. Г. Ткаченко1, I. Л. Андронов1, Л. Л. Чiнарова2

1Кафедра “Математика, фiзика та астрономiя”, Одеський нацiональний морський унiверситет,
вул. Мечникова, 34, 65029, Одеса, Україна

e-mail: masha.vodn@yandex.ua, tt_ari@ukr.net
2Астрономiчна обсерваторiя, Одеський нацiональний унiверситет iм. I. I. Мечникова,

вул. Маразлiївська, 1V, 65014, Одеса, Україна
e-mail: llchinarova@gmail.com

Феноменологiчнi параметри затемнюваних подвiйних зiр, що є прототипами систем EA, EB i EW, ви-
значають iз використанням експертного комплексу комп’ютерних програм, у якому реалiзовано алгоритм
NAV (“New Algol Variable”, “НЗА” — “Нова Змiнна типу Алґоль”) [Андронов 2010, 2012] та його можливi
модифiкацiї. Обговорено також обмеження для оцiнки деяких фiзичних параметрiв систем у разi наявностi
лише фотометричних спостережень, таких, як ступiнь затемнення, вiдношення середнiх поверхневих яск-
равостей компонент. Половина тривалостi затемнення дорiвнює 0.0617(7), 0.1092(18) та 0.1015(7) вiдповiдно
для Алґоля, β Lyr та W UMa. Вiдношення яскравостей дорiвнюють 6.8±1.0, 4.9±1.0 та 1.15±0.13. Цi резуль-
тати показують, що затемнення мають чiткий початок i кiнець не лише для EA (як звично припускають),
але також для систем типу EB i EW. Алґоритм можна застосувати до класифiкацiї та вивчення нововiд-
критих (або слабовивчених) затемнюваних подвiйних зiр, отриманих на основi власних спостережень або з
використанням фотометричних оглядiв.
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