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Within the dielectric continuum model and the model of effective masses for the electron,
self-consistent solutions to the Schrödinger–Poisson system of equations taking into account the
contribution of piezoelectric and spontaneous polarizations were found.

The theory of stationary electronic states, taking into account the internal fields caused by
piezoelectric and spontaneous polarizations occurring in the nanostructure was developed for the
three-barrier wurtzite anisotropic resonance-tunneling structure with binary and ternary compo-
nents.

For nanostructure, which functioned as a cascade of experimentally realized quantum cascade
detector, the calculation of the potential profile, stationary electron energy spectrum and oscillator
strengths of quantum transitions was carried out. The geometric configurations of the nanostructure,
for which the intensity of the detector quantum transitions between the working energetic states is
the largest, were established.
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I. INTRODUCTION

In the modern physics of semiconductors, considerable
attention is paid to the study of the properties of low-
dimensional 3D nanosystems — resonance-tunnel struc-
tures (RTS). In recent years, on the basis of binary and
triple compounds of nitrides InN, GaN, AlN, quantum
cascade lasers (QCL) [1,2] and detectors (QCD) [3–5]
operating in the infrared range of electromagnetic waves
were created. Compared to the QCL [6, 7] and the QCD
[8, 9], which are based on binary and triple arsenide
semiconductor GaAs, InAs, AlAs, etc., the mentioned
nanodevices have a number of functional advantages. In
particular, the temperature stability of nitrides allows
nanodevices to operate in a range from cryogenic to room
temperature. At the same time, their considerable opti-
cal activity is ensured.

Group III-nitrides have a strong interatomic bond and
a large band gap, their crystalline lattice has a hexagonal
structure of wurtzite, which determines the anisotropy
of the physical properties of such materials. This deter-
mines the significant differences in the calculation of po-
tential RTS profiles, the electron energy spectrum, and
the phonon spectrum in comparison with isotropic sys-
tems having a cubic structure of a crystalline lattice.

The calculation of the potential profiles of anisotrop-
ic RTS is a problem not solved to the end. The theory
of internal fields arising in nanostructures with a small
number of layers, which was developed in the papers

[10–15], cannot be directly applied to a multilayer RTS.
At the same time, there are currently only two approach-
es to calculating potential RTS profiles, each of which has
its own significant shortcomings. The first approach pro-
posed in [16–18] is rather rough, since it allows only the
contribution of internal fields to be taken into account
in the value of an effective potential profile. The second
approach, proposed in many papers [19–23], is based on
the numerical simulation of solutions of a self-consistent
system of the Schrödinger and Poisson equations. For ex-
ample, in work [19], the boundary conditions for the elec-
tron wave function at the boundaries of the nanosystem
are not used. The main disadvantage of this approach is
that it is often not universal and cannot be applied to
calculations of the potential profiles of various RTS. It
can also be implemented mainly on powerful computers.

In the proposed work, a consistent theory of station-
ary electronic states and oscillator strengths of quan-
tum transitions is developed for the anisotropic two-well
RTS AlN/GaN/AlN/AlxGa1−xN/AlN of wurtzite type,
which is a separate cascade of experimentally created
QCD operating in the infrared range of electromagnet-
ic waves [5]. To do this, by finding the solution to the
system of the self-consistent Schrödinger and Poisson
equations, the calculation of the potential RTS profile
was performed. The calculation of the energy spectrum
of the electron and the oscillator strengths of quantum
transitions depending on the geometric parameters of the
investigated RTS was performed for the first time.

This work may be used under the terms of the Creative Commons Attribution 4.0 International License. Further distri-

bution of this work must maintain attribution to the author(s) and the title of the paper, journal citation, and DOI.
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II. THE EFFECTIVE POTENTIAL OF A
NANOSTRUCTURE. THE SELF-CONSISTENT
SCHRÖDINGER AND POISSON SYSTEM OF

EQUATIONS

A two-well RTS, which is located so that in the Carte-
sian coordinate system the OZ axis is perpendicular to

the boundaries of the separation of the nanostructure
layers, is considered (Fig. 1). The media (0), (1), (3),
(5), (6) are assumed to correspond to the semiconduc-
tor material AlN, medium (2) — GaN, medium (4) —
Al0.58Ga0.42N.

Using the model of effective masses for an electron we
have:

m(z) = m0

{

θ(−z) + θ(z − z5) +

2
∑

p=0

[θ(z − z2p) − θ(z − z2p+1)]

}

+ m1[θ(z − z1) + θ(z − z2)] + m2[θ(z − z3) + θ(z − z4)],

(1)

where θ(z) is the Heaviside step function, z−1 → −∞, z6 → ∞, m0 = m(0) = m(1) = = m(3) = m(5) = m(6),
m1 = m(2) and m2 = m(4) are effective electron masses in the potential barriers and wells of RTS, respectively.

Similarly, for the dielectric permeability of RTS we have:

ε(z) = ε(0)

{

θ(−z) + θ(z − z5) +

2
∑

p=0

[θ(z − z2p) − θ(z − z2p+1)]

}

+ ε(1)[θ(z − z1) + θ(z − z2)] + ε(2)[θ(z − z3) + θ(z − z4)],

(2)

ε(0) = ε(1) = ε(3) = ε(5) = ε(6), ε1 = ε(2) and ε2 = ε(4) are the dielectric permeabilities of the RTS layers material,
respectively.

The effective potential of the RTS for electron is found
as follows:

V (z) = ∆EC(z) + VH(z) + VHL(z) + VE(z) (3)

where the definition of its components ∆EC(z), VH(z),
VHL(z), VE(z) will be established below.

Fig. 1. Geometric scheme of nanostructure.

The energy spectrum of an electron En and its wave
functions Ψ(z) are determined by the solutions of the
self-consistent system of the Schrödinger and Poisson
equations:























−
~

2

2

d

dz

(

1

m(z)

dΨ(z)

dz

)

+ V (z)Ψ(z) = EΨ(z),

d

dz

(

ε(z)
dVH(z)

dz

)

= −eρ(z),

(4)

where ρ(z) is the free charge density inside the nanosys-
tem, and VH(z) is the potential determined by the con-
tribution of these charges.

On the boundaries of the RTS layers the conditions of
the continuity of the wave function Ψ(z) and the flows
of its probabilities are fulfilled:

Ψ(p)( zp) = Ψ(p+1)(zp);

(5)

dΨ
(p)
n (z)

m(z)dz

∣

∣

∣

∣

∣

z=zp−ε

=
dΨ

(p+1)
n (z)

m(z)dz

∣

∣

∣

∣

∣

z=zp+ε

.

Similarly, on the RTS heteroboundaries we have condi-
tions for the continuity of the potential VH(z) and the
vector of electric displacement field:

V
(p)
H (zp) = V

(p+1)
H (zp);

(6)

ε(p)dϕ
(p)
H (z)

dz

∣

∣

∣

∣

∣

z=zp−ε

−
ε(p+1)dϕ

(p+1)
H (z)

dz

∣

∣

∣

∣

∣

z=zp+ε

= −σ(zp),

where in (5) and (6) ε → +0; p = 0÷ 5, and the second
condition in expression (6) takes into account the pres-
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ence of surface charges on the nanosystem heterobound-
aries, which are the result of the different magnitude of
the total polarization in the adjacent RTS layers. For the
potential VH(z) outside the RTS, the conditions for its

disappearance are fulfilled:

VH(z)|z→0 → 0; VH(z)|z→z5
→ 0. (7)

In Eq. (3),

∆EC(z) =











0.765(Eg(AlN) − Eg(GaN)), z < 0, 0 ≤ z < z1, z2 ≤ z < z3,z4 ≤ z < z5, z > z5;

0, z1 ≤ z < z2;

0.765(Eg(Al0.58Ga0.42N) − Eg(GaN)), z3 ≤ z < z4

(8)

is a potential RTS profile for the electron calculated with-
out taking into account the electric field of piezoelectric
and spontaneous polarizations. The dependence of the
bandgap on the temperature T in (8) for a AlxGa1−xN
semiconductor is given by the Varshni relation [24, 25]:

Eg(x, T ) = Eg(x, 0) −
a(x)T 2

T + b(x)
(9)

being in dependence on the value of x:

Eg(x, 0) = xEg(AlN) + (1 − x)Eg(GaN) + αx(1 − x), (10)

Eg(AlN) = 6.25 eV and Eg(GaN) = 3.51 eV are the
bandgap energies for AlN and GaN respectively, α =
0.7 eV is a bowing parameter, a(x) = (1.799x+0.909(1−
x)) × 10−3 (eV/K) and b(x) = 1462x + 830(1 − x) (K)
are the Varshni parameters.

Besides, in (3):

VHL(z) = −

(

9

4π2

)1/3 [

1 +
0.6213rs

21
ln

(

1 +
21

rs(z)

)]

×
e2

4πε0rs(z)ε(z)a∗
B(z)

(11)

is the exchange-correlation potential calculated in the
Hedin–Lundquist approximation [26], where

rs(z) =

(

4π

3
a∗3
B n(z)

)−1/3

is a dimensionless function

that characterizes the electron gas in the RTS, in rela-
tion to the effective Bohr radius a∗

B(z) = ε(z)/m(z)aB,
aB is the Bohr radius, n(z) is the concentration of carri-
ers creating a static spatial charge.

The potential energy VE(z), which specifies the contri-
bution of the interaction of an electron with the internal
fields of the spontaneous and piezoelectric polarizations,
is found by the expression:

VE(z) =



























































0, z < 0,

eF1z, 0 ≤ z < z1,

eF1z1 − eF2z, z1 ≤ z < z2,

−eF2z2 + eF3z, z2 ≤ z < z3,

eF3z3 − eF4z, z3 ≤ z < z4,

−eF4z4 + eF5z, z4 ≤ z < z5,

0, z ≥ z5

(12)

where Fp, p = 1 . . . 5, are the values of the internal elec-
tric fields magnitudes appearing in the RTS.

III. CALCULATION OF THE INTERNAL
ELECTRIC FIELDS MAGNITUDES IN THE

NANOSTRUCTURE

The value of the macroscopic polarization P (p) in an
arbitrary p-th RTS layer is the sum of the spontaneous

P
(p)
SP and piezoelectric P

(p)
PZ polarizations:

P (p) = P
(p)
SP + P

(p)SP

PZ . (13)

Piezoelectric polarization for a three-component semi-
conductor layer of AxB1−xN -type depending on the con-
centration x of the component A is determined in the
linear approximation:

P
(p)
PZ(SP)(x) = P

AN(p)
PZ(SP)(η

(p)(x))

+ (1 − x)P
BN(p)
PZ(SP)(η

(p)(x)) (14)

In expression (13) the values P
AN(p)
PZ(SP)(η

(p)(x)) and

P
BN(p)
PZ(SP)(η

(p)(x)) — due to the inconsistency of the lat-

tice constants of the RTS layers — depend on the magni-
tude of the basal deformation η(p) = η(p)(x) = (asubs −
a(x))/a(x), where a(x) and asubs are lattice constants of
the RTS and substrate material layers respectively [27]:

a(x) = 0.31986− 0.00891x,

abuf =

5
∑

p=1

A(p) dp

a(p)

/ 5
∑

k=1

dp

(a(p))2
; (15)

A(p) = C
(p)
11 + C

(p)
12 − 2

(C
(p)
13 )2

C
(p)
33

,

where ap is the material lattice constant, dp is thickness,

C
(p)
11 , C

(p)
12 , C

(p)
13 , C

(p)
33 are elastic constants of the RTS

p-th layer.

The value of the piezoelectric polarization for an arbi-
trary layer of the RTS is defined as:
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P
(p)
PZ = 2η(p) e

(p)
31 + η(p)

z e
(p)
33

= 2η(p) e
(p)
31 +

(

−
2C

(p)
13

C
(p)
33

η(p)

)

e
(p)
33 (16)

= 2η(p)

(

e
(p)
31 − e

(p)
33

C
(p)
13

C
(p)
13

)

,

η(p)
z = −

2C
(p)
13

C
(p)
33

η(p),

where e
(p)
31 , e

(p)
33 are piezoelectric constants.

The values of internal electric fields Fp are determined
from the continuity condition of the electrical displace-
ment vector D̄p = ε(p)F̄p + P̄p on all the RTS heter-
oboundaries, that is:

D̄p = D̄p+1. (17)

Besides, the condition is provided, that the total poten-
tial drop across the RTS is zero is satisfied [12, 16]:

5
∑

p=1

Fpdp = 0. (18)

From the relations (17) and (18) an expression for the
electric field in an arbitrary layer of the RTS is found:

Fp =

5
∑

k=1; k 6=p

(Pk − Pp)
dk

ε(k)

/

ε(p)
5
∑

k=1

dk

ε(k)
, (19)

dk is the thickness of the k-th RTS layer.

IV. SELF-CONSISTENT SOLUTIONS TO THE
SCHRÖDINGER AND POISSON SYSTEM OF

EQUATIONS

Solutions to the self-consistent system of the
Schrödinger and Poisson equations (4) will be found on
a uniform grid [28]:

ω̄ =

{

zs = sh, s = 0, 1, . . . N, h =
l

N

}

(20)

where l = d1 + d2 + d3 + d4 + d5 = z5 is total RTS
thickness.

Using the finite difference method [28], the first and
the second derivatives are approximated as:

dΨ(s)(z)

dz

∣

∣

∣

∣

z=zs

=
Ψs+1 − Ψs

h
;

(21)

d2Ψ(s)(z)

dz2

∣

∣

∣

∣

z=zs

=
Ψs+1 − 2Ψs + Ψs−1

h2
.

Besides, for wave functions, the conditions of periodic-
ity similar to the BornЦvon Karman boundary condition
are fulfilled, so:

Ψ0 = ΨN ; Ψ1 = ΨN+1. (22)

Then the wave functions of the electron Ψs and the
solutions to the Poisson equation ϕs taking into account
the boundary conditions for them (5), (6) for the ap-
proximation of derivatives in accordance with (21), are
determined by the solutions of matrix equations:

N
∑

r=1

AsrΨs = fs, ;

N
∑

r=1

Bsrϕs = Fs,

Ψs =





















Ψ1

Ψ2

Ψ3

Ψ4

Ψs

...
ΨN





















; fs =





















Ksh
0
0
0
0
...
0





















; ϕs =





















ϕ1

ϕ2

ϕ3

ϕ4

ϕs

...
ϕN





















; Fs =



























−ρ1h
P2 − P1

...
−ρs−1h

Ps − Ps−1

...
−ρNh

PN+1 − PN



























,

(23)

where ϕ0 = ϕN+1 = 0, which follows from condition (7),

Ks = ~
−1
√

2m1(∆EC(zs) − E). In expression (23) Asr , Bsr (s = 1 . . . n, r = 1 . . . n) are matrices for which elements:

Asr =



















































1, r = s − 1,

−

(

1 +
ms

ms+1

)

, r = s,

ms

ms+1
, r = s + 1,

0, otherwise

; Bsr =







































ε(s−1) r = s − 1,

−(ε(s−1) + ε(s)), r = s,

ε(s) r = s + 1,

0, otherwise

(24)
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if the nodes zs of the grid coincide with the heteroboundaries of the RTS and

Asr =



































1, r = s − 1,

(k2
s − χ2

s)h
2 − 2, r = s,

−1, r = s + 1,

0, otherwise

; Bsr =







































ε(s), r = s − 1,

−(ε(s) + ε(s+1)), r = s,

ε(s+1), r = s + 1,

0, otherwise

(25)

otherwise.

In expression (25):

ks = ~
−1
√

2msE; χs = ~
−1
√

2msV (zs);

ms =







m0, wells,

m1, barriers.
. (26)

The stationary spectrum E
(s)
n of electron is determined

from the dispersion equation:

det
∣

∣

∣Asr − E(s)
n I

∣

∣

∣ = 0, (27)

were n = 1, 2, . . . is the number of the energy level of
the stationary electronic spectrum, I is the unit matrix
of dimensions N × N .

The resulting wave function of an electron in the RTS
can be written as:

Ψn(En, z) =
N
∑

p=1

Ψ(p)
n (En, z) [θ(z − zp−1) − θ(z − zp)] . (28)

Further, in the ratio (25):

ρs = ρ(z) = σ(zs)δ(zs+1 − zs) + e(N+
D − n(zs)) (29)

= (P (z)|z=zs+0 − P (z)|z=zs−0)/h + e(N+
D − n(zs)) = (Ps+1 − Ps)/h + e(N+

D − n(zs)),

where the concentration of ionized donor impurities:

N+
D =

ND

1 + 2 exp

(

EF − En

kBT

) (30)

ND is the concentration of donor impurities, δ(z) is the Dirac delta function.
Concentration of electrons in the RTS:

n(z) = n0(z)
∑

n

|Ψ(En, z)|
2
ln

∣

∣

∣

∣

1 + exp

(

EF − En

kBT

)∣

∣

∣

∣

n0(z) =
m(z)kBT

π~2
. (31)

The Fermi level of the material of the RTS layers EF is determined from the condition of charge neutrality of the
nanostructure:

∫ l

0

[

n(z) − N+
D

]

dz = 0. (32)

The oscillator strengths of quantum transitions using the Simpson’s rule [28] are found as follows:

fm,m′ =
2(Em − Em′)

~2

N
∑

p=1

mp

∣

∣

∣

∣

∣

∫ zp

zp−1

zΨ∗(p)
m (Em, z)Ψ

(p)
m′ (Em′ , z)dz

∣

∣

∣

∣

∣

2

=
(Em − Em′)

3~2

N
∑

p=1

mp

∣

∣

∣zp−1Ψ
∗(p)
m (Em, zp−1)Ψ

(p)
m′ (Em′ , zp−1) (33)

+ 2(zp−1 + zp+1)Ψ
∗(p)
m

(

Em,
zp−1 + zp+1

2

)

Ψ
(p)
m′

(

Em′ ,
zp−1 + zp+1

2

)

+ zp+1Ψ
∗(p)
m (Em, zp+1)Ψ

(p)
m′ (Em′ , zp+1)

∣

∣

∣

2

.
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Now the self-consistent solution to the Schrödinger and Poisson system of equations (4) is obtained using the method
of successive l iterations according to the scheme:































−
~

2

2

∂

∂z

(

1

m(z)

∂Ψ
(l+1)
n (z)

∂z

)

+ V (l+1)(z)Ψ(l+1)
n (z) = E(l+1)

n Ψ(l+1)
n (z),

∂

∂z

(

ε(z)
∂ϕ

(l)
H (z)

∂z

)

= −eρ(l)(z)

, (34)

where the effective potential in the first order of itera-
tions is considered to be equal:

V (1)(z) = ∆EC(z) + VE(z). (35)

The accuracy of the calculations performed according
to the scheme (34) is given by the following conditions:

∣

∣

∣

∣

∣

∣

∣Ψ
(l+1)
n (z)

∣

∣

∣

2

−
∣

∣

∣Ψ
(l)
n (z)

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

∣
Ψ

(l)
n (z)

∣

∣

∣

2 � 1;

(36)
∣

∣

∣ϕ
(l)
H (z) − ϕ

(l−1)
H (z)

∣

∣

∣

ϕ
(l)
H (z)

� 1.

V. DISCUSSION OF THE RESULTS

The calculation of the effective potential V (z), the sta-
tionary energy spectrum of the electron En , its wave
functions Ψn(En, z), and the oscillator strengths of quan-
tum transitions fm,m′ were performed on the basis of the
developed theory.

Calculations were performed for the experimental-
ly implemented nanostructure being a separate QCD
cascade [5]. The geometric parameters of RTS were
as follows: the thickness of potential barriers: ∆1 =
2 nm; ∆2 = 1 nm; ∆3 = 1 nm, the width of the po-
tential wells: d1 = 2.08 nm; d2 = 15 nm.

The pysical parameters of the RTS material layers:
a (nm); m/m0; ε; PSP(C/m2); e31 (C/m2),
e33 (C/m2); c11(GPa), c12(GPa), c13(GPa), c33(GPa)
are known from the literature [27, 29], their values are
given in Table 1, where m0 ia the mass of a free electron.

a m/m0 ε PSP e31 e33 c11 c12 c13 c33

AlN 0.31106 0.322 8.5 −0.081 −0.53 1.51 396 137 108 373

GaN 0.31892 0.186 10 −0.034 −0.34 0.67 390 145 106 398

Al0.58Ga0.42N 0.31436 0.265 9.13 −0.061 −0.45 1.15 393.5 140.4 107.2 383.5

Table 1. Physical parameters of the RTS material layers.

The concentration of donor impurities according to
experimental work [5] was chosen equal to ND = 6 ×
1017 cm−3, temperature was T = 273 K.

The accuracy of the calculations, which is given by the
relations (36), was assumed to be equal to 10−6, which
was insured by 8–10 iterations according to the scheme
(34).

In Fig. 2 the energetic scheme of a single QCD cas-
cade is presented, the calculation of the potential profile
of which, depending on the value of z, was performed ac-
cording to the relations (3), (8), (11), (12). It can be seen
from the figure that in comparison with the QCD cas-
cades operating in the middle and far infrared ranges [7,
8], the depths of potential wells and the height of poten-
tial barriers are much larger and significantly deformed
under the influence of internal electric fields caused by
spontaneous and piezoelectric polarizations. It should be
noted that this fact is promising for varying the perfor-
mance characteristics of nanoscale devices by changing

the parameters of the geometric design of the RTS cas-
cade [30–32].
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Fig. 2. Potential profile of one cascade of QCD and square
moduli of the stationary states wave functions.
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In Fig. 2 the values of the energies of the stationary
electron spectrum in the investigated RTS and the cor-
responding distributions of the probability of finding an
electron within the nanosystem |Ψ(En, z)|2 are present-
ed. The values of these energies and the localization of
their corresponding electronic states in the RTS are pre-
sented in Table 2. It can be seen from the figure that the
operating electron states, which are localized in the RTS
input well, cause a vertical electronic transition 1 → 8
with energy Ω(theory) = E8 − E1 = 660.3meV. The cal-
culated value of the detected energy differs from the ex-
perimentally obtained value Ω(exp) = 650.0meV by not
more than 2%.

Electron energy (meV) Localization

E1=496.6 active band

E2=686.6 extractor

E3=793.9 extractor

E4=881.7 extractor

E5=959.3 extractor

E6=1030.3 extractor

E7=1097.6 extractor

E8=1156.8 active band

E9=1245.3 extractor

E10=1336.0 extractor

Table 2. The values of the stationary spectrum energies of
an electron in the closed RTS and their localization.

Next, we calculated the energy of the stationary elec-
tron spectrum (En) and the oscillator forces of quan-
tum transitions (fnn′). The results are presented in Fig.
3a,b, depending on the position d (0 ≤ d ≤ d1 + d2)
of the inner barrier between the two outer barriers of
RTS, the sizes of all its other its elements being fixed.
It can be seen from Fig. 3,a, that for each energy level
number n the dependence En = En(d) forms n maxima
and n − 1 minima, respectively. In this case, the condi-
tion En(d)|d→0 ≈ En(b)|d→d1+d2

, that holds for active
zones of the arsenide semiconductors QCD and QCL is
not satisfied. The new condition looks like:

En(d)|d→0 ≈ En(d)|d→d1+d2
+ VH(d1 + d2)

+ Vex(d1 + d2) + VE(d1 + d2). (37)

The condition that determines the optimal operation
of the QCD is the formation of the maximum value of
the oscillator strength fnn′ of the quantum transition
between electronic states, providing the necessary ener-
gy of the electromagnetic field absorbing??? [30, 32] (in
our case this is Ω18 = E8 −E1). Thus, it is necessary for
the oscillator strength f18 to be in order of magnitude
larger than the oscillator strength of the quantum transi-
tions from the first to the remaining stationary electronic
states, that is:

f18 � f1n′ , n′ = 2 . . . 9, n′ 6= 8. (38)

The results of calculating the oscillator strengths of
quantum transitions from the first electronic stationary
state to the rest electronic states contained in the RTS
as a function of the value of d are shown in Fig. 3,b. It
is clear from the figure that the necessary condition (34)
is satisfied by a single region 1.7 nm ≤ d ≤ 2.8 nm con-
taining the experimentally realized configuration of the
QCD active band dexp.

Fig. 3. Electron stationary spectrum (a), oscillator
strengths (b) as functions of the position (d) of the inner
barrier between the two outer barriers of RTS.

Thus, the developed theory allows to establish geo-
metric configurations of nitride QCD active zones, which
ensure optimal operation of these nanodevices.

VI. CONCLUSIONS

1. Using the solutions to the self-consistent system of
the Schrödinger and Poisson equations the theory of sta-
tionary electronic states and the forces of oscillators of
quantum transitions in an anisotropic RTS of wurtzite
type has been developed.

2. For the experimentally produced QCD of the near-
infrared range, the calculation of effective potential,
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stationary electron spectrum and forces of oscillator
strengths of quantum transitions has been performed.

3. It is shown that the calculated value of the detected
energy differs from the experimentally obtained by no
more than 2%. It is established that in the vicinity of an
experimentally realised configuration of the nanostruc-
ture the intensity of quantum transitions between the
working electron states determining the operating value
of detected energy is maximal.

4. The proposed theory can be used for the calcula-
tion of the potential profiles of wurtzite anisotropic RTS,
spectral parameters of an electron and to determine the
geometric configurations of these nanostructures, which

provide the optimal operation of nanodevices on their
basis.
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АНIЗОТРОПНI ВЮРЦИТНI РЕЗОНАНСНО-ТУНЕЛЬНI СТРУКТУРИ:
СТАЦIОНАРНИЙ СПЕКТР ЕЛЕКТРОНА ТА СИЛИ ОСЦИЛЯТОРIВ КВАНТОВИХ

ПЕРЕХОДIВ

I. В. Бойко
Тернопiльський нацiональний технiчний унiверситет iменi Iвана Пулюя,

вул. Руська, 56, Тернопiль, 46001, Україна

e-mail: boyko.i.v.theory@gmail.com

З використанням моделi дiелектричного континууму та моделi ефективних мас для електрона знайдено
самоузгодженi розв’язки системи рiвнянь Шредингґера–Пуассона з урахуванням внеску п’єзоелектричної
та спонтанної поляризацiй.

Для трибар’єрної анiзотропної резонансно-тунельної структури вюрцитного типу з подвiйними та по-
трiйними компонентами розвинено теорiю стацiонарних електронних станiв, що враховує вплив внутрiшнiх
полiв, зумовлених п’єзоелектричною та спонтанною поляризацiями, якi виникають у наноструктурi.

Для наноструктури, що функцiонувала як каскад експериментально реалiзованого квантового каскад-

ного детектора, виконано розрахунок потенцiального профiлю, стацiонарного енерґетичного спектра елек-

трона та сил осциляторiв квантових переходiв. Установлено геометричнi конфiґурацiї наноструктури, для

яких iнтенсивнiсть квантових детекторних переходiв мiж робочими енерґетичними станами найбiльша.
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