Journal of Physical Studies 23(1), Article 1101 [12 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.1101

THE CALCULATION OF THE DIFFERENTIAL CROSS SECTION OF HADRON ELASTIC SCATTERING BY TRANSFERRED FOUR-MOMENTUM WITHIN THE PERTURBATION THEORY

N. O. Chudak, K. K. Merkotan, D. A. Ptashynskiy, O. S. Potiienko, I. V. Sharph, V. I. Bregid

Odesa National Polytechnic University, 1, Shevchenko Ave., Odesa, 65044, Ukraine
e-mail: nata.podolyan@gmail.com

Existing field theories consider multi-particle states from the Fock space are considered, but field operators are purely single-particle operators. As a result, all known quantum field theories are formulated in terms of the filling numbers of the single-particle states. Such a situation is acceptable for the theories (for example, QED), in which in the initial and final states there are quanta of the same fields that interact. But when we describe the hadron scattering processes, a known problem arises. Through the gluons' exchange an interaction occurs between the quarks that are in the hadron, but in the initial and final states of the scattering process, only the bound states of the quarks, which are hadrons, can be observed. This leads to the conclusion that when we consider the interaction between the quarks and gluons, we cannot ``turn on'' the interaction in the initial phase of the scattering process and ``turn off'' it in the final phase, as in the usual $\hat{S}$ -- matrix consideration. Namely, the asymptotic quark and gluon states are not single-particle and cannot, in principle, be expressed in terms of one-particle states due to the requirement of relativistic invariance. Indeed, it is impossible to realize a purely spatial shift in a relativistic theory, as each single-particle state cannot be characterized only by the particleТs momentum, but must be characterized by the energy-momentum four-vector. Therefore, as a result of working with the filling numbers of such states, we will have the energy-momentum conservation law for the quarks and gluons four-momenta, not for hadrons, as in the experiment.

We propose to solve these problems by using the model of multi-particle fields. After quantization, the operator-marking functions of the multi-particle fields describe the creation and annihilation of hadrons. When we describe the hadron processes with these operators, the hadrons energy-momentum is conserved, not the constituent particles, as it should be.

The differential cross section of proton elastic scattering by the square of the transferred four-momentum is calculated by the model of the multi-particle fields, namely three-particle bispinor field and two-particle gauge field. The contribution from the simplest pole diagrams and the contribution from the two-particle branching point are taken into account.

Comparison with experimental data showed a qualitative reproduction of these data. The nonmonotonе effect of the differential cross section dependence on the square of the transmitted four-momentum with increasing energy in the center of the mass system is described.

In the considered model, the nonmonotonе effect is a consequence of the proton spin properties. In our opinion, if we want to reproduce the quantitative experimental data, we will have to include the contributions from inelastic processes to the unitarity condition, but this requires a large amount of calculation.

PACS number(s): 12.38.Bx, 12.38.Cy, 25.40.Cm, 13.85.-t

pdf


References
  1. N. Chudak et al., Phys. J. 2, 181 (2016).
  2. Y. V. Volkotrub et al., arXiv:1510.01937 (2015)
  3. Р. Фейнман, Взаимодействие фотонов с адронами (Мир, Москва, 1975).
  4. S. Forte, G. Watt, Ann. Rev. Nucl. Part. Sci. 63, 291 (2013);
    CrossRef
  5. L. L. Jenkovszky, A. Nagy, S. M. Troshin, J. Tur\'{o}ci, N. E. Tyurin, Int. J. Mod. Phys. A 25, 5667 (2010);
    CrossRef
  6. P. D. B. Collins, {\em An Introduction to Regge Theory and High Energy Physics, Cambridge Monographs on Mathematical Physics} (Cambridge University Press, 1977);
    CrossRef
  7. Ю. П. Никитин, И. Л. Розенталь, Ядерная физика высоких энергий (Атомиздат, Москва,1980).
  8. M. Baker, K. Ter-Martirosyan, Phys. Rep. 28, 1 (1976);
    CrossRef
  9. J. R. Cudell et al., Phys. Rev. D 65, 074024 (2002);
    CrossRef
  10. M. Froissart, Phys. Rev. 123, 1053 (1961);
    CrossRef
  11. D. Amati, A. Stanghellini, S. Fubini, Nuovo Cim. 26, 896 (1962);
    CrossRef
  12. V. Fadin, E. Kuraev, L. Lipatov, Phys. Lett. B 60, 50 (1975);
    CrossRef
  13. Э. A. Кураев, Л. Н. Липатов, В. С. Фадин, Журн. эксп. теор. физ. 72, 377 (1977).
  14. В. A. Абрамовский, В. Н. Грибов, О. В. Канчели, Яд. физ. 18, 595 (1973).
  15. Л. Н. Липатов, Усп. физ. наук 178, 663 (2008);
    CrossRef
  16. М. Г. Козлов, А. В. Резниченко, В. С. Фадин, Вест. Новосиб. гос. ун-ту. Сер. Физ. 2, 3 (2007).
  17. I. В. Шарф та ін., Укр. фіз. журн. 56, 1151 (2011).
  18. I. Sharph et al., Centr. Eur. J. Phys. 10, 858 (2012);
    CrossRef
  19. L. L. Jenkovszky, A. N. Wall, Czech. J. Phys. B 26, 447 (1976);
    CrossRef
  20. А. Валл, Л. Енковский, Б. Струминский, Физ. элем. част. атом. ядра 19, 181 (1988).
  21. R. Fiore, L. L. Jenkovszky, F. Paccanoni, A. Prokudin, Phys. Rev. D 68, 014005 (2003);
    CrossRef
  22. D. A. Fagundes, L. Jenkovszky, E. Q. Miranda, G. Pancheri, P. V. R. G. Silva, Int. J. Mod. Phys. A 31, 1645022 (2016);
    CrossRef
  23. E. Martynov, Phys. Rev. D 76, 074030 (2007);
    CrossRef
  24. E. Martynov, Phys. Rev. D 87, 114018 (2013);
    CrossRef
  25. К. Тер-Мартиросян, Итоги развития реджевской схемы и эксперимент (МИФИ, Москва, 1975).
  26. T. T. Chou, C. N. Yang, Phys. Rev. D 19, 3268 (1979);
    CrossRef
  27. C. Bourrely, J. Soffer, T. T. Wu, Nucl. Phys. B 247, 15 (1984);
    CrossRef
  28. E. Nagy et al., Nucl. Phys. B 150, 221 (1979);
    CrossRef
  29. A. Alkin, E. Martynov, O. Kovalenko, S. M. Troshin, Phys. Rev. D 89, 091501 (2014);
    CrossRef
  30. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014);
    CrossRef
  31. D. Favart, in 3rd Topical Workshop on Proton-Antiproton Collider Physics, Rome (CERN-1983-004), 1983, p. 270; http://cds.cern.ch/record/868675
  32. N. Amos et al., Phys. Lett. B 20, 460 (1983);
    CrossRef
  33. S. L. Bueltmann et al., Phys. Lett. B 579, 245 (2004);
    CrossRef
  34. G. Antchev et al., Europhys. Lett. 101, 21002 (2013);
    CrossRef
  35. G. Aad et al., Nucl. Phys. B 889, 486 (2014);
    CrossRef
  36. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, {\emТеоретическая физика. Квантовая электродинамика. Том 4} (ФМЛ, Москва, 2002).
  37. Н. Н. Боголюбов, Д. В. Ширков, Введение в теорию квантованных полей, 4-е изд. (Наука, Москва, 1984).
  38. J. Pumplin, G. L. Kane, Phys. Rev. D 11, 1183 (1975);
    CrossRef
  39. B. Z. Kopeliovich, B. G. Zakharov, Phys. Lett. B 226, 156 (1989);
    CrossRef
  40. O. V. Selyugin, Phys. Part. Nucl. Lett. 13, 303 (2016);
    CrossRef
  41. E. Aprile et al., Phys. Rev. Lett. 46, 1047 (1981);
    CrossRef
  42. C. Lac et al., J. Phys. 51, 2689 (1990);
    CrossRef
  43. J. Bystricky, C. Lechanoine-LeLuc, F. Lehar, Eur. Phys. J. C 4, 607 (1998);
    CrossRef
  44. С. М. Биленький, Л. И. Лапидус, Р. М. Рындин, Усп. физ. наук 84, 243 (1964);
    CrossRef
  45. L. Wolfenstein, J. Ashkin, Phys. Rev. 85, 947 (1952);
    CrossRef
  46. S. Bultmann et al., Phys. Lett. B 632, 167 (2006);
    CrossRef
  47. D. Bell et al., Phys. Lett. B 94, 310 (1980);
    CrossRef
  48. С. М. Трошин, Н. Е. Тюрин, Усп. физ. наук 164, 1073 (1994);
    CrossRef
  49. A. D. Krisch, Eur. Phys. J. A 31, 417 (2007);
    CrossRef
  50. N. Akchurin, N. H. Buttimore, A. Penzo, Phys. Rev. D 51, 3944 (1995);
    CrossRef
  51. J.-R. Cudell, E. Predazzi, O. V. Selyugin, Eur. Phys. J. 21, 479 (2004);
    CrossRef
  52. N. O. Chudak et al., Ukr. J. Phys. 61, 1033 (2016).
  53. В. В. Анисович, Усп. физ. наук 168, 481 (1998);
    CrossRef
  54. M. Bashkanov, AIP Conf. Proc. 619, 525 (2002);
    CrossRef
  55. W. Ochs, J. Phys. G 40, 043001 (2013).
  56. T. Teshima, I. Kitamura, N. Morisita, AIP Conf. Proc. 619, 487 (2002);
    CrossRef
  57. H. Noshad, S. Mohammad Zebarjad, S. Zarepour, Nucl. Phys. B 934, 408 (2018);
    CrossRef
  58. A. Breakstone et al., Phys. Rev. Lett. 54, 2180 (1985);
    CrossRef
  59. C. M. Ankenbrandt et al., Phys. Rev. 170, 1223 (1968);
    CrossRef
  60. П. Коллинз, Введение в Реджевскую теорию и физику высоких энерґий (Атомиздат, 1980).
  61. I. V. Sharf et al., J. Mod. Phys. 2, 1480 (2011);
    CrossRef
  62. I. V. Sharf et al., J. Mod. Phys. 3, 16 (2012);
    CrossRef
  63. I. V. Sharf et al., J. Mod. Phys. 3, 129 (2012);
    CrossRef
  64. М. А. Лаврентьев, Б. В. Шабат, Методы теории функций комплексного переменного, 4-е изд. (Наука, Москва, 1973).