Journal of Physical Studies 23(2), Article 2602 [6 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.2602

MOLECULAR DYNAMICS INVESTIGATION OF THE FORMATION PROCESSES OF Zn--ZnO CORE-SHELL NANOSTRUCTURES

S. S. Savka1, Yu. I. Venhryn1, A. S. Serednytski1, D. I. Popovych{1,2}

1Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine,
3b, Naukova St., Lviv, UA-79060, Ukraine,
2National University ``Lvivska Polytechnika'', 12, Bandera St., Lviv, UA-79013, Ukraine

We carried out molecular dynamics (MD) simulations of the oxidation of zinc nanoclusters to investigate the process of the formation of Zn-ZnO ``core-shell'' nanoclusters. In the present work it has been shown that the structure, shape and oxide layer thickness of the obtained particles directly depend on the initial oxygen density and initial temperature of the system. A molecular dynamics simulation with three initial temperatures, three different initial oxygen concentrations in the system and two initial sizes of Zn nanoclusters was performed. Depending on this, you can get differences in the structure, the thickness of the oxide layer and the form of Zn-ZnO ``core-shell'' nanoparticles. With an increase in the initial oxygen density, the oxide layer thickness of the obtained nanoparticles increases to a certain limit. During the analysis, it was discovered that at 300 K temperature, nanoclusters retain the structure of the nucleus, but the shell structure was almost always amorphous, and at 600 K the cluster structure was mostly amorphous, there was no separation between the core and the shell. The percentage of the amorphous structure was growing with the growth of the gas concentration, due to the growth of the oxide shell. The results are in good agreement with experimental results and earlier molecular dynamics simulations.

PACS number(s): 61.43.Bn, 81.07.Wx

pdf


References
  1. Zhong Lin Wang, J. Phys.: Cond. Matt. 16, R829 (2004);
    CrossRef
  2. I. B. Olenych, L. S. Monastyrskii, A. P. Luchechko, J. Appl. Spectrosc. 84, 66 (2017);
    CrossRef
  3. M. Madel et al., Phys. Status Solidi A 212, 1810 (2015);
    CrossRef
  4. Y. Bobitski, B. Kotlyarchuk, D. Popovych, V. Savchuk, Proc. SPIE 4425, 342 (2001);
    CrossRef
  5. M. T. Swihart, Curr. Opin. Colloid Interface Sci. 8, 127 (2003)
    CrossRef
  6. V. V. Gafiychuk, B. K. Ostafiychuk , D. I. Popovych , I. D. Popovych, A. S. Serednytski, Appl. Surf. Sci. 257, 20 (2011);
    CrossRef
  7. V. Zhyrovetsky et al., Phys. Status Solidi C 10, 1288 (2013);
    CrossRef
  8. F. Zhiyong, G. Lu Jia, J. Nanosci. Nanotechnol. 5, 1561 (2005);
    CrossRef
  9. O. V. Bovgyra, R. V. Bovgyra, D. I. Popovych, A. S. Serednytski, J. Nano Electron. Phys. 7, 04090 (2015).
  10. L. .J. Lewis, D. Perez, Appl. Surf. Sci. 255, 5101 (2009);
    CrossRef
  11. M. G. Brik, I. Sildos, Physica B: Cond. Matter. 405, 2450 (2010);
    CrossRef
  12. R. Bovhyra, D. Popovych, O. Bovgyra, A. Serednytski, Nanoscale Res. Lett. 12, 76 (2017);
    CrossRef
  13. D. Frenkel, B. Smit, Understanding Molecular Simulation.From Algorithms to Applications (Academic Press, San Diego, 2002).
  14. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004).
  15. D. Raymand, A. C. T. van Duin, M. Baudin, K. Hermansson, Surf. Sci. 602, 1020 (2008);
    CrossRef
  16. A. C. T. van Duin, O. Verners, Y.-K. Shin, Int. J. Energ. Mater. Chem. Propul. 12, 95 (2013);\\
    CrossRef
  17. S. S. Savka, D. I. Popovych, A. S. Serednytski, Springer Proc. Phys. 195, 145 (2016);
    CrossRef
  18. W. J. Mortier, S. K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986);
    CrossRef
  19. P. H. Hunenberger, Adv. Polymer. Sci. 173, 105 (2005);
    CrossRef
  20. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 81, 3684 (1984);
    CrossRef
  21. J. D. Honeycutt, H. C. Andersen, J. Phys. Chem. 91, 4950 (1987);
    CrossRef
  22. F. Daan, S. Berend, Understanding Molecular Simulation from Algorithms to Applications, 2nd ed. (Academic Press, San Diego, 2002).