Journal of Physical Studies 23(3), Article 3704 [8 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.3704

INFLUENCE OF A DOPANT ON THE TEMPERATURE EVOLUTION OF THE OPTICAL ABSORPTION EDGE IN A NEW [(CH3)3CHNH3]4Cd3Cl10:Cu FERROELASTOELECTRIC

V. Kapustianyk{1,2}, P. Yonak{1}, R. Serkiz{1}, Yu. Chorniy{1}, Z. Czapla{3,4}

{1}Faculty of Physics, Ivan Franko National University of Lviv,
50, Drahomanov St., Lviv, UA-79005, Ukraine
{2}Scientific-Technical and Educational Center of Low-Temperature Studies,
Ivan Franko National University of Lviv, 50, Drahomanov St., Lviv, UA--79005, Ukraine
Department of Physics, Opole University of Technology,
75, Ozimska St., Opole, 45-370, Poland
{4}Institute of Experimental Physics, University of Wroclaw,
9, M. Borna Ave., Wroclaw, 50204, Poland

The influence of the Cu$^{2+}$ dopant on the temperature evolution of the optical absorption edge in the region of phase transitions of [(CH$_{3}$)$_{2}$CHNH$_{3}$]$_{4}$Cd$_{3}$Cl$_{10}$ (IPACC) ferroelastoelectric crystals was investigated. The relative amount of Cu$^{2+}$ with respect to Cd$^{2+}$ in the samples of [[CH$_{3}$]$_{2}$CHNH$_{3}$]$_{4}$Cd$_{3}$Cl$_{10}$:Cu (IPACCC) was examined using EDX analysis available in the scanning electron microscope and was found to be 0.6${\pm}$0.1 \%. The performed investigations ascertained a noticeable influence of the doping with Cu$^{2+}$ ions on the electron- (exciton-) phonon interaction and respectively on the shape and temperature evolution of the optical absorption edge of IPACC crystals. It has been found that the characteristic parameters of the empiric Urbach's rule show anomalous behaviour at the phase transition point ${T_2}=293$ K in IPACCC. It was shown that the low energy tail of the charge transfer band in this crystal is formed with the participation of internal vibrations of the metal-halogen complex. On the other hand, the low energy tail of the fundamental edge for both IPACC and IPACCC is formed with the participation of the internal vibrations of the metal-halogen complex or skeletal (or translational) vibration of IPA cation.

PACS number(s): 05.70.Fh, 63.20.Kr, 71.35.Aa, 71.35.Cc

pdf


References
  1. Ch. E. Costin-Hogan, Ch.-L. Chen, E. Hughes, A. Pickett, R. Valencia, N. P. Rath, Cryst. Eng. Comm. 10, 1910 (2008);
    CrossRef
  2. A. Thorn, R. D. Willett, B. Twamley, Cryst. Growth Des. 5, 673 (2005);
    CrossRef
  3. L. G. Marzilli, T. J. Kistenmacher, G. L. Eichhorn, in Nucleic Acid--Metal Ion Interactions, edited by T. G. Spiro (Wiley, New York, 1980), p. 179.
  4. I. Peral, G. Madariaga, A. Perez-Etxebarria, T. Breczewski, Acta Cryst. B 56, 215 (2000);
    CrossRef
  5. F. F. Jian, P. S. Zhao, Q. X. Wang, Y. Li, Inorg. Chim. Acta 359, 1473 (2006);
    CrossRef
  6. I. Chaabane, F. Hlel, K. Guidara, PMC Physics B 1, 11(2008);
    CrossRef
  7. S. Sakida, H. Nakata, Y. Kawamoto, Solid State Commun. 127, 447 (2003);
    CrossRef
  8. A. Waskowska, T. Lis, U. Krzewska, Z. Czapla, Acta Cryst. C 46, 1768 (1990);
    CrossRef
  9. A. Bonamartini Corradi et al., Chem. Mater. 5, 90 (1993);
    CrossRef
  10. A. Gagor, A. Waskowska, Z. Czapla, S. Dacko, Acta Cryst. B 67, 122 (2011);
    CrossRef
  11. B. Staskiewicz, S. Dacko, Z. Czapla, Cur. Appl. Phys. 12, 413 (2012);
    CrossRef
  12. J. Przes\ {l}awski, M. Kos, Z. Czapla, Thermochim. Acta 546, 49 (2012);
    CrossRef
  13. V. Kapustianyk et al., J. Phys. Chem. Sol. 121, 210 (2018);
    CrossRef
  14. V. Kapustianyk, Z. Czapla, V. Rudyk, Yu. Eliyashevskyy, P. Yonak, S.Sveleba, Ferroelectrics 540, 212 (2019);
    CrossRef
  15. B. Kundys et al., Phys. Rev. B 81, 224434 (2010);
    CrossRef
  16. V. Kapustianyk, V. Rudyk, P. Yonak, B. Kundys, Phys. Status Solidi (b) 252, 1778 (2015);
    CrossRef
  17. V. Kapustianyk, Phys. Status Solidi (b) 204, 877 (1997);
    CrossRef
  18. H. Sumi, A. Sumi, J. Phys. Soc. Jpn 56, 2211 (1987);
    CrossRef
  19. V. Kapustianik, Phys. Status Solidi (b) 207, 509 (1998);
    CrossRef
  20. B. Staskiewicz, J. Baran, Z. Czapla, J. Phys. Chem. Sol. 74, 1848 (2013);
    CrossRef