Journal of Physical Studies 23(3), Article 3706 [8 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.3706

THE EFFECT OF METAL ION SUBSTITUTION ON THE DIELECTRIC DISPERSION IN NH2(CH3)2Ga1-xCrx(SO4)2 · 6H2O CRYSTALS

V. Kapustianyk{1,2}, S. Semak{2}, Yu. Eliyashevskyy{2}, S. Sereda{1,3}

1Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of Lviv,
50, Drahomanov St., UA-79005, Lviv, Ukraine
2Department of Solid State Physics, Ivan Franko National University of Lviv,
50, Drahomanov St., UA-79005, Lviv, Ukraine
3Forschungszentrum Jülich, Institut für Energie- und Klimaforschung-Plasmaphysik,
52425, J\"ulich, Germany

The comparative study of the dielectric dispersion in the vicinity of the ferroelectric-ferroelastic phase transition in NH$_{2}$(CH$ _{3} $)$ _{2} $Ga$ _{1-x} $Cr$ _{x} $(SO$ _{4} $)$ _{2} $ $ \cdot $ 6H$ _{2} $O ($x=0$; 0.065) crystals was performed. As it follows from the analysis of the temperature-frequency dependences of the dielectric permittivity and the Cole-Cole diagrams, the dielectric dispersion is connected with a critical slowing down of the dipole relaxation (fundamental dispersion) in the high frequency range and with the domain wall dynamics at lower frequencies of the measuring electric field. It has been shown that the metal ion substitution practically does not affect the temperatures of phase transitions but manifests itself in the parameters of the low frequency dielectric dispersion. The substitution of gallium with chromium is followed by an increase in the relaxation time, the activation energy and the half-width of the Gaussian, which describes the distribution of the relaxation times. This was explained by the fact that chromium ions, due to their larger sizes in comparison with gallium ions, cause local lattice deformations. The latter promote the formation of more massive dipole clusters in the vicinity of the ferroelectric phase transition.

PACS number(s): 77.84.-s, 77.80.B-, 77.22.Gm, 75.78.Fg

pdf


References
  1. A. Pietraszko, K. Lukaszewicz, L. Kirpichnikova, Acta Crystallogr. Sect. A 49, 253 (1993);
    CrossRef
  2. R. Sobiestianskas, J. Grigas, E. F. Andreev, V. M. Varikash, Phase Transitions 40, 85 (1992);
    CrossRef
  3. E. F. Andreyev, V. M. Varikash, L. A. Shuvalov, Izv. Akad Nauk SSSR, Ser. Fiz. 55, 572 (1991).
  4. N. Alsabbagh, D. Michel, J. Furtak, Z. Czapla, Phys. Status Solidi (a) 167, 77 (1998);
    CrossRef
  5. V. Kapustianik, M. Fally, H. Kabelka, H. Warhanek, J. Phys. Condens. Matter 9, 723 (1997);
    CrossRef
  6. V. Kapustianyk et al., Phase Transitions 90, 175 (2016);
    CrossRef
  7. V. Kapustianyk et al., Acta Phys. Pol. A 127, 791 (2015);
    CrossRef
  8. V. Kapustianyk et al., Sci. Rep. 7, 14109 (2017);
    CrossRef
    V. Kapustianyk, N. Loboda, Yu. Eliyashevskyy, S. Semak, Low Temp. Phys. 45, 894 (2019);
    CrossRef
  9. V. Kapustianyk, Z. Czapla, S. Dacko, V. Rudyk, N. Ostapenko, Ferroelectrics 510, 80 (2017);
    CrossRef
  10. N. Ostapenko et al., J. Alloys Comp. 730, 417 (2018);
    CrossRef
  11. Z. Czapla, R. Tchukvinskyi, Acta Phys. Pol. A 93, 527 (1998);
    CrossRef
  12. Yu. M. Poplavko, Physics of Dielectrics [in Russian] (Vyšča škola, Kyiv, 1980).
  13. M. Fally, P. Kubinec, A. Fuith, H. Warhanek, C. Filipi, J. Phys.: Condens. Matter 7, 2195 (1995);
    CrossRef
  14. V. Kapustianik et al., Phase Transitions 49, 231 (1994);
    CrossRef
  15. K. Kuramoto, J. Phys. Soc. Jpn. 56, 1859 (1987);
    CrossRef
  16. E. Courtens, Phys. Rev. Lett. 52, 69 (1984);
    CrossRef