Journal of Physical Studies 23(3), Article 3708 [8 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.3708

ELECTRICAL PROPERTIES OF SnO2-BASED VARISTOR CERAMICS WITH SOLID-PHASE AND LIQUID-PHASE SINTERING

A. V. Gaponov, I. A. Skuratovsky

Dnipro National University, 72, Gagarin Ave., Dnipro, UA-49010, Ukraine

The varistor effect takes place in SnO$_2$-Co$_3$O$_4$-Nb$_2$O$_5$-Cr$_2$O$_3$ ceramics with CaO, SrO or BaO additions prepared by solid-phase sintering and in the same ceramics with CuO, V$_2$O$_5$ or Bi$_2$O$_3$ additions prepared by liquid-phase sintering. This effect is accompanied by a humidity-sensitive effect at the low-field electrical conductivity. The latter is observed when air relative humidity increases from 10 to 93\%. The lowest humidity-sensitive effect was found in the liquid-phase sintering samples. For the investigated samples the values of the nonlinearity coefficient 24-50 at high electric fields ($E_1=2.8-11$ kV cm$^{-1}$) and the humidity sensitivity coefficient 1.8$\cdot$10$^3$ - 3.2$\cdot10^5$ at low electric fields were calculated. Such properties of tin oxide based ceramics can be explained within the model of electrical conduction controlled by the grain-boundary potential barriers and the dissociative adsorption of water molecules on the samples surface. This leads to a low decrease of the intergranular potential barrier height in the humid air and an increase in the conductivity in low electric fields. At the same time in the high electric fields the barrier height decreases more intensively with an increase in the electric field and this leads to the varistor effect.

PACS number(s): 73.30.+y, 73.40.Ty, 73.50.Fq

pdf


References
  1. C. R. Gorla et al., J. Appl. Phys. 85, 2595 (1999);
    CrossRef
  2. V. Micevski, V. Lovchinov, Z. Milosavlevski, S. Stoimenov, J. Phys. Stud. 5, 323 (2001).
  3. A. Bondarchuk, A. Glot, G. Behr, J. Werner, J. Phys. Stud. 11, 408 (2007).
  4. L. Toporovska et al., J. Phys. Stud. 22, 1601 (2018);
    CrossRef
  5. W. Gopel, K. D. Schierbaum. Sens. Actuat. B: Chem. 26, 1 (1995);
    CrossRef
  6. B. M. Kulwicki, J. Am. Ceram. Soc. 74, 697 (1991);
    CrossRef
  7. M. Pelino, C. Cantalini, M. Faccio. Active Passive Elec. Comp. 16, 69 (1994);
    CrossRef
  8. E. Traversa, Sens. Actuat. B: Chem. 23, 135 (1995);
    CrossRef
  9. Z. Chen, C. Lu, Sensor Lett. 3, 274 (2005);
    CrossRef
  10. S. P. Yawale, S. S. Yawale, G. T. Lamdhade, Sens. Actuat. A: Phys. 135, 388 (2007);
    CrossRef
  11. T. A. Blank, L. P. Eksperiandova, K. N. Belikov, Sens. Actuat. B: Chem. 228, 416 (2016);
    CrossRef
  12. A. B. Glot, Inorg. Mater. 20, 1522 (1984).
  13. A. B. Glot, A. P. Zlobin, Inorg. Mater. 25, 274 (1989).
  14. S. A. Pianaro, P. R. Bueno, E. Longo, J. A. Varela. J. Mater. Sci. Lett. 14, 692 (1995);
    CrossRef
  15. P. N. Santosh, H. S. Potdar, S. K. Date. J. Mater. Res. 12, 326 (1997);
    CrossRef
  16. A. B. Glot, in Ceramic Materials Research Trends, edited by P. B. Lin (Nova Science Publishers Inc., New York, 2007), p. 227.
  17. P. B. Bueno, J. A. Varela, E. Longo, J. Eur. Ceram. Soc. 28, 505 (2008);
    CrossRef
  18. A. B. Glot, A. V. Gaponov, A. P. Sandoval-Garcia. Phys. B 405, 705 (2010);
    CrossRef
  19. A. V. Gaponov, A. B. Glot, Semicond. Phys. Quant. Electron. Optoelectr. 14, 71 (2011);
    CrossRef
  20. I. Skuratovsky, A. Glot, E. Di Bartolomeo, E. Traversa, R. Polini, J. Eur. Ceram. Soc. 24, 2597 (2004);
    CrossRef
  21. I. Skuratovsky, A. Glot, E. Traversa, Mater. Sci. Eng. B 128, 130 (2006);
    CrossRef
  22. A. V. Gaponov, A. B. Glot, A. I. Ivon, A. M. Chack, G. Jimenez-Santana, Mater. Sci. Eng. B 145, 76 (2007);
    CrossRef
  23. A. B. Glot et al., Adv. in Tech. Mat. Mat. Proc. J. 10, 21 (2008);
    CrossRef
  24. A. V. Gaponov, O. V. Vorobiov, A. M. Vasyliev, Phys. Chem. Solid State 17, 81 (2016);
    CrossRef
  25. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005);
    CrossRef
  26. A. B. Glot, I. A. Skuratovsky, Mater. Chem. Phys. 99, 487 (2006);
    CrossRef
  27. A. I. Ivon, I. M. Chernenko, Izv. Vyssh. Ucheb. Zaved. Fiz. 21, 111 (1978);
    CrossRef
  28. R. Sengodan, B. Chandar Shekar, S. Sathish, Phys. Proc. 49, 158 (2013);
    CrossRef
  29. G. D. Mahan, L. M. Levinson, H. R. Philipp, J. Appl. Phys. 50, 2799 (1979);
    CrossRef
  30. A. B. Glot, J. Mater. Sci.: Mater. Electron. 17, 755 (2006); \newline
    CrossRef
  31. S.-C. Chang, J. Vac. Sci. Technol. 17, 366 (1980);
    CrossRef