Journal of Physical Studies 23(3), Article 3710 [5 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.3710

EFFECTS OF GAMMA IRRADIATION ON THE PHYSICAL PROPERTIES OF PAni.MWCNT/PMMA FILMS

Tariq J. Alwan

Al Mustansiriyah University, College of Education, Physics Department, Baghdad, Iraq
e-mail: tariqjaffer2000@yahoo.com

In this study, the effect of gamma irradiation on PAni.MWCNT/PMMA films was investigated, for using them as dosimeters. In particular, the effects of gamma irradiation on the morphological characteristics, structure, electrical conductivity, and some optical properties of PAni.MWCNT/PMMA films were studied before and after irradiation. Samples were fabricated by casting method, obtained by using PAni.MWCNT with 3.8 wt\% PMMA weight ratio, and exposed to a (Cs${}^{137}$) gamma-radiation source at different dose rates (0, 2.7, and 4.8 kGy) at room temperature. The morphological characteristics of the PAni.MWCNT/PMMA films were examined through scanning electron microscopy. X-ray diffraction analysis revealed the effect of irradiation on the structure and average crystallite size of the films. The FTIR was carried out for samples within the range 600-4000 cm${}^{\mathrm{-}}$${}^{1}$ to study the functional groups of PAni.MWCNT/PMMA films, and the presence of characteristic bonds of PAni.MWCNT/PMMA films were observed using FTIR spectroscopy technique. Electrical conductivity analysis showed that the conductivity of the unirradiated film of 2.02$\mathrm{\times}$10${}^{\mathrm{-}}$${}^{8}$ S.cm${}^{\mathrm{-}}$${}^{1}$ increased to 2.77$\mathrm{\times}$10${}^{\mathrm{-}}$${}^{8}$ S.cm${}^{\mathrm{-}}$${}^{1}$ after the samples were exposed to 4.8 kGy. The absorption spectra of the PAni.MWCNT/PMMA films were also obtained. Spectral analysis demonstrated that optical transition was an allowed direct transition, and the optical band gap increased as the radiation dose increased. The observed changes in these physical properties suggested that PAni.MWCNT/PMMA films may be used as an effective material for gamma radiation dosimeters at room temperature.

PACS number(s): 78.30.Jw, 42.70.Jk, 42.70.Jk

pdf


References
  1. J. E. Mark, Physical Properties of Polymers Handbook, 2nd ed. (Springer, New York, 2007);
    CrossRef
  2. H. Shirakawa, E. J. Louis, A. G. Maccdiarmid, C. K. Chiong, A. J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977);
    CrossRef
  3. G. G. Wallace, G. M. Spinks, P. R. Teasdale, Conductive Electroactive Polymers, 2nd ed. (CRC Press LLC, USA, 2003).
  4. L. Dai, Intelligent Macromolecules for Smart Devices from Materials Synthesis to Device Applications (Springer, London, 2004);
    CrossRef
  5. B. J. Schwartz, Annu. Rev. Phys. Chem. 54,141(2003);
    CrossRef
  6. Zh. A. Boeva, V. G. Sergeyev, Polymer Sci. C 56, 144 (2014);
    CrossRef
  7. Tariq J. Alwan, Abed Al-Khaliq S. Jabbar, Jalal S. Bdaiwi, in Proceedings of the IIER International Conference (Crete--Greece, 2018), p. 14.
  8. M. Stickler, T. Rhein, Ullmann's Encyclopedia of Industrial Chemistry. Polymethacrylates, 5th ed., edited by B. Elvers, S. Hawkins, G. Schultz (VHS, New York, 1992);
    CrossRef
  9. J. M. G. Laranjeira, H. J. Khourya, W. M. de Azevedob, E. A. de Vasconcelosc, E. F. da Silva Jr, Mater. Characterization 50, 127 (2003);
    CrossRef
  10. M. Marianim et al., J. Radioanal. Nucl. Chem. 286, 625 (2010);
    CrossRef
  11. G. Spadaro, S. Alessi, C. Dispenza, in Applications of Ionizing Radiation in Materials Processing. Vol. 1, edited by Y. Sun, and A. G. Chmielewski, (Institute of Nuclear Chemistry and Technology, Warszawa, 2017), p. 167.
  12. A. Khosla, Electrochem. Soc. Interface, 21(3--4), 67 (2012);
    CrossRef
  13. A. I. Gopalan, K. P. Lee, P. Santhosh, K. S. Kim, Y. C. Nho, Comp. Sci. Technol. 67, 900, (2006);
    CrossRef
  14. S. G. Bachhav, S. G. Patil, J. Mater. Sci. 5, 90 (2015);
    CrossRef
  15. A. S. Jabbar, M. Sc. Thesis (Al-Mustansiriyah University, College of Education, Physics Department, Iraq, 2018).
  16. S. B. Kondawar, M. D. Deshpande, S. P. Agrawal, Int. J. Comp. Mater. 2, 32 (2012);
    CrossRef
  17. L. A. Bosworth, A. Gibb, S. Downes, J. Polymer Sci. B 50, 870(2012);
    CrossRef
  18. R. Augustine, A. Saha, V. P. Jayachandran, S. Thomas, N. Kalarikkal, Int. J. Polym. Mater. Polym. Biomater. 64, 526 (2015);
    CrossRef
  19. G. Chakraborty, K. Gupta, D. Rana, A. K. Meikap, Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 035015 (2012);
    CrossRef
  20. S. Ghatak et al., J. Appl. Polymer Sci. 119, 1016 (2011);
    CrossRef
  21. B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, 3th ed. (Prentice-Hall, United States of America, 2001).
  22. M. Nagaraja et al., J. Electron. Mater. 41, 1882 (2012);
    CrossRef
  23. A. K. Tomar, S. Mahendia, S. Kumar, Adv. Appl. Sci. Res. 2, 327 (2011).
  24. R. G. Sonkawade et al., Indian J. Pure Appl. Phys. 48, 453 (2010).
  25. A. M. Meftah , E. Gharibshahi, N. Soltani, W. M. Mat Yunus, E. Saion, Polymers 6, 2435 (2014);
    CrossRef
  26. A. Ashour, M. A. Kaid, N. Z. El-Sayed, A. A. Ibrahim, Appl. Surf. Sci. 252, 7844 (2006);
    CrossRef
  27. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1979).
  28. S. M. Sze, Semiconductor Devices Physics and Technology, 3th ed. (John Wiley & Sons, Inc., Canada, 2007).
  29. B. Thangaraju, P. Kalianna, Cryst. Res. Techon. 35, 71 (2000);
    CrossRef
  30. O. Karabulut et al., Suleyman Demirel Universitesi 7, 112 (2012).